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Abstract
For single-channel speech enhancement, most commonly,
the noisy observation is described as the sum of the clean
speech signal and the noise signal. For machine learning based
enhancement schemes where speech and noise are modeled in
the log-spectral domain, however, the log-spectrum of the noisy
observation can be described as the maximum of the speech
and noise log-spectrum to simplify statistical inference. This
approximation is referred to as MixMax model or log-max ap-
proximation. In this paper, we show how this approximation can
be used in combination with non-trained, blind speech and noise
power estimators derived in the spectral domain. Our findings
allow to interpret the MixMax based clean speech estimator as
a super-Gaussian log-spectral amplitude estimator. This MixMax
based estimator is embedded in a pre-trained speech enhancement
scheme and compared to a log-spectral amplitude estimator based
on an additive mixing model. Instrumental measures indicate that
the MixMax based estimator causes less musical tones while it
virtually yields the same quality for the enhanced speech signal.
Index Terms: speech enhancement, MixMax model, super-
Gaussian PDF, musical noise

1. Introduction
In presence of noise, the intelligibility, as well as, the quality
of speech is deteriorated. This may also affect human machine
interaction, e.g., applications where a machine is controlled by
the user using voice commands. Therefore, speech enhancement
algorithms play an important role, e.g., for telecommunication
applications, for hearing aids, and for speech recognition. In
this paper, enhancement techniques are considered where only a
single-channel observation of the noisy speech signal is available.

Single-channel speech enhancement has been a research
topic for many years and has led to a variety of different
approaches, e.g., [1–7]. Often, these algorithms are based on
a framework using the short-time Fourier transform (STFT).
Accordingly, the noise is removed in the Fourier domain and the
enhanced signal is obtained by taking the inverse of the STFT.
The clean speech Fourier coefficients are often estimated within
a statistical framework. Commonly, minimum mean-squared
error (MMSE) optimal estimators are employed, e.g., [1–3, 8, 9].
These estimators require an estimate of the spectral speech power
spectral density (PSD) and noise PSD. Various approaches have
been proposed to estimate these quantities blindly from the noisy
observation, e.g., [1, 10–12]. This type of enhancement algorithm
is referred to as non-trained algorithms here. In contrast
to non-trained algorithms, pre-trained speech enhancement
algorithms rely on models of speech and possibly also noise
that have been trained prior to the processing. For this, different
machine learning algorithms have been used, e.g., generative
models such as mixture models and hidden Markov models [6,
13], nonnegative matrix factorization [4], and neural networks [5].

Most non-trained clean speech estimators have been derived
based on the assumption that the time domain signals of speech
and the noise are additive. Even though this ignores the effect
of room characteristics, it reflects the physical properties of
sound sufficiently for many applications. For some pre-trained
algorithms [6, 7, 14–16], however, an approximation of this
model is used which allows to simplify statistical inference if
logarithmized spectra are considered. Here, the noisy log-spectral
coefficients are modeled as the maximum of the speech and noise
coefficients. This is referred to as MixMax model [14] or log-max
approximation [15]. In [14], it has been motivated by the empir-
ical finding that the approximation yields spectral representations
which are visually similar to the results that are obtained if the
additive mixing model is used in the time domain. The validity
of this approximation has been further supported in [17] where
it has been shown that the MixMax model is the MMSE optimal
estimator of the noisy log-spectral coefficients if the phase of the
complex speech and noise coefficients is uniformly distributed.
Further, it is argued in [15] that the error of the MixMax approx-
imation has only a considerable influence if two sources have the
same energy in time and frequency. Consequently, as speech has
a sparse spectral representation and is uncorrelated to the noise,
time-frequency points are often dominated by either speech or
noise. From this, the practical expedience is concluded in [15].

