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Abstract: Periocular recognition has emerged as a particularly valuable biometric identification
method in challenging scenarios, such as partially occluded faces due to COVID-19 protective masks
masks, in which face recognition might not be applicable. This work presents a periocular recognition
framework based on deep learning, which automatically localises and analyses the most important
areas in the periocular region. The main idea is to derive several parallel local branches from a neural
network architecture, which in a semi-supervised manner learn the most discriminative areas in
the feature map and solve the identification problem solely upon the corresponding cues. Here,
each local branch learns a transformation matrix that allows for basic geometrical transformations
(cropping and scaling), which is used to select a region of interest in the feature map, further analysed
by a set of shared convolutional layers. Finally, the information extracted by the local branches
and the main global branch are fused together for recognition. The experiments carried out on the
challenging UBIRIS-v2 benchmark show that by integrating the proposed framework with various
ResNet architectures, we consistently obtain an improvement in mAP of more than 4% over the
“vanilla” architecture. In addition, extensive ablation studies were performed to better understand
the behavior of the network and how the spatial transformation and the local branches influence the
overall performance of the model. The proposed method can be easily adapted to other computer
vision problems, which is also regarded as one of its strengths.

Keywords: periocular recognition; spatial transform; attention; biometrics

1. Introduction

Biometric identifiers refer to unique physical (iris, face, fingerprints, etc.), behavioural
(gait, typing patterns), or physiological (EEG) traits that can be used to identify and describe
individuals. The COVID-19 pandemic has caused a major decline in the performance of
existing face identification systems [1], as a result of a large data drift. This is because many
people wear protective masks that conceal most of the face area, leaving only the periocular
region and the forehead visible.

Although there is no standardised definition from organisations such as NIST or
ISO/IEC, the term periocular refers to the area around the eyes (i.e., the eyebrows, eyelashes,
eye-folds, skin texture, tear ducts, etc.). Figure 1 shows an overview of a periocular re-
identification system, in which the area surrounding the eye is used as a cue to determine
the correct match between the query and the gallery individuals.

Ref [2], the periocular cues are categorised into (1) level one features, which are more
dominant in nature and deal with geometry or shape (eyelids, eye corners, eyebrows),
and (2) level two features, which are more related to colour and texture (skin appearance,
skin pores, wrinkles, colour). Studies [3] have shown that the periocular region contains
relevant cues for person identification both in visible (VIS) and near-infrared images (NIR),
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and that, in general, level two features are more efficient in VIS images, while level one
features are useful in NIR images. Moreover, Ref. [4] showed that humans and computers
rely on the same periocular cues for person identification, in both NIR and VIS scenarios.

Figure 1. Periocular re-identification system. The goal is to find the most similar correct matches of a
query person in the target gallery. R stands for rank, and confidence is the prediction probability of
the biometric system.

In recent years, periocular recognition has become a prominent research area in
biometric systems, because it has proved to be a valuable biometric approach and it offers
several advantages. First of all, it can be captured with the same imaging devices used for
facial or iris identification [3], it is non-intrusive and can be performed without the need
for physical contact or cooperation from the subjects. In addition, periocular recognition
can be performed in different spectra (both in visible-light and infrared spectrum), making
it a versatile method of biometric identification.

All the cues present in the periocular area are prone to occlusions or other factors that
influence their applicability:

• The iris and the sclera are sensitive to corneal reflexions (the Purkinje images);
• Accessories—such as eyeglasses or bangs—can occlude the eyebrows;
• Head/eye movements can lead to capturing blurry data;
• Makeup can influence the overall appearance of the eye.

With these challenges in mind, the key idea of this paper is to design a convolutional
neural network that can adapt to these challenging environmental changes and automati-
cally focus on the most relevant cues visible in the input image. To this end, we propose a
multi-branch architecture that can focus on several bio-metrical traits at different granulari-
ties, by adding several local branches to focus on different regions of the image. Each local
branch learns a geometrical transformation matrix (allowing for scaling and translation),
which is then used to sample a region of interest (ROI) from an intermediate feature map.
These ROIs are further analysed by a set of shared local layers, and then merged (via
feature map summation) with the global branch. The workflow of the proposed solution is
illustrated in Figure 2. By adding additional local branches to the model, we effectively
exploit different bio-metrical traits and boost their performance in challenging environ-
mental scenarios. Although the model design involves setting several hyperparameters,
the features and the spatial transformation are automatically learned, and the proposed
model can be trained in an end-to-end manner. Extensive ablation studies were performed
to determine the impact of each hyperparameter.

