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Abstract: Periocular recognition has emerged as a particularly valuable biometric identification
method in challenging scenarios, such as partially occluded faces due to COVID-19 protective masks
masks, in which face recognition might not be applicable. This work presents a periocular recognition
framework based on deep learning, which automatically localises and analyses the most important
areas in the periocular region. The main idea is to derive several parallel local branches from a neural
network architecture, which in a semi-supervised manner learn the most discriminative areas in
the feature map and solve the identification problem solely upon the corresponding cues. Here,
each local branch learns a transformation matrix that allows for basic geometrical transformations
(cropping and scaling), which is used to select a region of interest in the feature map, further analysed
by a set of shared convolutional layers. Finally, the information extracted by the local branches
and the main global branch are fused together for recognition. The experiments carried out on the
challenging UBIRIS-v2 benchmark show that by integrating the proposed framework with various
ResNet architectures, we consistently obtain an improvement in mAP of more than 4% over the
“vanilla” architecture. In addition, extensive ablation studies were performed to better understand
the behavior of the network and how the spatial transformation and the local branches influence the
overall performance of the model. The proposed method can be easily adapted to other computer
vision problems, which is also regarded as one of its strengths.
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1. Introduction

Biometric identifiers refer to unique physical (iris, face, fingerprints, etc.), behavioural
(gait, typing patterns), or physiological (EEG) traits that can be used to identify and describe
individuals. The COVID-19 pandemic has caused a major decline in the performance of
existing face identification systems [1], as a result of a large data drift. This is because many
people wear protective masks that conceal most of the face area, leaving only the periocular
region and the forehead visible.

Although there is no standardised definition from organisations such as NIST or
ISO/IEC, the term periocular refers to the area around the eyes (i.e., the eyebrows, eyelashes,
eye-folds, skin texture, tear ducts, etc.). Figure 1 shows an overview of a periocular re-
identification system, in which the area surrounding the eye is used as a cue to determine
the correct match between the query and the gallery individuals.

Ref [2], the periocular cues are categorised into (1) level one features, which are more
dominant in nature and deal with geometry or shape (eyelids, eye corners, eyebrows),
and (2) level two features, which are more related to colour and texture (skin appearance,
skin pores, wrinkles, colour). Studies [3] have shown that the periocular region contains
relevant cues for person identification both in visible (VIS) and near-infrared images (NIR),
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and that, in general, level two features are more efficient in VIS images, while level one
features are useful in NIR images. Moreover, Ref. [4] showed that humans and computers
rely on the same periocular cues for person identification, in both NIR and VIS scenarios.
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Figure 1. Periocular re-identification system. The goal is to find the most similar correct matches of a

query person in the target gallery. R stands for rank, and confidence is the prediction probability of
the biometric system.

In recent years, periocular recognition has become a prominent research area in
biometric systems, because it has proved to be a valuable biometric approach and it offers
several advantages. First of all, it can be captured with the same imaging devices used for
facial or iris identification [3], it is non-intrusive and can be performed without the need
for physical contact or cooperation from the subjects. In addition, periocular recognition
can be performed in different spectra (both in visible-light and infrared spectrum), making
it a versatile method of biometric identification.

All the cues present in the periocular area are prone to occlusions or other factors that
influence their applicability:

*  The iris and the sclera are sensitive to corneal reflexions (the Purkinje images);
*  Accessories—such as eyeglasses or bangs—can occlude the eyebrows;

¢ Head/eye movements can lead to capturing blurry data;

*  Makeup can influence the overall appearance of the eye.

With these challenges in mind, the key idea of this paper is to design a convolutional
neural network that can adapt to these challenging environmental changes and automati-
cally focus on the most relevant cues visible in the input image. To this end, we propose a
multi-branch architecture that can focus on several bio-metrical traits at different granulari-
ties, by adding several local branches to focus on different regions of the image. Each local
branch learns a geometrical transformation matrix (allowing for scaling and translation),
which is then used to sample a region of interest (ROI) from an intermediate feature map.
These ROIs are further analysed by a set of shared local layers, and then merged (via
feature map summation) with the global branch. The workflow of the proposed solution is
illustrated in Figure 2. By adding additional local branches to the model, we effectively
exploit different bio-metrical traits and boost their performance in challenging environ-
mental scenarios. Although the model design involves setting several hyperparameters,
the features and the spatial transformation are automatically learned, and the proposed
model can be trained in an end-to-end manner. Extensive ablation studies were performed
to determine the impact of each hyperparameter.