The MixMax model is commonly used in combination with
pre-trained approaches where speech and noise are modeled
using Gaussian distributions in the log-spectral domain [6, 7,
14–16]. In [14], it has been used to adapt the clean speech models
to the background noise for robust speech recognition. In the
context of speech enhancement, it has been used to infer the
log-spectrum of the target speech from noisy observations [6, 7]
or mixtures of multiple speakers [15, 16] in an MMSE optimal
way. In this paper, we show that the MixMax based clean speech
estimator can be interpreted as a super-Gaussian log-spectral
amplitude estimator (LSA) estimator similar to [2, 9]. For this,
the relationship between spectral and log-spectral coefficients
described in [18] is exploited. This relationship also allows to
combine pre-trained enhancement schemes based on the MixMax
model with non-trained speech and noise PSD estimators such
as [1, 10–12]. Following this, we employ the MixMax model
in a pre-trained speech enhancement scheme similar to [7] and
show that the MixMax based speech estimator [14] causes less
artifacts in the background noise compared to super-Gaussian
LSA [2, 9] without degrading the speech quality.

First, we recapitulate the MixMax based clean speech
estimator in Section 2. Following this, we present the relationship
between spectral and log-spectral coefficients [18] and analyze
the gain functions that result for the MixMax based clean speech
estimator in Section 3. In Section 4, the MixMax based estimator
is compared to the super-Gaussian LSA [2, 9] within a pre-trained
enhancement scheme and Section 5 concludes the paper.
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2. MixMax Based Speech Estimator
In this section, we recapitulate the MMSE optimal estimator
of the log-spectral speech coefficients that results from the
MixMax model. This estimator operates on the short-time
Fourier transformed input signal. For this, the signal is split into
overlapping frames which are transformed to the Fourier domain
after a tapered analysis window has been applied. This results
in the noisy spectra Yk,` where ` is the frame index and k the
frequency index. The MixMax model considers the log-spectra
of the noisy input which are defined as

yk,`=log
(
|Yk,`|2

)
. (1)

The speech log-spectrum and the noise log-spectrum are defined
accordingly as sk,` = log(|Sk,`|2) and nk,` = log(|Nk,`|2),
respectively. Here, Sk,` is the complex speech spectrum while
Nk,` denotes the complex noise spectrum. The MixMax signal
mixing model [14], also known as log-max approximation [15],
is given by

yk,`=max(sk,`,nk,`). (2)

Under the model in (2), the distribution of the noisy log-spectral
coefficients yk,` is given by [14]

fy(yk,`)=fs(yk,`)Fn(yk,`)+fn(yk,`)Fs(sk,`). (3)

Here, fs(·) and Fs(·) denotes the probability density function
(PDF) and the cumulative distribution function (CDF) of the
speech log-spectral coefficients sk,`, respectively. Similarly,
fn(·) and Fn(·) denote the PDF and the CDF of the noise. In [6,
7, 14], fs(·) is set to a Gaussian distribution

fs(sk,`)=
1√

2πλsk,`

exp

(
−1

2

(sk,`−µsk,`)2

λsk,`

)
(4)

=N (sk,`|µsk,`,λsk,`). (5)

The quantities µsk,` and λsk,` denote the mean and the variance of
the speech log-spectral coefficients sk,`, respectively. Similarly,
also the noise log-spectral coefficients nk,` are also assumed to
follow a Gaussian distribution as

fn(nk,`)=N (nk,`|µnk,`,λnk,`). (6)

Similar to the speech log-spectrum sk,`, µnk,` and λnk,` denote
the mean and the variance of the noise log-spectral coefficients,
respectively. Using the mixing model in (2) and the PDFs used
for sk,` and nk,`, the MMSE optimal estimator of the speech log-
spectral coefficients is considered, i.e., the ŝk,` which minimizes
E{(sk,`−ŝk,`)2}. Here, E{·} denotes the expectation operator.
This can be equivalently expressed as ŝk,` = E{sk,`|yk,`} [19,
Chapter 5.2] and the result is given by [7, 14]

ŝk,`=ρk,`yk,`+(1−ρk,`)
(
µsk,`−λsk,`

fs(yk,`)