The main contributions of this article are threefold: (1) we employ a spatial transfor-
mation module, which learns, in a semi-supervised manner, to identify the most prominent
regions of the periocular area; (2) the periocular area is analysed both holistically, but also at
the local level within the selected regions; and (3) the global and local information are fused
to solve the recognition problem, and the loss function is applied to both the global and
local branches to ensure that relevant features are extracted. Last but not least, the proposed
method is generic, and can be easily adapted to other computer vision tasks.
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The remainder of this manuscript is organized as follows: Section 2 reviews the
existing approaches for periocular recognition, while the methodology used for conducting
this study and the proposed method are introduced in Section 3. Section 4 presents the
experimental results and a comparison with state-of-the-art works. The conclusions of the
paper and several future research directions are summarized in Section 6.

Figure 2. The overview of the proposed deep learning model based on convolutional neural networks.
The input image is processed using several global and local convolutional blocks. Block and Local Block
refer to the convolutional blocks/layers in the global branch (depicted in orange) and local branch
(depicted in blue), respectively. The feature map fi from some level i in the network architecture is fed
to L ≥ 1 local branches. Each branch applies a Spatial transformation module to select an ROI within
the input feature map, and then further analyses this region by applying several shared convolutional
blocks. In the end, the feature maps of the local branches are extrapolated to the same size and
fused with the global branch via element-wise summation. To ensure that the local branches extract
useful features, the loss function is applied to both the global branch and the summation of the
local branches.

2. Literature Survey

The pioneering work of Ref. [5] analysed the feasibility of periocular biometrics
and proposed a system that exploits a set of global (LBP—Local Binary Patterns, HoGl—
Histogram of Oriented Gradients) and local (SIFTl—Scale-Invariant Feature Transform)
descriptors, fused together at the score level based on a weighted sum with min-max
normalisation. Early works focused on designing effective feature descriptors to capture
textual information around the eyes, either at a global level—(variants of) LBP [6,7], Gabor
filters [8]—or at a local level—SIFT [9], SURF (Speeded Up Robust Features) [10], or SAFE
(Symmetry Assessment by Feature Expansion) [11].

Global-based methods operate holistically on the entire periocular region and extract
a feature vector based on texture or shape information. Several methods rely on LBP
descriptors, which determine binary patterns by comparing each pixel with its neighbours.
The global descriptor is then obtained by concatenating histograms of binary patterns
computed across image cells. Ref. [7] investigated several feature extraction methods and
determined that LBP substantially improved the performance of both verification and iden-
tification methods. In addition, they proposed the Local Walsh-Transform Binary Pattern
feature representation, an effective variant of LBP. Other works use Gabor filters—with
different orientations and frequencies—to analyse the texture in the periocular region.

A matching algorithm based on Gabor filters and a feature encoding scheme that
relies on three operators to extract robust features in different spectral bands, was proposed
in [8]. Two operators—Weber Local Descriptor (WLD) and uniform LBP—work on the
magnitude of the filtered images, while another one—uniform generalised LBP operator
(GLBP)—operates on the phase.

PPDM (Periocular Probabilistic Deformation Model) [12] applied a probabilistic in-
ference model to compute 1:1 matching scores (between query and gallery images) based
on correlation filters extracted from periocular image patches. Subsequently, the match
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performance was improved [13] with an unsupervised method used to select discriminate
regions from the periocular area.

Local-based methods employ a multi-stage process: first, prominent keypoints are
located within the periocular area, and then features are extracted from their vicinity.
In Ref. [11], the authors adapted the Symmetry Assessment by Finite Expansion (SAFE)
algorithm, previously used in fingerprint analysis, to the problem of periocular recognition.
The key idea is to sample several keypoints based on a rectangular grid positioned in the
eye centre, and then project ring-shaped areas of different sizes onto a space of harmonic
functions used to determine symmetric curve families. A multi-modal authentication
system that analyses and fuses features from the face, periocular and, if visible, iris area, is
introduced in Ref. [10]. The system extracts three feature descriptors—SIFT, SURF, and Bina-
rised Statistical Image Features (BSIF)—and explores various fusion strategies to effectively
combine information from all three modalities. Ref. [14] identifies four prominent regions
in the periocular area (eyebrows, upper eye fold, lower eye fold, and eye corners) and then
computes a feature representation vector based on HOG, KAZE, and SING descriptors,
as well as shape information. Finally, a Naïve Bayes classifier is used to perform the perioc-
ular recognition based on the extracted feature vector. The main drawback of this method
is that it also requires the accurate segmentation of the features in the periocular area.

With the impressive advances of deep learning in the fields of computer vision and
image recognition, recent developments in periocular biometrics focus exclusively on deep
convolutional neural networks. Before CNNs, traditional pattern recognition methods used
handcrafted features, such as LBP, HoG, Zernike moments [15], fast block processing feature
extraction [16] etc., which were manually designed, taking into consideration the specific
task and problem. On the other hand, in CNNs the features are automatically learned
from the input data by convolutional layers. In general, deep learning methods tend to
outperform traditional hand-crafted feature extraction techniques in computer vision tasks
due to their ability to automatically learn relevant features from the data. The interested
reader can refer to Refs. [3,17,18] for an in-depth presentation on early periocular research.

