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Abstract. In this work, we propose a novel approach for visual voice
activity detection (VAD), which is an important component of audio-
visual tasks such as speech enhancement. We focus on optimizing the
visual component and propose a two-stream approach based on opti-
cal flow and RGB data. Both streams are analyzed by long short-term
memory (LSTM) modules to extract dynamic features. We show that
this setup clearly improves the one without optical flow. Additionally,
we show that focusing on the lower face area is superior to processing
the whole face, or only the mouth region as usually done. This aspect
involves practical advantages, since it facilitates data labeling. Our ap-
proach especially improves the true negative rate, which means we detect
frames without speech more reliably — we see the silence.

Keywords: Visual voice activity detection · Optical flow · Ensemble
learning

1 Introduction

Voice activity detection (VAD) is the task of identifying the presence or absence
of human speech segments in a stream of input data. Depending on the input
modality used, we can distinguish between visual VAD, which uses only images
to detect voice activity, and audio VAD, which separates the voice audio signal
from the background noise signal. VAD is an important component in a variety of
applications, such as speech enhancement [1, 2] or source separation [3, 4]. While
most approaches in this field have focused on processing the audio data [5], there
is a currently growing effort to combine audio VAD and visual VAD sub-systems.
Both modalities complement each other and the joint processing obtains superior
performance. Visual voice activity detection in particular is more robust to noisy
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Fig. 1. Overview of our approach, consisting of an RGB and an optical flow stream.
Both streams are fused to determine if voice activity is present in a frame or not,
exploiting the complementary information of the streams. The audio channel from the
video is used to generate ground truth labels that supervise the training of RGB and
optical flow streams.

speech [6] and identifying whisper speech [7] than its audio-only counterpart. The
merged audio-visual systems will generally be better if each of the individual
components is optimized. However, most research focuses on the audio part,
whereas the visual modality of VAD systems is often overlooked and standard
solutions are applied, like extracting visual features with a ResNet before fusing
them with the audio signals [8].

In this work, we focus on optimizing the visual VAD component. In partic-
ular, our aim is to improve the ability of the network to detect frames in which
there is no speech, which will help reduce noise more effectively. We propose a
novel visual VAD system, which combines RGB features and optical flow. Both
modalities focus on different aspects of the data and are thus complementary.
While the RGB stream extracts color features, the optical flow stream focuses on
motion features, which is especially useful in detecting when someone is speaking.
LSTM modules allow the system to exploit dynamic features and probabilistic-
based fusion combines the two streams in an ensemble manner. Fig. 1 shows an
overview of our system.

We focus our attention on facial features for voice activity detection, as op-
posed to body language and body motion, which are useful for large, in-the-wild
scenes. Hence, we use a constrained dataset, were people’s faces are clearly visi-
ble: the TCD-TIMIT dataset [9]. The contribution of this paper is twofold:

1. We show that adding optical flow to a deep learning approach via probabilis-
tic fusion results in improving the true negative rate of the system (TNR)
by as much as 7%. This is useful in audio-visual systems that rely on TNR
in order to reduce transient noise and enhance speech.

2. We show that focusing on the lower face area of the speaker, including not
only the mouth, but also nose and chin, offers better results than considering
the mouth-only region, or entire face as done in previous work. Compared
to extracting mouth-only regions of interest, our pre-processing is also more
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practical for real-world applications, avoiding precise mouth croppings and
fine alignments, which require manual adjusting.

2 Related Work

The task of voice activity detection has a variety of solutions, which can broadly
be classified as: audio-only, visual-only, and audio-visual combined approaches.
We give an overview of relevant work in this section.

Audio-only VAD The task of voice activity detection has a rich history in
the audio community. One important solution is based on sound energy thresh-
olding to infer the VAD label such as [10]. Other approaches such as [11] have
used statistical models which include the background noise statistics. These sta-
tistical models are robust to noise and also allow for computing the a posteriori
probability of speech presence [12], i.e. to have a soft decision instead of a hard
decision. More recently, researchers have leveraged deep learning for audio-only
VAD and overcame traditional audio methods [13]. Additionally considering the
time dimension via recurrent neural networks improved the results even more,
as presented in [14].

Visual-only VAD with traditional techniques Early computer vision meth-
ods have studied VAD using manually extracted features and traditional machine
learning techniques. The work of Joosten et al. [15] has shown that using mouth
regions of interest is better than using full faces of speakers, although the au-
thors did not apply their approach to sequence of frames, but rather on individual
frames. We will show later that this also holds for videos, but even better results
can be obtained using larger crops.

Tao et al. [7] have shown that it is important to have dynamic features rather
than static ones. The manual features extracted from the RGB inputs such as
mouth width and height, mouth area and perimeter were concatenated in feature
vectors and the authors showed that computing first order differences between
the vectors, so called dynamic representations, is beneficial for the task of visual
VAD. They also used optical flow in this context as a natural dynamic feature.