Fs(yk,`)

)
, (7)

where ρk,`= fs(yk,`)Fn(yk,`)/fy(yk,`) [7, 14]. For obtaining
an estimate of the spectral clean speech coefficients Ŝk,`, the
log-spectral transformation in (1) is reverted and the result is
combined with the noisy phase Φyk,`=arg{Yk,`} as

Ŝk,`=
√

exp(ŝk,`)exp
(
jΦyk,`

)
, (8)

where j=
√
−1. For obtaining the time-domain representation

of the enhanced signal, the inverse Fourier transform of the
estimated clean speech spectra Ŝk,` is taken. The resulting
time-domain frames are weighted by a synthesis window and
merged using an overlap-add method.

3. Propagation of Spectral PSD Estimates
In this section, the relationship between spectral PSDs and
log-spectral means and variances given in [18] is recapitulated.
Previously, this relationship has only been used in combination
with an additive mixing model in the time domain, e.g., [18, 20].
Here, it is shown that it allows to employ spectral PSD estimates
in the MixMax based speech estimator in (7). Following this,
the MixMax based speech estimator can be interpreted as a
super-Gaussian LSA.

In [18], the speech spectral coefficients Sk,` are assumed
to follow a super-Gaussian distribution. For this, the speech
magnitudeAk,`= |Sk,`| is modeled using a χ-distribution as

f(Ak,`)=
2

Γ(ν)

(
ν

Λsk,`

)ν
A2ν−1
k,` exp

(
−
νA2

k,`

Λsk,`

)
. (9)

Here, ν > 0 denotes the shape parameter and ν < 1 results
in super-Gaussian distributed clean speech coefficients Sk,`.
Further, Γ(·) is the Gamma function [21, (8.31)] and Λsk,` denotes
the speech PSD. The phase of Sk,` is assumed to be uniformly
distributed between −π and π. Based on this assumption, the
mean of the speech log-spectral coefficients sk,` is given by [18]

µsk,`=E{log(|Sk,`|2)}=log(Λsk,`)+ψ(ν)−log(ν), (10)

where ψ(·) denotes the digamma function [21, (8.360.1)].
Further, the variance is given by [18]

λsk,`=E
{

(log(|Sk,`|2)−µsk,`)
2
}

=ψ1(ν), (11)

whereψ1(ν) is the trigamma function [22, (6.4.10)]. We employ
the common assumption that the spectral noise coefficientsNk,`
follow a circular symmetric Gaussian distribution. This
distribution results if ν= 1 is used in (9) and the same uniform
distribution is used for the phase. Hence, the parameters µnk,` and
λnk,` can be obtained by using ν=1 and replacing Λsk,` with the
noise PSD Λnk,` in (10) and (11).

The relationship between spectral and log-spectral coeffi-
cients in (10) and (11), allows to use spectral speech PSDs Λsk,`
and noise PSDs Λnk,` in combination with the MixMax based clean
speech estimator in (7). As a result, pre-trained models using log-
spectral representations can easily be used in combination with
speech and noise spectral PSD estimators, e.g., [1, 11, 12]. Hence,
the advantages of both domains can be exploited: on the one hand,
many different non-trained approaches are available for spectral
PSD estimation [1, 10, 11] while, on the other hand, log-spectral
representations are better suited for constructing generalizing
pre-trained speech models. Further, this relationship gives an
interpretation of the means and variances of the pre-trained
models. Considering (11), the log-spectral variance depends
only on the shape ν. In other words, the log-spectral variance of
a pre-trained model can be associated with a specific assumption
about the shape of the spectral coefficients. Correspondingly, the
log-spectral mean is related to the spectral PSD.