In Ref. [19], using transfer learning, seven CNN architectures were trained and com-
pared in the context of periocular recognition. Ref. [20] proposed an original augmentation
strategy based on multi-class region swapping, such that the network learns to consider
the iris and the sclera regions as not reliable for biometric recognition, and only focus on
the information surrounding the eyes. Although the method does not involve additional
parameters or an increase in inference time, it completely disregards some regions in the
periocular area that contain powerful biometric traits.

Other works [21,22] employed multi-task models to boost the performance of peri-
ocular recognition systems. Ref. [22] proposed semantics-assisted convolutional neural
networks (SCNN) to incorporate explicit semantic information (gender and eye side): two
separate CNNs are trained on these two tasks (identification and semantic task), and in
the end are joined to obtain more powerful feature representations or to perform score fu-
sion. Similarly, Ref. [21] introduced an end-to-end biometric system, based on a multi-task
architecture. The framework features a shared convolutional backbone and two separate,
dedicated branches, one for biometric identification and one for soft biometric recognition.
These branches are fused together for the final periocular recognition, while also predicting
soft biometrics. However, the main disadvantage of these approaches is the need for anno-
tated datasets with identity and soft biometric attributes, which are not always available.
In addition, they tend to involve more parameters for the supporting tasks.

In Ref. [23], the authors proposed a two-branch deep learning model to analyse iris
and periocular cues, and then fuse the corresponding predictions through a multilayer
perceptron (MLP). The training procedure is rather complicated, as it requires several
stages. In addition, the inputs to each branch require different pre-processing techniques
and, as two CNNs are used, the system has more learnable parameters, which leads to
longer inference times.
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Ref. [24] designed a multimodal biometric system to exploit facial and periocular cues.
The proposed model features a shared convolutional backbone, as well as two predictor
branches to accommodate the two modalities. During training, additional loss functions
are defined to decrease the distance between feature embeddings or periocular-face intra-
subjects, while simultaneously maximising feature embeddings of the periocular-face
inter-subjects. In Ref. [25] the authors proposed AttenMidNet, a lightweight CNN based
on attention mechanisms. The building blocks of the architecture are the MCRS blocks
that comprise a convolutional layer, a squeeze-and-excitation block [26], and a residual
connection. Ref. [27] proposed a Siamese-like dual stream network, which analyses in
parallel the left and right periocular regions of a subject, and then investigates the feature
aggregation techniques of the two streams.

Table 1 provides a summary (features, highlight, brief methodology) of the related
periocular recognition methods discussed in this section.

Table 1. Representative research papers on periocular recognition. As in the survey papers [3,18],
the methods are grouped based on the feature extraction strategy.

Strategy Reference Highlight

Global features

[5] Global features: LBP + HoG, fused together at score level
[12] probabilistic inference model based on correlation filters

[8] Gabore filters + feature encoding scheme to extract features
in different spectral bands

Local features

ISURE [9] Multinomial Naïve Bayes learning + Dense SIFT for nearest
neighbour matching

[11] Symmetry Assessment by Finite Expansion for
periocular recognition

[10] multimodal system (face, periocular, iris) based on SIFT,
SURF, and BSIF fusion

[14] HOG, KAZE, SING features from four regions in the
periocular area + Naïve Bayes classifier

Deep learning

SCNN [22] several CNNs to incorporate semantic information (gender
and eye type) in the training process

DEEPRWIS [20] augmentation strategy to focus solely on the outside
eye areas

[19] transfer learning on different CNN architectures

ADPR [21] multitask CNN for periocular recognition and soft
attribute prediction

AttenMidNet [25] attention mechanism (squeeze-and-excitation blocks) and
mid-level features

Dual-Input CNN [28] dual-stream Siamese-like CNN + fusion scheme

Despite their impressive performance, a major caveat of deep learning methods is
their lack of explainability. As a result, some works [29,30] tackled the problem of visual
explanations and interpretable artificial intelligence in the context of periocular recognition.

3. Materials and Methods
3.1. Problem Setting

We formulate the biometric recognition problem as a re-identification problem. Con-
sider a training image-based set of N different identities, each containing nid samples.
The purpose of a re-identification system is to learn a function that will find the best match
between a query image and a gallery set of images. The query set contains images of the
periocular area of a subject we want to identify in another image or set of images (the
gallery set). The gallery set contains the potential matches (periocular images) for the target
person in the query set.
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3.2. Solution Outline

The periocular area comprises various anatomical cues suitable for recognizing in-
dividuals and numerous studies have analysed their significance for this process (refer
to Ref. [3] for a detailed survey on this matter). However, the applicability of the pe-
riocular biometric traits is influenced by environmental factors, and depending on the
overall appearance of the eye area and the image capture modality (VIS or NIR), one cue
might be more relevant than the other. As an example, the skin texture and the overall eye
shape are suitable cues for VIS images [4], but make-up can influence their appearance and
therefore degrade the performance of a machine learning model that has been trained to
focus on such features. With this in mind, we devised a deep learning model which uses
several local branches trained to locate (in a semi-supervised manner) and analyse several
discriminative regions in the periocular area (Figure 2).