Chakravarty and Tuytelaars [16] have used a support vector machine ap-
proach on full-body images as opposed to looking only at the face of speakers.
The rational of the authors is that body language such as hand gesticulation and
upper body motion are important especially in a multi-speaker environment such
as a conference.

Visual-only VAD using deep learning Surprisingly, visual only voice activ-
ity detection using neural networks has not been studied abundantly. The recent
work of Guy et al. [17] is the most prominent work in this sense. They have
investigated two types of datasets: a) unconstrained, in-the-wild datasets and b)
constrained, in-the-lab datasets; as well as two types of architectures: 1) facial
landmarks extractor coupled with LSTM and 2) optical flow VGG16 ConvNet
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without any LSTM. They come to the conclusion that facial landmarks fed to
an LSTM is the best all-round method for both types of datasets. Interestingly,
the optical flow approach they investigated registered a particularly unexpected
true negative rate for the constrained dataset that they used [18], roughly 15 %,
while the natural expectation would have been something in the range of 80%,
which the other non-optical flow model they investigated did indeed reach.

Other works with deep learning approach have focused exclusively on in-
the-wild scenes. For instance [19] use Hollywood movies which do not have a
fixed structure. These types of datasets allow extraction of VAD labels from the
subtitle timestamps of the movie, which makes the audio channel unnecessary
for ground truth computation. They used 3D CNNs with bidirectional LSTMs
on 1 second RGB video snippets and empirically showed that in the process of
learning VAD classifications, the neural network also learns to pay attention to
the face of the characters.

The recent work of Shahid et al. [20] has a similar use case as the work of [16],
namely detecting active speakers during conferences, but uses a deep learning
approach instead. Moreover, the work deliberately does not detect body parts
of speakers, but rather focuses only on motion segmentation instead and learns
to associate body motion with speech activity.

Audio-Visual VAD Merging audio-only and visual-only VAD solutions has
yielded synergistic results. In [21] the authors show improvement over single
modality baselines by using a rule-based fusion approach which dictates what
modality should be treated as the primary component depending on whether
face or lip movements are detected or not. Tao et al. [22] show that if both
modalities are used together, it is possible to improve the precision of boundary
detection between speech and non-speech regions via the Bayesian information
criterion/BIC algorithm. In a recent deep-learning framework [8], Ariav and
Cohen combined raw audio data with cropped mouth regions as visual input
via compact bilinear pooling [23] and obtained better results than with a single
modality.

3 Our Approach

Our approach for visual voice activity detection consists of two streams: an
RGB stream and an optical flow stream (see Fig. 2). Both streams are trained
independently, and combined during the test phase in a probabilistic manner.

It is partially inspired by the ideas of [7], in which the authors use optical flow
and manually engineered visual features on which they subsequently compute
delta features. We build on this idea of delta features and integrate it into a
deep learning framework. We keep the optical flow as a separate stream and
use another stream that learns suitable RGB features depending on the dataset.
By adding two LSTMs for the RGB and the optical flow stream, we allow the
system to explore dynamic features, which is emulating the aforementioned delta
features, but in a deep learning context. We note that adding an LSTM to optical
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Fig. 2. Diagram of our system: from the input sequence, the lower part of the face
is extracted and fed into an RGB branch (top) and an optical flow branch (bottom).
In each stream a dedicated ResNet extracts static features, which are then fed into
corresponding LSTM modules to exploit dynamic features. The results of both streams
are fused via a probabilistic approach. The ”ROI Extractor” includes: 1) nose, mouth
and chin detection, 2) optical stabilization for a more robust optical flow calculation,
and 3) cropping

flow, i.e. treating the optical flow as time series, is not encountered in other
recent works. We also note that this setup offers the ability to infer indirectly
the acceleration feature. This feature might be useful in future extensions to
discriminate between language speech vs laughter or other lip gesticulations
that do not involve speech.

Pre-processing: ROI Extractor The first step of our VAD pipeline is a re-
gion of interest (ROI) extractor, which consists of detecting the lower face area,
stabilizing the results and cropping the image patch. For detecting the lower face
area, which contains not only the mouth as in other works, but additionally nose
and chin, we first use a facial landmark detector [24]. We detect landmarks for
the nose, mouth and chin area and concatenate them in a list. We then compute
a center point per frame by averaging all detected landmarks. The center points
are averaged over multiple frames (we use the last 30 frames) to achieve optical
stabilization. The crop is then created with a size of 67x67 around the optically
stabilized ROI center, computed via the running average. Optical stabilization is
not critical for the RGB stream, but it does help the optical flow branch achieve
better results. For more difficult, in-the-wild datasets, a Kalman filter would be
recommended instead of a running average. The resulting lower face crop serves
as input for the RGB and the optical flow stream.