The main contributions of this article are threefold: (1) we employ a spatial transfor-
mation module, which learns, in a semi-supervised manner, to identify the most prominent
regions of the periocular area; (2) the periocular area is analysed both holistically, but also at
the local level within the selected regions; and (3) the global and local information are fused
to solve the recognition problem, and the loss function is applied to both the global and
local branches to ensure that relevant features are extracted. Last but not least, the proposed
method is generic, and can be easily adapted to other computer vision tasks.
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The remainder of this manuscript is organized as follows: Section 2 reviews the
existing approaches for periocular recognition, while the methodology used for conducting
this study and the proposed method are introduced in Section 3. Section 4 presents the
experimental results and a comparison with state-of-the-art works. The conclusions of the
paper and several future research directions are summarized in Section 6.
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Figure 2. The overview of the proposed deep learning model based on convolutional neural networks.
The input image is processed using several global and local convolutional blocks. Block and Local Block
refer to the convolutional blocks/layers in the global branch (depicted in orange) and local branch
(depicted in blue), respectively. The feature map f; from some level i in the network architecture is fed
to L > 1 local branches. Each branch applies a Spatial transformation module to select an ROI within
the input feature map, and then further analyses this region by applying several shared convolutional
blocks. In the end, the feature maps of the local branches are extrapolated to the same size and
fused with the global branch via element-wise summation. To ensure that the local branches extract
useful features, the loss function is applied to both the global branch and the summation of the
local branches.

2. Literature Survey

The pioneering work of Ref. [5] analysed the feasibility of periocular biometrics
and proposed a system that exploits a set of global (LBP—Local Binary Patterns, HoGl—
Histogram of Oriented Gradients) and local (SIFTl—Scale-Invariant Feature Transform)
descriptors, fused together at the score level based on a weighted sum with min-max
normalisation. Early works focused on designing effective feature descriptors to capture
textual information around the eyes, either at a global level—(variants of) LBP [6,7], Gabor
filters [8]—or at a local level—SIFT [9], SURF (Speeded Up Robust Features) [10], or SAFE
(Symmetry Assessment by Feature Expansion) [11].

Global-based methods operate holistically on the entire periocular region and extract
a feature vector based on texture or shape information. Several methods rely on LBP
descriptors, which determine binary patterns by comparing each pixel with its neighbours.
The global descriptor is then obtained by concatenating histograms of binary patterns
computed across image cells. Ref. [7] investigated several feature extraction methods and
determined that LBP substantially improved the performance of both verification and iden-
tification methods. In addition, they proposed the Local Walsh-Transform Binary Pattern
feature representation, an effective variant of LBP. Other works use Gabor filters—with
different orientations and frequencies—to analyse the texture in the periocular region.

A matching algorithm based on Gabor filters and a feature encoding scheme that
relies on three operators to extract robust features in different spectral bands, was proposed
in [8]. Two operators—Weber Local Descriptor (WLD) and uniform LBP—work on the
magnitude of the filtered images, while another one—uniform generalised LBP operator
(GLBP)—operates on the phase.

PPDM (Periocular Probabilistic Deformation Model) [12] applied a probabilistic in-
ference model to compute 1:1 matching scores (between query and gallery images) based
on correlation filters extracted from periocular image patches. Subsequently, the match
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performance was improved [13] with an unsupervised method used to select discriminate
regions from the periocular area.