The proposed method can be easily integrated into any network architecture, and it can
effectively boost the performance of (re-)identification systems with a small increase in inference
time. Additionally, this strategy can be easily adapted to other image recognition tasks.

3.3. Model Architecture

The key idea of our method is to employ L branches, branched from the ith level
of a neural network architecture, which will learn to extract prominent ROIs within the
periocular area and analyse them for biometric identification. Each local branch starts with
a Spatial transformationmodule, responsible for the selection of an ROI in the input feature
map fi. Then, a set of B shared convolutional layers (between all the L branches) process
the selected areas, and finally, their corresponding feature maps are fused through element-
wise summation. This summation result is also added to the global branch. To ensure that
the local branches actually learn relevant information, we apply the loss function to both
the global branch’s output and the summation of the local branches.

3.3.1. The Local Branch

The local branches learn to spot the most relevant regions on the input feature map and
attempt to solve the identification problem based solely on the features from these areas.

Inspired by Refs. [31,32], we employ a visual attention mechanism to locate the
discriminative parts of a feature map fi ∈ Rh×w×x. To achieve this, each local branch starts
with a Spatial transformation module, which learns to select an ROI from the input feature
map. Similar to [33], we generate a spatial map using grouping operations to compute two
bi-dimensional maps: favg ∈ Rh×w×1 and fmax ∈ Rh×w×1 and aggregate them into a single
map si using element-wise summation. si is then passed to a feed-forward multi-layer
perceptron that regresses an affine spatial transformation matrix θ:

θ =

[
sx 0 tx
0 sy ty

]
. (1)

This matrix allows for cropping and translation (2D spatial parameters tx and ty) and
image scaling (scaling parameters sx and sy). The transformation is not learned explicitly
from the dataset labels; instead, the model automatically optimises these parameters
such that it boosts the recognition accuracy. At the beginning of the training process,
the weight and biases of the linear layer are initialised with the identity transformation
(i.e., all weights initialised to 0, biases for sx and sy initialised to 1, biases for tx and ty set
to 0). After the transformation matrix θ (Equation (1)) is determined, the grid generator
module computes a 2D flow-field grid based on θ to generate the coordinates from the input
image corresponding to each position in the output. The grid sampling module applies the
transformation parameters to the input and returns an ROI ri from the input feature map.
The structure of this Spatial transformation module is depicted in Figure 3, and, for clarity,
is also detailed in Algorithm 1. As illustrated in Figure 2, the selected ROI ri is further
passed through a set of shared convolutional layers. In the end, all the outputs of the local
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branches are brought to agree with the shapes via an extrapolation layer, and they are
added to the output of the global branch.

To guarantee that the features learned by the local branches are in fact useful in
the periocular identification task, the loss function is also applied to their summation.
More precisely, during training, the model has multiple outputs, one corresponding to
the global branch and one corresponding to the summation of the local branches’ output.
However, at test time, only the global branch output is used and evaluated. This is inspired
by Ref. [34], where the authors used several small classifiers (discarded at test time) on top
of come convolutional blocks to ensure that the layers in the middle of the network are also
very discriminative.

Algorithm 1: Spatial transformation module.
Input : fi - feature map.
Output : f ′ i - ROI in fi
/* compute µ channel-wise mean */
µ← meanch( fi);
/* compute m channel-wise maximum */
m← maxch( fi);
/* fuse(addition) µ and m and flatten result */
p← flatten(µ + m);
/* apply multi-layer perceptron to compute transformation matrix θ

*/
θ ← MLP(p);
/* generate affine grid based on θ and sample f ′ i */
f ′ i ← sample( fi, θ);
return f ′ i

Figure 3. Detailed architecture of the Spatial transformation module. The input convolutional feature
map fi first undergoes two channel-wise pooling operations (maximum and average) to highlight the
most discriminative spatial areas. Their outputs are then added together and passed to a multi-layer
perceptron to learn θ - the transformation matrix. θ is used to sample a region of interest from fi,
which will be processed by the local branches. Although the Spatial transformation module operates
on intermediate feature maps, for illustration purposes we exemplify its function with an image
(corresponding to the input feature map).

3.3.2. Closed vs. Open-World Operating Modes

In the context of periocular identification, AI models can operate in closed or open-
world modes, depending on whether the identities of the subjects to be recognised are
known or not.