Moreover, the relationship in (10) and (11) allows to inter-
pret the estimator given by (7) and (8) as a real-valued spectral
gain function Gk,` that depends on the spectral a priori signal-
to-noise ratio (SNR) ξk,` = Λsk,`/Λ

n
k,` and a posteriori SNR

γk,` = |Yk,`|2/Λnk,`. The spectral gain function Gk,` allows
the estimated speech spectral coefficients to be represented as
Ŝk,` =Gk,`Yk,`. Such an interpretation is usually reserved for
MMSE optimal estimators that have been defined in the spectral
domain, e.g., [1–3, 8, 9]. In Figure 1, the gain function of the Mix-
Max based estimator is shown that results if the relationship in (10)
and (11) is exploited. It is compared to the super-Gaussian LSA [2,
9] which is based on an additive mixing model in the time domain.
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Figure 1: Gain functions of the super-Gaussian LSA [2, 9] and
the MixMax based based clean speech estimator.

This estimator is implemented using the beta-order estimator pro-
posed in [2] which generalizes [9] if small values are employed for
the compression parameter which is set to 0.001 here. This esti-
mator is chosen as it is also an estimator of the log-spectral ampli-
tudes, i.e., the Ŝk,` is estimated which minimizesE{log(|Sk,`|)−
log(|Ŝk,`|)}. Additionally, the same statistical model for the spec-
tral coefficients is used as in the derivation of (10) and (11).

For ν=1, the suppression of both estimators mainly depends
on the a priori SNR ξk,`. With increasing a priori SNR, the
applied suppression decreases. Differences can be observed for
very high and low a posteriori SNRs γk,` where the MixMax
model results in lower gains. Reducing ν, i.e., assuming a super-
Gaussian distribution distribution for Sk,`, has a similar effect for
both gain functions. In both cases, a higher suppression is applied
if the a posteriori SNR γk,` is close to 0 dB. In [23], it has been
shown that this behavior is beneficial if pre-trained speech models
are employed that only represent the spectral speech envelope. In
this case, it allows to suppress the noise between harmonics which
is not represented by the speech models. Little suppression is
applied if the a posteriori SNR γk,` is high, which results in lower
speech distortions associated with super-Gaussian estimators.

4. Practical Evaluation
In this section, the MixMax based estimator and the super-
Gaussian LSA [9], again realized as in Section 3 using [2], are
embedded in a pre-trained enhancement scheme similar to [7].
We show that the MixMax based estimator yields similar results
in terms of speech quality which is estimated using Perceptual
Evaluation of Speech Quality (PESQ) scores [24] whereas
less musical tones are produced as indicated by a modified
version of the log-kurtosis ratio [25]. First, the enhancement
scheme is described, then the parameters and evaluation setup
are considered, and last, the results are presented.

4.1. Pre-Trained Enhancement Scheme

In the employed enhancement scheme, we combine a pre-trained
speech PSD estimator with a non-trained noise PSD estimator.
Similar to [7], the speech PSD estimator is realized using a
phoneme recognizer based on a deep neural network (DNN). The
algorithm proposed in [12] is used to estimate the noise PSD.

Figure 2 depicts the architecture of the DNN used for the
phoneme recognition. The input is given by a feature vector
v`=[v1,`,...,vV,`]

T where ·T denotes the vector transpose and V
the feature dimension. The features are processed by two hidden
layers and the output layer returns a score f(q|v`) for each
phoneme q. These scores are interpreted as posterior probability

v1,`
ReLU

h1,1

ReLU

h1,2
...

ReLU

h1,H1

v2,`

...

vV,`

ReLU

h2,1

ReLU

h2,2
...

ReLU

h2,H2

softmax

f(q=1|ṽ′`)

softmax

f(q=2|ṽ′`)
...

softmax

f(q=Q|ṽ′`)

Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 2: Architecture of DNN used in the employed phoneme
recognizer.

that the phoneme q was spoken given the features v`. The units
in the hidden layers are rectified linear units (ReLUs) [7, 26, 27]
whose output is given by

h1,j =max(0,wT
1,jv`+u1,j) (12)

h2,j =max(0,wT
2,jh1+u2,j). (13)

The vector wi,j denotes the weights of the jth output of the ith
hidden layer and ui,j is the corresponding bias term. The outputs
hi,j are pooled in vectors as hi = [hi,1,...,hi,Hi ]