Local-based methods employ a multi-stage process: first, prominent keypoints are
located within the periocular area, and then features are extracted from their vicinity.
In Ref. [11], the authors adapted the Symmetry Assessment by Finite Expansion (SAFE)
algorithm, previously used in fingerprint analysis, to the problem of periocular recognition.
The key idea is to sample several keypoints based on a rectangular grid positioned in the
eye centre, and then project ring-shaped areas of different sizes onto a space of harmonic
functions used to determine symmetric curve families. A multi-modal authentication
system that analyses and fuses features from the face, periocular and, if visible, iris area, is
introduced in Ref. [10]. The system extracts three feature descriptors—SIFT, SURF, and Bina-
rised Statistical Image Features (BSIF)—and explores various fusion strategies to effectively
combine information from all three modalities. Ref. [14] identifies four prominent regions
in the periocular area (eyebrows, upper eye fold, lower eye fold, and eye corners) and then
computes a feature representation vector based on HOG, KAZE, and SING descriptors,
as well as shape information. Finally, a Naive Bayes classifier is used to perform the perioc-
ular recognition based on the extracted feature vector. The main drawback of this method
is that it also requires the accurate segmentation of the features in the periocular area.

With the impressive advances of deep learning in the fields of computer vision and
image recognition, recent developments in periocular biometrics focus exclusively on deep
convolutional neural networks. Before CNNSs, traditional pattern recognition methods used
handcrafted features, such as LBP, HoG, Zernike moments [15], fast block processing feature
extraction [16] etc., which were manually designed, taking into consideration the specific
task and problem. On the other hand, in CNNs the features are automatically learned
from the input data by convolutional layers. In general, deep learning methods tend to
outperform traditional hand-crafted feature extraction techniques in computer vision tasks
due to their ability to automatically learn relevant features from the data. The interested
reader can refer to Refs. [3,17,18] for an in-depth presentation on early periocular research.

In Ref. [19], using transfer learning, seven CNN architectures were trained and com-
pared in the context of periocular recognition. Ref. [20] proposed an original augmentation
strategy based on multi-class region swapping, such that the network learns to consider
the iris and the sclera regions as not reliable for biometric recognition, and only focus on
the information surrounding the eyes. Although the method does not involve additional
parameters or an increase in inference time, it completely disregards some regions in the
periocular area that contain powerful biometric traits.

Other works [21,22] employed multi-task models to boost the performance of peri-
ocular recognition systems. Ref. [22] proposed semantics-assisted convolutional neural
networks (SCNN) to incorporate explicit semantic information (gender and eye side): two
separate CNNs are trained on these two tasks (identification and semantic task), and in
the end are joined to obtain more powerful feature representations or to perform score fu-
sion. Similarly, Ref. [21] introduced an end-to-end biometric system, based on a multi-task
architecture. The framework features a shared convolutional backbone and two separate,
dedicated branches, one for biometric identification and one for soft biometric recognition.
These branches are fused together for the final periocular recognition, while also predicting
soft biometrics. However, the main disadvantage of these approaches is the need for anno-
tated datasets with identity and soft biometric attributes, which are not always available.
In addition, they tend to involve more parameters for the supporting tasks.

In Ref. [23], the authors proposed a two-branch deep learning model to analyse iris
and periocular cues, and then fuse the corresponding predictions through a multilayer
perceptron (MLP). The training procedure is rather complicated, as it requires several
stages. In addition, the inputs to each branch require different pre-processing techniques
and, as two CNNs are used, the system has more learnable parameters, which leads to
longer inference times.
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Ref. [24] designed a multimodal biometric system to exploit facial and periocular cues.
The proposed model features a shared convolutional backbone, as well as two predictor
branches to accommodate the two modalities. During training, additional loss functions
are defined to decrease the distance between feature embeddings or periocular-face intra-
subjects, while simultaneously maximising feature embeddings of the periocular-face
inter-subjects. In Ref. [25] the authors proposed AttenMidNet, a lightweight CNN based
on attention mechanisms. The building blocks of the architecture are the MCRS blocks
that comprise a convolutional layer, a squeeze-and-excitation block [26], and a residual
connection. Ref. [27] proposed a Siamese-like dual stream network, which analyses in
parallel the left and right periocular regions of a subject, and then investigates the feature
aggregation techniques of the two streams.

Table 1 provides a summary (features, highlight, brief methodology) of the related
periocular recognition methods discussed in this section.

Table 1. Representative research papers on periocular recognition. As in the survey papers [3,18],
the methods are grouped based on the feature extraction strategy.