In the closed-world setting (i.e., when all the subjects are known in advance), the iden-
tification problem can be formulated as a classification task, and a softmax layer can be
used to predict the identities. In this case, the final layer of CNN is a dense layer with
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softmax activation, and its number of neurons is equal to the number of identities in the
dataset. This problem can be seen as a watch-list identification problem [20], in which the
model aims to spot some subjects from a predefined list.

On the other hand, in the open-world setting, when the set of identities is unknown,
the model needs to be trained to distinguish between unseen subjects. In this case, the iden-
tification problems are formulated as a distance learning task or a retrieval ranking problem.
Therefore, the learning process aims to encode an input image into an embedding space,
such that the distance between the images of the same identity is small, while the distance
between images from different identities is large. Consequently, the final layer of the model
is used as a feature descriptor (and not as a classification layer as in the closed-world
setting). For this setup we employed the triplet loss (3) to optimize the model. Once the
model is trained, the recognition and verification task becomes straightforward in the em-
bedding space, as it simply involves the computation between the computed embeddings.
The forward pass of the proposed network architecture is illustrated in Algorithm 2.

We evaluated the proposed method for both closed-world and open-world settings.

3.4. Training Process

The proposed method is trained in an end-to-end manner. As mentioned above,
biometric identification systems can operate in either closed-world or open-world settings.

In closed-world settings, test subjects are known at train time, and the identification
task becomes essentially a classification problem. For this test setup, the identification loss
is the standard categorical cross entropy loss: LID(x̂, y) = −∑ y · log(ζ(x̂)), where y is
the ground truth identity for the x sample, x̂ is the model prediction (logits), and ζ is the
softmax function: ζ(zi) =

ezi

∑j ezj .

During training for closed-world scenarios, the model has two outputs: x̂g, the re-
sponse of the classification layer in the global branch, and x̂l , the response of the classifica-
tion layer applied on the summation of the feature maps from the local branches. The final
loss function LCW for the closed-world setting is given in Equation (2):

LCW = LID(x̂g, y) +
L

∑
l=1

LID(x̂l , y). (2)

On the other hand, in open-world scenarios, the output of the network does not consist
of class probabilities, but in a feature vector in a lower dimensional embedding space in
which the L2 distances correspond to subject similarities. In this case, a variant [35] of the
triplet loss function [36] is used:

LT = ∑
a,p,n

ya=yp !=yn

max(|| f (xa)− f (xp)||2 − || f (xa) f (xn)||2 + λ, 0)). (3)

The triplet loss ensures that given an anchor point xa, the projection of a positive
sample xp (belonging to the identity ya) is closer to the anchor’s projection than that
of a negative sample of a different identity yn, by at least a margin of λ. In addition,
during training, we also apply a final classification layer with the number of neurons equal
to the number of identities in the training set, on top of the global branch clg, and on top of
each local branch cll , l ∈ {1, ..., L}.

To sum up, the loss function for the open-world setting is specified in Equation (4):

LOW = ω1(LT(xg) +
L

∑
l=1

(LT(xl)) + ω2(LID(clg) +
L

∑
l=1

(LID(cll)), (4)

where ω1 and ω2 are the weights for the triplet and identification losses. In our experiments
we set ω1 = 1 and ω2 = 1.

All models were trained using transfer learning (using pre-trained weights from
ImageNet—from python torch library version 1.13.0 [37]) for 70 epochs, using the Adam
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optimiser, with an initial learning rate of 0.015, updated with a step decay scheduler at
epochs 25 and 50.

Algorithm 2: Forward function of the proposed network architecture.
Input : I - input image
Data:

BG = {gblock1, .., gblockG }—list of convolutional blocks in the global branch
BL = {bblock1, .., bblockB }—list of shared convolutional blocks in the local

branches
S = {st1, .., stL }—list of spatial transformation modules for each local branch
clsg—classification layer for global branch
clsl—shared classification layer for local branches
isTrain—a Boolean value indicating whether the model is in train mode or not
l—block index from which the local branches are derived
mode—a string indicating if the model is designed for closed-world or

open-world setting
;
f ← gblock1(I);
/* apply the global branch */

for i← 2 to G do

f ← gblocki( f );
if i = l then

/* store the input (feature map) for the local branches */

fl ← f ;
end

end

/* apply the local branches */

flocal ← [];
for i← 1 to L do

/* apply the spatial transformation layer to get an ROI in fl */

ri ← sti( fl);
/* apply the shared local branches on ri */

li ← bblock1(ri);
for bi← 2 to B do

li ← bblockbi(li);
end

/* resize the feature map to the size of the last feature map in the global branch */

li ← extrapolate(li , size( f ));
append( flocal , li);

end

/* aggregate the local branches’ responses via element-wise summation */

vlocal ← sum( flocal);
/* v - global branch information; GAP - global average pooling */

v← GAP( f + vlocal);
vlocal ← GAP(vlocal);
/* during inference solely the global branch output is used */

if ¬isTrain then
return v

end

if mode = ”closed_world” then
return (clsg(v), clsl(vlocal))

end

if mode = ”open_world” then
return (v, vlocal), (clsg(v), clsl(vlocal))

end
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4. Results

This section presents the experiments performed for evaluating the performance of
the proposed method for periocular biometrics, following the methodology introduced in
Section 3.