T , where Hi
denotes the number of units in the ith layer. The transfer function
of the final layer is a softmax function which yields the posterior
probabilities f(q|v`) as

f(q=j|v`)=
exp(wT

3,jh2+u3,j)∑
j′exp(wT

3,j′h2+u3,j′)
. (14)

Before the processing takes place, a speech PSD Λ
s|q
k is

trained for each phoneme q. During enhancement, the following
steps are performed for each frame `. First, the noise PSD
estimate Λ̂nk,` is updated according to the procedure in [12]. Then,
using the features v` extracted from the noisy input spectrum
Yk,`, the posterior probabilities f(q|v`) are obtained from the
DNN. After that, the clean speech coefficients Ŝ(q)

k,` are estimated

for each phoneme q based on the pre-trained speech PSDs Λ
s|q
k .

For this, the super-Gaussian LSA [9] implemented via [2] or the
MixMax based estimator in (7) is used. To obtain the final clean
speech estimate Ŝk,`, the phoneme dependent estimates Ŝ(q)

k,` are
combined using the posterior probabilities f(q|v`) as

Ŝk,`=

Q∑
j=1

f(q=j|v`)Ŝ(q)
k,` . (15)

These steps are repeated until the end of the signal is reached.

4.2. Evaluation Setup

The speech signals processed by the enhancement scheme are
sampled at a rate of 16 kHz. For the STFT, 32 ms frames with
50 % overlap are employed and a square-root Hann window is
used for spectral analysis and synthesis.

We use 13 Mel-frequency cepstral coefficients (MFCCs) [28]
and their ∆ and ∆∆ derivatives as input features for the DNN
based phoneme recognizer. Similar to [7, 26], the features of three
previous and three future frames are appended to the feature vector
of the current frame to include context information. As 39 MFCCs
are extracted per frame, the included context results in a total fea-
ture dimension of V =273. The features are normalized to unit
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mean and zero variance [29] before being used in the phoneme
recognizer. This normalization is applied per TIMIT utterance.
The hidden layers haveH1 =H2 =512 hidden units. The weights
of the DNN are optimized prior to the processing using 1196 sen-
tences taken from the training set of the TIMIT database [30].
It has been ensured that the training sentences are gender and
phonetically balanced. As in [7], only clean speech data is used
for training to avoid noise specific adaptations of the DNN. The
phonemes q are given by the TIMIT annotation which distin-
guishes between 61 classes. For all frames ` in the training data,
the annotation is used as training targets which is encoded in 61-
dimensional target vectors. For these vectors, all elements are set
to zero except the qth element which takes the value 1 to indicate
the respective phoneme. For the optimization the cross-entropy is
employed as error function which is optimized using scaled con-
jugate back-propagation [31]. The weights of the first two hidden
layers, i.e., w1,j and w2,j with j=1,...,512, are initialized using
the Glorot method [32] while the weights of output layerw3,j with
j=1,...,61 are initialized using the Nguyen-Widrow method [33].
For each phoneme q, the phoneme dependent speech PSD Λ

s|q
k is

determined by averaging all speech periodograms |Sk,`|2 labeled
as the corresponding phoneme q in the TIMIT annotation.

Due to the averaging of phonemes, only spectral envelopes
can be represented by the pre-trained speech PSDs Λ

s|q
k . Hence,

similar to [23] a super-Gaussian speech PSD is assumed by using
ν = 0.25. This choice allows to suppress noise between the
spectral speech harmonics and yields a satisfying compromise for
both considered speech estimators. Finally, both gain functions
Gk,` are limited such that a time-frequency bin may not be
suppressed by more than 15 dB.