Strategy Reference Highlight
[5] Global features: LBP + HoG, fused together at score level
[12] probabilistic inference model based on correlation filters

Global features

Gabore filters + feature encoding scheme to extract features
in different spectral bands

(8]

Multinomial Naive Bayes learning + Dense SIFT for nearest

ISURE [9] neighbour matching
[11] Symmetry Assessment by Finite Expansion for
Local features periocular recognition
[10] multimodal system (face, periocular, iris) based on SIFT,
SUREF, and BSIF fusion
[14] HOG, KAZE, SING features from four regions in the
periocular area + Naive Bayes classifier
SCNN [22] several CNNs to incorporate semantic information (gender
and eye type) in the training process
DEEPRWIS [20] augmentation strategy to focus solely on the outside
eye areas
Deep learnin [19] transfer learning on different CNN architectures
p & multitask CNN for periocular recognition and soft
ADPR [21] . o
attribute prediction
AttenMidNet [25] attention mechanism gsqueeze-and-exatanon blocks) and
mid-level features
Dual-Input CNN [28] dual-stream Siamese-like CNN + fusion scheme

Despite their impressive performance, a major caveat of deep learning methods is
their lack of explainability. As a result, some works [29,30] tackled the problem of visual
explanations and interpretable artificial intelligence in the context of periocular recognition.

3. Materials and Methods
3.1. Problem Setting

We formulate the biometric recognition problem as a re-identification problem. Con-
sider a training image-based set of N different identities, each containing n;; samples.
The purpose of a re-identification system is to learn a function that will find the best match
between a query image and a gallery set of images. The query set contains images of the
periocular area of a subject we want to identify in another image or set of images (the
gallery set). The gallery set contains the potential matches (periocular images) for the target
person in the query set.
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3.2. Solution Outline

The periocular area comprises various anatomical cues suitable for recognizing in-
dividuals and numerous studies have analysed their significance for this process (refer
to Ref. [3] for a detailed survey on this matter). However, the applicability of the pe-
riocular biometric traits is influenced by environmental factors, and depending on the
overall appearance of the eye area and the image capture modality (VIS or NIR), one cue
might be more relevant than the other. As an example, the skin texture and the overall eye
shape are suitable cues for VIS images [4], but make-up can influence their appearance and
therefore degrade the performance of a machine learning model that has been trained to
focus on such features. With this in mind, we devised a deep learning model which uses
several local branches trained to locate (in a semi-supervised manner) and analyse several
discriminative regions in the periocular area (Figure 2).

The proposed method can be easily integrated into any network architecture, and it can
effectively boost the performance of (re-)identification systems with a small increase in inference
time. Additionally, this strategy can be easily adapted to other image recognition tasks.

3.3. Model Architecture

The key idea of our method is to employ L branches, branched from the ith level
of a neural network architecture, which will learn to extract prominent ROIs within the
periocular area and analyse them for biometric identification. Each local branch starts with
a Spatial transformationmodule, responsible for the selection of an ROI in the input feature
map f;. Then, a set of B shared convolutional layers (between all the L branches) process
the selected areas, and finally, their corresponding feature maps are fused through element-
wise summation. This summation result is also added to the global branch. To ensure that
the local branches actually learn relevant information, we apply the loss function to both
the global branch’s output and the summation of the local branches.

3.3.1. The Local Branch

The local branches learn to spot the most relevant regions on the input feature map and
attempt to solve the identification problem based solely on the features from these areas.

Inspired by Refs. [31,32], we employ a visual attention mechanism to locate the
discriminative parts of a feature map f; € R"*®*¥, To achieve this, each local branch starts
with a Spatial transformation module, which learns to select an ROI from the input feature
map. Similar to [33], we generate a spatial map using grouping operations to compute two
bi-dimensional maps: fy; € R"*“*1! and fyx € R"*®*! and aggregate them into a single
map s; using element-wise summation. s; is then passed to a feed-forward multi-layer
perceptron that regresses an affine spatial transformation matrix 6:

ez{sx 0 t"]. (1)