RGB stream Our RGB branch is inspired by [8]: using ResNet18, we extract
RGB features of the image patch containing the lower face regions. These fea-
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tures are then fed into an LSTM module. While the LSTM in [8] operates on
both, audio and vision features, we pruned the audio branch for our visual-only
approach and feed visual features directly to the LSTM. We modified [8] for our
purposes in the following way:

– Instead of a many-to-one approach as in [8], where 15 video frames compris-
ing 0.5 seconds are classified to a single VAD label, we use a many-to-many
approach where each frame is classified to speech or non-speech depending
on all the previous frames. In other words, we do not use a buffer approach
where we need to accumulate a number of frames before classifying, but
rather we classify in a streaming fashion, on the fly.

– The original approach determines the VAD label L as argmax of the two
logits for speech (S) and non-speech (N), which result from the LSTM:

L = argmax(S,N) . (1)

Since we need a probability PRGB value for fusing the result of this stream
with the optical flow stream, we specify:

PRGB = sigmoid(JRGB) , (2)

where JRGB is a joint speech/non-speech logit representation which we obtain
from the LSTM. We can infer the hard RGB label LRGB as:

LRGB =

{
0 if PRGB < 0.5 ,

1 otherwise .
(3)

While the probability PRGB is required for the whole system during test time,
the hard label LRGB is used during training, in which each stream is trained
separately. Our evaluation shows that these modifications improve the training
and performance of the RGB stream (see Tab. 1).

Optical flow stream The architecture of the optical flow stream is mirror-
ing that of the RGB stream: we combine optical flow features, extracted using
ResNet, with an LSTM module. We performed experiments without the LSTM
module, i.e., replacing it with a multi-layer perceptron instead, but the results
were worse than with the LSTM included. Hence, we keep the LSTM in the final
system.

On the image patch of the lower face region, we compute a dense optical
flow via the Gunnar Farneback algorithm [25]. This gives us the optical flow
in Cartesian space. We then convert it to polar space and use the amplitude
component to create activation maps. Mathematically: assuming we represent
an image as I(x, y, t), where x, y, t are the height, width and time dimensions,
we can quantify the change of the image over time using Taylor series expansion
and truncation of higher order terms as:

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0. (4)
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Further dividing by ∆t will give us the velocity, or optical flow components u
and v:

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0. (5)

Each pixel will therefore have an associated (u, v) optical flow in the Cartesian
space, which we represent in polar coordinates as:

~p = Aeiφ, (6)

where ~p is the pixel vector associated with (u, v) in Cartesian space, A and φ
are the corresponding amplitude and angle of the optical flow in polar space.
We then take the magnitude component A to create activation maps and feed
these into a ResNet-18 for feature extraction. The resulting features are then
fed into an LSTM module, which, after applying a sigmoid function, outputs the
probability of speech POF obtained from the optical flow sequence:

POF = sigmoid(JOF) , (7)

where JOF is the logit computed by the optical flow LSTM module. To obtain
the hard optical flow label LOF we will threshold just like we did in the RGB
case:

LOF =

{
0 if POF < 0.5 ,

1 otherwise .
(8)

In analogy to the RGB stream, the hard label LOF is used for training the optical
flow stream separately.

Late fusion For the final fusion stage, we opt for a probabilistic strategy that
is implemented only at test time. We compute the average of probabilities of the
two streams and then threshold the average at 0.5 to determine the final VAD
label:

F =

0 if PRGB+POF

2 < 0.5 ,

1 otherwise ,

(9)

where F is the final label after fusion, PRGB is the probability of speech as
encoded by the RGB branch and POF is the probability of speech as encoded by
the optical flow branch as defined above.

The intuition behind this approach is that when both streams agree that
speech is present, the fused label will be resolved easily by unanimous vote.
However, when the networks disagree, we enter a gray zone, and then system
certainty is quantified in the form of averaging both probabilities and threshold-
ing to resolve the conflict and come up with the final label. In our system we
did not fuse via deep learning, because the current probabilistic fusion allows for
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a simple, yet effective explicit control over the probability threshold. This is a
useful feature to have if we would like to manually adjust in favor of one metric
over another without retraining.

4 Experimental Evaluation

In this section, we outline details about the dataset, the training, and the results
we obtain.

4.1 Dataset and Training

For this work we made use of the TCD-TIMIT [9] dataset, which depicts 59
speakers in front of a green-screen and is already split into 42 train, 9 test and
8 validation speakers. Each speaker utters 99 different sentences. We resized the
frames from the original 1920x1080 size to 224x224, because using originally-
sized images causes landmark detection to run slow, whereas having images
which are too small causes it to decrease accuracy.