4.1. Experimental Setup

The proposed method can be incorporated into any network architecture, but we
chose the ResNet architecture [38] due to its widespread use in computer vision tasks. The
key feature of this architecture is the use of residual connections, which allow the layers
of the model to learn a residual mapping H(x) = x + F (x), instead of directly fitting a
function F (x). This is achieved by defining convolutional blocks (Figure 4) with shortcut
connections (skipping one or more layers), which simply perform an identity mapping by
adding the input of one convolutional block to its output. With this strategy, it is ensured
that the network can learn an identity function when the residual connections are not
required, and therefore much deeper architectures can be created.

Figure 4. The structure of a ResNet block, adapted from Ref. [38]

The ResNet architecture comprises a chain of such blocks with residual connections
and its generation follows some simple rules: the convolutional layers in the ResNet blocks
have a size of 3× 3; the depth of a layer (number of convolutional filters) is the same if
the feature maps have the same spatial size; and when the spatial size of the feature maps
is halved, the number of filters of the layer is doubled. Several architectures [38] with
different depths have been defined, depending on the number of blocks chained together.
In this paper, we experimented with ResNet-18 and ResNet-34 architectures (Table 2).

Table 2. Resnet architectures.

Network Architecture

ResNet-18 (7× 7, 64)/2 2×
(

3× 3, 64
3× 3, 64

)
2×

(
3× 3, 128
3× 3, 128

)
2×

(
3× 3, 256
3× 3, 256

)
2×

(
3× 3, 512
3× 3, 512

)
ResNet-34 (7× 7, 64)/2 3×

(
3× 3, 64
3× 3, 64

)
4×

(
3× 3, 128
3× 3, 128

)
6×

(
3× 3, 256
3× 3, 256

)
3×

(
3× 3, 512
3× 3, 512

)

The number of local branches used for these experiments is B = 3, and they are added
from the 13th layer of the network.

The proposed method can be easily adapted for other network architecture, as it
involves only adding the local branches on top of a feature map extracted from some layer
in the network.

4.2. UBIRIS-v2 Dataset

UBIRIS-v2 [39] is a periocular image dataset designed to evaluate iris recognition
models in challenging environments. The dataset contains 11, 102 periocular images corre-
sponding to the regions of the left and right eye of 261 subjects. In addition, each image
in the dataset is also annotated with the distance to the camera, and the subject’s gaze.
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We have used this dataset to evaluate the performance of our model in open-world and
closed-world settings.

4.3. Results
4.3.1. Closed-World Setting

For the closed-world setting—i.e., when the test identities are known in advance—we
employed the following data split protocol: the dataset is divided into two disjoint subsets,
such that 80% of the samples are used in the training process, and the remaining 20% are
used for performance evaluation. The splits were then automatically validated to check that
they contain images belonging to all of the subjects in the dataset, and thus the closed-world
assumption is satisfied.

Figure 5 illustrates the evolution of the metrics in the training process for the closed-
world setting.

Epoch Epoch

m
A

P

R
an

k
-1

Resnet18 + local Resnet18 Resnet34 Resnet34 + local

Figure 5. Metrics mAP (mean Average Precision) and rank-1 evolution during the training process
for the closed-world setting.

In Table 3, ResNet18 (baseline) refers to a ResNet18 architecture trained based on the
schedule described in Section 3.4 and ResNet18 + local is a ResNet-18 architecture with 3
local branches added after the 13th convolutional layer. In terms of Rank-1, the proposed
method is almost identical to the ResNet-18 baseline, but since the Rank-1 of the baseline is
close to 100%, it is difficult to achieve notable improvements. On the other hand, the mAP
of the proposed method surpasses the baseline by 10.15%.

Table 3. Recognition results on UBIRIS-v2 dataset for the closed-world setting. The best performing
models are highlighted in bold.