0 sy ty

This matrix allows for cropping and translation (2D spatial parameters ¢, and t,) and
image scaling (scaling parameters sy and s;). The transformation is not learned explicitly
from the dataset labels; instead, the model automatically optimises these parameters
such that it boosts the recognition accuracy. At the beginning of the training process,
the weight and biases of the linear layer are initialised with the identity transformation
(i.e., all weights initialised to 0, biases for s, and sy initialised to 1, biases for t; and ty set
to 0). After the transformation matrix 6 (Equation (1)) is determined, the grid generator
module computes a 2D flow-field grid based on 6 to generate the coordinates from the input
image corresponding to each position in the output. The grid sampling module applies the
transformation parameters to the input and returns an ROI r; from the input feature map.
The structure of this Spatial transformation module is depicted in Figure 3, and, for clarity,
is also detailed in Algorithm 1. As illustrated in Figure 2, the selected ROI 7; is further
passed through a set of shared convolutional layers. In the end, all the outputs of the local
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branches are brought to agree with the shapes via an extrapolation layer, and they are
added to the output of the global branch.

To guarantee that the features learned by the local branches are in fact useful in
the periocular identification task, the loss function is also applied to their summation.
More precisely, during training, the model has multiple outputs, one corresponding to
the global branch and one corresponding to the summation of the local branches’ output.
However, at test time, only the global branch output is used and evaluated. This is inspired
by Ref. [34], where the authors used several small classifiers (discarded at test time) on top
of come convolutional blocks to ensure that the layers in the middle of the network are also
very discriminative.

Algorithm 1: Spatial transformation module.

Input :f; - feature map.
Output: f/, - ROIin f;

/* compute y channel-wise mean x/
p < meangy(f;);
/* compute m channel-wise maximum x/
m <— max,(f;);
/* fuse(addition) y and m and flatten result x/

p < flatten(y + m);

/* apply multi-layer perceptron to compute transformation matrix 6
*/

6 < MLP(p);

/* generate affine grid based on 0 and sample f'; x/

f'; < sample(f;, 0);

return f’

channel-wise

average pooling

fi
pﬂ_ hrxwx1) roi;
™ MLP ’—)L Sampl
B o ampler > —

(hxwxc)
0 = sy 0 ty
0 sy ty

] (W xXw Xc)

channel-wise

max pooling

Figure 3. Detailed architecture of the Spatial transformation module. The input convolutional feature
map f; first undergoes two channel-wise pooling operations (maximum and average) to highlight the
most discriminative spatial areas. Their outputs are then added together and passed to a multi-layer
perceptron to learn 6 - the transformation matrix. 6 is used to sample a region of interest from f;,
which will be processed by the local branches. Although the Spatial transformation module operates
on intermediate feature maps, for illustration purposes we exemplify its function with an image
(corresponding to the input feature map).

3.3.2. Closed vs. Open-World Operating Modes

In the context of periocular identification, Al models can operate in closed or open-
world modes, depending on whether the identities of the subjects to be recognised are
known or not.

In the closed-world setting (i.e., when all the subjects are known in advance), the iden-
tification problem can be formulated as a classification task, and a softmax layer can be
used to predict the identities. In this case, the final layer of CNN is a dense layer with
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softmax activation, and its number of neurons is equal to the number of identities in the
dataset. This problem can be seen as a watch-list identification problem [20], in which the
model aims to spot some subjects from a predefined list.

On the other hand, in the open-world setting, when the set of identities is unknown,
the model needs to be trained to distinguish between unseen subjects. In this case, the iden-
tification problems are formulated as a distance learning task or a retrieval ranking problem.
Therefore, the learning process aims to encode an input image into an embedding space,
such that the distance between the images of the same identity is small, while the distance
between images from different identities is large. Consequently, the final layer of the model
is used as a feature descriptor (and not as a classification layer as in the closed-world
setting). For this setup we employed the triplet loss (3) to optimize the model. Once the
model is trained, the recognition and verification task becomes straightforward in the em-
bedding space, as it simply involves the computation between the computed embeddings.
The forward pass of the proposed network architecture is illustrated in Algorithm 2.

We evaluated the proposed method for both closed-world and open-world settings.

3.4. Training Process

The proposed method is trained in an end-to-end manner. As mentioned above,
biometric identification systems can operate in either closed-world or open-world settings.