The original videos were recorded with 30 frames per second (FPS), how-
ever we use a digital differential analyzer (DDA) interpolation algorithm [26]
to achieve 62 FPS. This has the aim to synchronize the video frames with
the audio frames that were used to generate the ground truth labels. Hav-
ing a higher frequency of the audio frames allowed us to obtain more reli-
able labels, and hence it was natural to increase also the number of visual
frames. Additionally, using a DDA can be thought of as data augmentation.
We also augmented during training: we rotated frames by a random angle in
the interval of [−10◦, 10◦] and translated by a random amount in the interval
of [−0.1 · H, 0.1 · H] and [−0.1 · W, 0.1 · W] respectively, where H is the image
height and W is the image width.

Our approach is audio-visual from the perspective of label computation, i.e.,
we derive labels automatically from audio, unlike other works which derive labels
from subtitle text [19] or create manual labels [8]. Since we have clean audio
available, we implemented a sound energy-threshold detector. The alternative
for noisy audio could be to use WebRTC [27]. We note that having 10% errors
in the ground truth labels, provided they are random, i.e. not systemic, can be
overcome by neural net approaches [17], which is another reason in favor of using
deep learning for the VAD task.

4.2 Results

In this section, we show how our proposed approach improves the visual com-
ponent for VAD systems. Our evaluation consists of three parts: first, we show
that our modifications of the RGB stream from [8] are useful; second, we show
the improvements we gain from adding optical flow to the pipeline; and third,
we show that image crops of the lower face region improve the results and are
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Table 1. Comparison of baseline model [8] to our modified RGB, optical flow/OF and
fused systems. All presented results are for the lower face, i.e. nose/mouth/chin regions
extracted from the TCD-TIMIT dataset by our pre-processing routine.

Score type
Baseline RGB

method [8]
Our modified
RGB stream

Our OF
stream

Our
Fusion

F1 ↑ 87.6 89.4 90.9 91.7

TNR ↑ 80.1 85.7 85.4 87.2

TPR ↑ 92.7 93.3 96.7 96.5

Balanced Accuracy ↑ 86.4 89.5 91.1 91.9

additionally more convenient from a practical point of view than precise mouth
crops.

Table 1 shows the results for the first two parts of the evaluation. The first
two columns of the table compare the original RGB stream from the baseline
with our modified RGB stream. We can see some clear improvements, especially
with respect to the true negative rate. Note however that the system by Ariav
& Cohen [8] is an audio-visual system, in which the focus is on the fusion part
of the network. Thus, we do not claim to outperform [8] in general, but we show
that optimizing the visual stream alone results in clear performance gains, which
will then most likely also be useful for complete audio-visual systems.

In column 4, we show the performance for the optical flow branch alone. We
can see that it performs very similar to our RGB branch in terms of true negative
rate. The true positive rate however is consistently better for the optical flow
branch. When fusing both streams with our probabilistic approach (col. 5), we
observe an overall improvement, especially with regard to the true negative rate.
This indicates that the streams contain complementary information and profit
from each other.

In Table 2, we show that focusing on the lower part of the face, i.e. nose,
mouth and chin area does give better results than considering the full face. More-
over, it is better than using mouth-only images. Other works have considered
just the mouth region, but including the nose and especially the chin area offers
another speech specific cue, since they exhibit much movement for the optical
flow branch during speech (note the visualization of the OF activation maps
in Fig. 2, which shows clear activation in the chin area). This is also beneficial
from a practical point of view for real-world applications, e.g. on a commodity
household robot, because generating precisely cropped and well-aligned mouth
regions in real time is harder than to approximate lower face crops.

Altogether, we show how the visual branch for voice activity detection can
be improved by optimizing the RGB stream, adding optical flow, and focusing
on image crops of the lower face region. The performance improves especially
with respect to the detection of frames without voice activity. This will most
likely also be useful for complete audio-visual systems.
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Table 2. Fusion scores on full face, lower face, as well as precise mouth-only input
crops. Using lower face images, i.e. nose, mouth and chin area, results in the best
performance overall.

Score type Full face Mouth-only Lower face

F1 ↑ 90.1 90.4 91.7

TNR ↑ 86.3 86.5 87.2

TPR ↑ 94.2 94.6 96.5

Balanced Accuracy ↑ 90.3 90.6 91.9

5 Conclusion

In conclusion, we have presented an approach to improve the true negative rate
for voice activity detection using unbalanced speech/non-speech datasets. Our
method exploits the complementary advantages of RGB and optical flow and
computes static as well as dynamic features from both streams. Additionally, we
show that operating on crops of the lower face not only facilitates the processing,
but also results in better performance, since especially the chin area contains
useful information for VAD. In future work, we will integrate our visual-only
VAD into an audio-visual framework.
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