We use PESQ [24] as instrumental measure for the speech
quality and a modified version of the log-kurtosis ratio proposed
in [25] to evaluate the noise quality in terms of musical tones.
Similar to [25], we define the log-kurtosis ratio as

∆κlog =log

(
κñ
κn

)
, (16)

where κñ is the empirical kurtosis of the processed noise whereas
κn denotes the empirical kurtosis of the unprocessed noise. The
kurtosis can be considered a measure of outliers and, thus, a
positive log-kurtosis ratio ∆κlog is expected if the processed
signals contains musical tones. Instead of estimating the kurtosis
for each frame ` and using the average along time as κn and κñ,
we estimate the kurtosis per frequency band as

κn[k]=

1
|Ik|
∑
`∈Ik

[
|Nk,`|2−|N |2k

]4
(

1
|Ik|
∑
`∈Ik

[
|Nk,`|2−|N |2k

]2)2 . (17)

In (17), the set Ik contains only frames in the kth frequency band
where the background noise is dominant as

Ik={`| |Sk,`|2/|Nk,`|2<θ}. (18)

Here, θ is a threshold value which is set to −10 dB in this
evaluation. The cardinality of Ik is denoted by |Ik| and |N |2k
is given by |N |2k =

∑
`∈Ik
|Nk,`|2/|Ik|. Finally, κn is given by

κn =
∑K−1
k=0 κn[k]/K, where K denotes the number Fourier

coefficients. Similarly, the kurtosis of the processed noise
periodogram |Ñk,`|2 is determined.

For testing, 128 sentences taken from the TIMIT test
corpus [30] are used where, again, a gender balanced set is
used. The clean speech sentences are corrupted by babble noise,
factory 1 noise and pink noise taken from the NOISEX-92
database [34] at SNRs ranging from -5 dB to 20 dB. Additionally,
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Figure 3: PESQ improvement score (upper panel) and log-
kurtosis ratio (lower panel) of the super-Gaussian LSA [2, 9] and
the MixMax based estimator averaged over all noise types.

a modulated version of the pink noise similar to [12] and a traffic
noise taken from “https://www.freesound.org/s/75375/” is used.

4.3. Results

Figure 3 depicts the PESQ improvement scores and log-kurtosis
ratio obtained for the used variant of the super-Gaussian LSA [2,
9] and the MixMax based clean speech estimator. The results are
averaged over all noise types and the upper panel indicates that
the quality of the speech signal is similar for both employed clean
speech estimators. The log-kurtosis in the lower panel of Figure 3
shows lower values for the MixMax model, i.e., it indicates less
musical tones. We note that if the babble noise and the factory
noise are considered separately, the log-kurtosis ratio is higher
for the MixMax based estimator. In informal listening tests,
however, no disturbing musical tones could be noticed and both
clean speech estimators have been found to sound very similar
in these highly non-stationary noise types. Part of the reason
may be that estimating the fourth-order moments in the kurtosis
metric is rather difficult for these noise types. This possibly
renders the log-kurtosis ratio unreliable for non-stationary noises.
However, for other noise types, such as the pink noise and the
traffic noise, it is clearly audible that the MixMax based estimator
causes less artifacts. Hence, the overall averaged log-kurtosis
ratio in Figure 3 adequately reflects the trend that the MixMax
based estimator results in less musical tones which is confirmed
in informal listening tests. This is achieved while maintaining
the same PESQ scores as the super-Gaussian LSA [2, 9]. Audio
examples can be found at “https://www.inf.uni-hamburg.de/en/
inst/ab/sp/publications/interspeech2017.html”.

5. Conclusions
In this paper, we showed that the MixMax based estimator used
in [6, 7] can be interpreted as a super-Gaussian LSA. For this,
the relationship described in [18] is exploited. This, additionally,
allows to combine pre-trained log-spectral models and spectral
speech and noise PSD estimators for speech enhancement.
Further, the MixMax based speech estimator is compared to the
super-Gaussian LSA proposed in [2, 9] using a pre-trained speech
enhancement scheme. The instrumental measures indicate that
the speech quality of both estimators is nearly identical while
the MixMax based speech estimator causes less musical artifacts
in the suppressed background noise.
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