Method mAP Rank-1

SCNN [22] - 79.30%
DEEPPRWIS [20] - 87.64%
ADPR (PR) [21] - 83.95%
ADPR (JPR )[21] - 92.68%

ResNet18 (baseline) 87.81% 99.33%
ResNet18 + local (ours) 97.96% 99.33%

ResNet34 (baseline) 95.81% 98.88%
ResNet34 + local (ours) 96.47% 99.10%

The proposed method surpasses other periocular recognition methods by a consid-
erable amount. This is due to the fact that by also training the local branches in the
network to solve the periocular recognition problem based on the selected periocular re-
gions, the discriminative power of the network is increased and therefore it improves the
overall periocular recognition performance.
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However, a direct numerical comparison is not completely fair, as other methods
use different network architectures and training setups. Both SCNN [22] and ADPR [21]
rely on multi-task learning models and these methods require labelled data not only for
identification but also for auxiliary tasks. The additional classification streams added in
these networks seem to have a high impact on the classification performance; in Ref. [21]
if solely the periocular recognition stream is branch, without the attribute classification
branch, the Rank-1 drops from 92.68% to 83.95% (with 8.7%). In addition, the training
procedure of Ref. [21] is not performed in an end-to-end manner, and it involves several
training steps. This is a cumbersome process, as at each step the appropriate optimisation
hyperparameters need to be found, and the overall training takes longer. DEEPPRWIS [20]
relies on an original augmentation strategy used solely during the training process, in which
the model is automatically trained to focus on the area outside the eye (i.e., ignoring the
iris and the sclera). One reason for the lower performance of DEEPPRWIS is that in many
images in the UBIRISv2 dataset the area outside the eye is barely visible and the images are
misaligned. As the key idea of DEEPPRWIS is to rely on the outside eye area, it is expected
to have a lower performance in such cases.

4.3.2. Open-World Setting

For the open-world setting, we selected the first 19 subjects as test samples, and the
rest of the images (belonging to 142 subjects) were used to train the model. To avoid a
friendly split of the dataset, and inspired by the problem of person re-identification [40],
we considered the gaze of each subject when splitting the images into sets and gallery sets.

Figure 6 illustrates the evolution of the metrics over the training process for the open
world setting.

Epoch Epoch

m
A

P

R
an

k
-1

Resnet18 + local Resnet18 Resnet34 Resnet34 + local

Figure 6. Metrics (mAP and rank-1) evolution during the training process for the open world setting.

Table 4 reports the results in the open-world setting. ResNet18 (baseline) and Resnet34
(baseline) refer to the "vanilla" Resnet architectures trained for the problem of iris re-
identification.

Table 4. Recognition results in the UBIRIS-v2 dataset for the open-world setting. The best performing
models are highlighted in bold.

Method mAP Rank-1

ResNet18 (baseline) 66.08% 93.02%
ResNet18 + local (ours) 72.65% 95.59%

ResNet34 (baseline) 65.81% 95.04%
ResNet34 + local (ours) 69.03% 96.33%

The proposed method exceeds the baselines by a large amount in terms of both mAP
and Rank-1. For the ResNet18 architecture, the mAP improved from 66.08% to 72.65% (with
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6.57%) and the gain in Rank-1 is 2.57%. For the ResNet-34 architecture, the improvements
are slightly lower: 3.22% in mAP and 1.29 in Rank-1.

The performance boost is more visible in the open-world scenario. In this case,
the baseline ResNet model has lower accuracy allowing for greater improvement, both
in terms of mAP and Rank-1, as opposed to the closed-world setting where the Rank-1 is
saturated at around 99%. In the open-world scenario, the model learns to project the images
into a lower-dimensional embedding space in which samples belonging to the same identity
are close together, while the ones belonging to different identities have larger distances.
Another possible explanation resides in the fact that in such scenarios, the fine-grained
details extracted by the local branches are more useful in the recognition process.

5. Ablation Studies

The idea of this paper is to add additional local branches to a neural network archi-
tecture, which will learn to identify and analyse the most relevant regions in the input.
There are several hyper-parameters that can influence the effectiveness of the proposed
method, and, in this section, we will analyse their effect on the model’s performance. All
experiments for this ablation study were performed using the ResNet-18 architecture.

The first hyper-parameter is the depth (layer number) at which the local branches are
added to the model. In Table 5, the column depth indicates the value of this parameter. As
discussed in Section 4.1, ResNet-18 architecture comprises a convolutional layer, followed
by four types of ResNet block, each repeated twice (Table 2). In other words, the local
branches were added before the second, third, and fourth ResNet block pairs of the ResNet-
18 architecture. The results indicate that better results are obtained when the local branches
are added deeper into the network architecture. This is somewhat expected, as deeper
layers operate with more semantically meaningful features. In addition, this setup allows
the model to use the shallower layers as a shared local feature extractor, and therefore to
reduce the inference time and learnable parameters.

Another experiment we performed is related to the way the feature map from the
global branch is being preprocessed by the Spatial transformation module (Figure 3). To this
end, we experimented with three strategies: Bottleneck, Channel, and Spatial.