In closed-world settings, test subjects are known at train time, and the identification
task becomes essentially a classification problem. For this test setup, the identification loss
is the standard categorical cross entropy loss: Lip(%,y) = — Yy -1og((%)), where y is
the ground truth identity for the x sample, £ is the model prediction (logits), and ¢ is the
softmax function: {(z;) = ):ézézj.

During training for clcised—world scenarios, the model has two outputs: fg, the re-
sponse of the classification layer in the global branch, and ¥}, the response of the classifica-
tion layer applied on the summation of the feature maps from the local branches. The final
loss function Lcyy for the closed-world setting is given in Equation (2):

L
Lew = Lip(¥g,v) + Y Lip(£1, ). ()
=1

On the other hand, in open-world scenarios, the output of the network does not consist
of class probabilities, but in a feature vector in a lower dimensional embedding space in
which the L2 distances correspond to subject similarities. In this case, a variant [35] of the
triplet loss function [36] is used:

Lr= ), max(||f(xa) = f(xp)II> = IIf (xa) f () |* + A,0)). ®)

a,p,n
Ya=Yp!=yn

The triplet loss ensures that given an anchor point x,, the projection of a positive
sample x, (belonging to the identity y,) is closer to the anchor’s projection than that
of a negative sample of a different identity y,, by at least a margin of A. In addition,
during training, we also apply a final classification layer with the number of neurons equal
to the number of identities in the training set, on top of the global branch cl,, and on top of
each local branch ¢l;,I € {1, ..., L}.

To sum up, the loss function for the open-world setting is specified in Equation (4):

L L
LOW = W1 LT Xg Z LT xl + wy LID Cl 2 LID Cll (4)

where wj and w, are the weights for the triplet and identification losses. In our experiments
wesetwi; =1land wy, = 1.

All models were trained using transfer learning (using pre-trained weights from
ImageNet—from python torch library version 1.13.0 [37]) for 70 epochs, using the Adam
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optimiser, with an initial learning rate of 0.015, updated with a step decay scheduler at

epochs 25 and 50.

Algorithm 2: Forward function of the proposed network architecture.

Input :I-inputimage
Data:

BG = {gblock,, .., gblockg }—list of convolutional blocks in the global branch

BL = {bblocky, .., bblocky }—list of shared convolutional blocks in the local
branches

S = {sty,.,st;, }—list of spatial transformation modules for each local branch

cIs;—classification layer for global branch
cls—shared classification layer for local branches

isTrain—a Boolean value indicating whether the model is in train mode or not

I—block index from which the local branches are derived
mode—a string indicating if the model is designed for closed-world or
open-world setting

’
f < gblock(I),
/* apply the global branch
fori < 2to G do

f  gblocki(f);

if i = [ then

/* store the input (feature map) for the local branches
fifi

end
end
/* apply the local branches
fiocar < [1;
fori< 1toL do
/* apply the spatial transformation layer to get an ROI in fl
ri < sti(f1);
/* apply the shared local branches on 7
I; < bblocky (r;);
for bi < 2to B do

| 1 bblocky (1);

end
/* resize the feature map to the size of the last feature map in the global branch
I; < extrapolate(l;, size(f)),
append(fiocai, 1i);

end

/* aggregate the local branches’ responses via element-wise summation
Ulocal £ Sum(flocal);

/* v - global branch information; GAP - global average pooling

v GAP(f"" Ulucal);

Vlocal <~ GAP(vlocal);

/* during inference solely the global branch output is used

if —isTrain then
| return v

end
if mode = "closed_world” then
‘ return (clsg(v), cls; (Vgpcar))
end
if mode = "open_world” then
‘ return (v, Vjocqr), (clsg(v),cls,(vluml))

end

*/

*/

*/

*/

*/

*/

*/

*/
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4. Results

This section presents the experiments performed for evaluating the performance of
the proposed method for periocular biometrics, following the methodology introduced in
Section 3.

4.1. Experimental Setup

The proposed method can be incorporated into any network architecture, but we
chose the ResNet architecture [38] due to its widespread use in computer vision tasks. The
key feature of this architecture is the use of residual connections, which allow the layers
of the model to learn a residual mapping H(x) = x + F(x), instead of directly fitting a
function F(x). This is achieved by defining convolutional blocks (Figure 4) with shortcut
connections (skipping one or more layers), which simp