For the Bottleneck setup (in Table 5, Bottleneck in the column Preprocessing), the feature
map is first passed through a 1× 1 convolutional layer to reduce its depth to ch = 32, thus
making the computations more feasible (Equation (5)). Next, the processed feature map f ′ i
is flattened and then processed by the MLP to compute the transformation matrix θ.

f ′ i = conv32
1×1 fi, (5)

where conv32
1×1 denotes a 1× 1 convolutional layer with 32 filters.

The results show that this strategy achieves the lowest performance—even lower than
the baseline ResNet18 architecture. The MLP layer needs to process a high dimensional
(h fi
× w fi

× 32, where h fi
× w fi

represents the spatial size of the feature map) flattened
feature vector. This can lead to optimisation issues (overfitting) as the input layer in
the MLP has a large number of neurons. Moreover, local branches might fail to extract
semantically meaningful information from the flattened input feature.

Another strategy is to use global average pooling operations as a preprocessing step,
as given in Equation (5):

f ′ i = gap( fi) + gmp( fi), (6)

where gap and gmp represent the global average pooling and global max pooling
operators, respectively.

This is similar to the Channel Attention from Ref. [33]. In this case, the input size
of the MLP layer is 1× 1× c fi

, where c fi
is the number of channels in the input feature

map and this vector models the information about the channels with the most prominent
features responses. With this setup, when local branches are added to deeper layers of the
network, the baseline ResNet-18 architecture is surpassed in both mAP and Rank-1.
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However, the best result is obtained with the Spatial preprocessing (Equation (7)).
For this setup, the MLP takes as input the sum between the channel-wise average and
maximum pooling operations, similar to the spatial attention component from Ref. [33]:

f ′ i = cap( fi) + cmp( fi), (7)

where cap and cmp represent the channel-wise average pooling and max pooling, respec-
tively. With this configuration, the proposed method surpasses the baseline ResNet-18
architecture with more than 6% in mAP and 2.56% in Rank-1. Intuitively, this seems to be
the most promising choice, since the goal of the Spatial transformation module is to select the
most discriminative periocular areas. Equation (7) returns a map of dimensions h fi

× w fi
,

in which higher values indicate areas with prominent features.

Table 5. Ablation study of the depth at which local branches are added to the network and the
strategy for preprocessing the global branch feature map.

Method Preprocessing Depth mAP Rank-1

ResNet18(baseline) – – 66.08% 93.03%

ResNet18 + local Bottleneck 5 61.66% 93.76%
ResNet18 + local Bottleneck 9 60.38% 93.76%
ResNet18 + local Bottleneck 13 61.50% 93.76%
ResNet18 + local Channel 5 62.64% 95.04%
ResNet18 + local Channel 9 68.78% 96.14%
ResNet18 + local Channel 13 71.19% 95.22%
ResNet18 + local Spatial 5 61.26% 93.57%
ResNet18 + local Spatial 9 66.09% 94.86%
ResNet18 + local Spatial 13 72.64% 95.59%

6. Conclusions

This paper presented a periocular recognition system suitable for VIS images based
on convolutional neural networks. The main contribution is to equip (a generic) model
architecture with additional local branches that will learn, in a semi-supervised manner,
to focus on the most discriminative features around the eyes. Unlike existing models,
the proposed model is able to extract and exploit multiple regions in the periocular area in
a lightweight end-to-end network architecture. Extensive experiments and ablation studies,
both for closed-world and open-world setups, prove the effectiveness of the proposed
solution. The limitations of the current work are related to the additional hyperparameters
that need to be fine-tuned, and also to an increase in the number of learnable parameters.

In future work, we plan to experiment with other strategies for combining the re-
sponse of the global and the local branches, such as more complex ensembling methods or
attention mechanisms.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
BSIF Binarised Statistical Image Features
CNN Convolutional Neural Network
LBP Local Binary Patterns
mAP mean Average Precision
MLP Multi Layer Perceptron
NIR Near-infrared (spectrum)
ROI Region Of Interest
SAFE Symmetry Assessment by Feature Expansion
SIFT Scale-Invariant Feature Transform
SING Sub-Image based Neighbor Gradient
SURF Speeded Up Robust Features
VIS Visible (spectrum)

Notations
The following notations are used in this manuscript:

ai indexing. element i of vector a, with indexing starting at 1
B number with convolutional blocks in the shared local branches
BG list with convolutional blocks in the global branch
BL list with shared convolutional blocks in the local branches
cap channel-wise average pooling
cmp channel-wise max pooling
conv convolution layer
G number of convolutional blocks in the global branch
L number of local branches
LCW closed-world loss function
LOW open-world loss function
LID identity loss function
λ margin hyperparameter
nid number of samples per individual
N number of identities
S list with spatial transformation modules for each local branch
θ spatial transformation matrix
x̂ model prediction
y ground truth label
ζ(.) softmax function
z input variable of the softmax function
||.||2 L2 distance
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