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Abstract. We investigate cross-quality knowledge distillation (CQKD),
a knowledge distillation method where knowledge from a teacher network
trained with full-resolution images is transferred to a student network
that takes as input low-resolution images. As image size is a deciding fac-
tor for the computational load of computer vision applications, CQKD
notably reduces the requirements by only using the student network at
inference time. Our experimental results show that CQKD outperforms
supervised learning in large-scale image classification problems. We also
highlight the importance of calibrating neural networks: we show that
with higher temperature smoothing of the teacher’s output distribution,
the student distribution exhibits a higher entropy, which leads to both,
a lower calibration error and a higher network accuracy. The implemen-
tation is available at: https://github.com/PiaCuk/distillistic.

Keywords: Knowledge distillation · Model calibration · Low-resolution
images.

1 Introduction

The increasing number of parameters in state-of-the-art deep neural networks
(DNNs) in recent years [12] makes it challenging to deploy them in application
areas such as robotics or embedded systems where only limited computational
resources are available. Knowledge distillation, or KD [2,10], is one of the tech-
niques used to address the challenge to deploy DNNs in such applications. KD
transfers knowledge from a large, high-capacity teacher DNN to a smaller, com-
putationally lightweight student DNN. This is done by, for example, training the
student to mimic the outputs of the teacher network. It has been shown that
KD can help the student network reach performance close to or equal to the
performance of the teacher network, with a fraction of the computational cost
at inference time [19,25]. Beyond its initial use for model compression, KD has
proven successful as a technique to increase the accuracy of high-capacity DNNs
[27], and has been used for pre-training for state-of-the-art models [27].
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2 P. Čuk et al.

Building on the empirical success of KD, prior research also adapted the
algorithm for knowledge transfer between domains. Cross-modal knowledge dis-
tillation, or CMKD, distills from a teacher with a different input modality than
the student, e.g. from RGB to depth images [8,24]. Here, the student learns to
mimic the feature space of the teacher. This has the advantage that the student’s
input modality can be unlabeled, as long as it is paired with an input from the
teacher’s modality.

In this paper, we investigate Cross-Quality Knowledge Distillation (CQKD),
originally introduced in [22], which is complementary to the CMKD methods
mentioned above. Instead of focusing on distinct modalities, such as RGB and
depth images, the inputs of the teacher and student network are of the same
modality, but different quality or resolution. Specifically, the input of the teacher
network is a high-resolution image, while the input of the student network is
a downsampled, low-resolution variant of the same image. CQKD allows the
student network to distill knowledge from the teacher network, while addition-
ally saving computational effort by processing lower-resolution input images. We
empirically evaluate CQKD on large-scale image classification on the ImageNet
dataset [20]. Our results show that student networks trained via CQKD out-
perform baseline networks trained via standard supervised learning, while only
incurring a less than 10% increase in training time.

Additionally, our experimental results highlight the importance of proper cal-
ibration of the uncertainty estimates of DNNs [13]. We find that it is essential for
the teaching signal to reflect the uncertainty of the predictive task of the student.
By applying stronger temperature smoothing to the teacher’s output distribu-
tion, the student is trained to output a distribution with higher entropy. This
appropriately reflects the uncertainty of the predictive task on low-resolution
images. We show that student networks trained with a high-entropy teacher
have a lower calibration error and a higher accuracy. These findings show the
importance of calibration.

The remainder of the paper is organized as follows. In Section 2, we review
related work in KD. Section 3 reviews cross-quality knowledge distillation, which
we empirically evaluate in Section 4. Section 5 concludes the paper.

2 Related Work

KD methods for DNNs can be categorized along multiple axes. For instance,
knowledge from the teacher network may be distilled to the student network
via the output logits, e.g., [1,10], or via intermediate layer activation maps,
e.g., [19]. There may be more than one teacher such as in [15,29], or an explicit
teacher network may be replaced by an otherwise generated teaching signal [28].
Offline KD methods such as [10] first train a teacher network, and then distill its
knowledge to a student network, while online KD methods such as [29] combine
the two phases.

KD is practically relevant for deployment of neural networks in applications
with computational limitations, and has therefore attracted significant research
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attention in recent years. A complete survey of the area is outside the scope of
this paper, and we instead refer the reader to recent surveys for a more complete
overview of the literature [6,26]. In the following, we focus on two subareas
of knowledge distillation relevant for our work: cross-modal and cross-quality
distillation, and efforts to understand what makes for an effective teaching signal.

Cross-modal and cross-quality knowledge distillation. In cross-modal knowledge
distillation (CMKD), the teacher and student networks’ inputs are of a differ-
ent modality. Thus, the knowledge transferred from the teacher to the student
needs to abstract from the input domain, i.e. it has to represent the content
independently of modalities. Typically, the training data contains paired sam-
ples for both modalities. The student data is often not annotated, requiring a
knowledge transfer from the teacher modality. Gupta et al. [8] transfer knowl-
edge from RGB images to depth images and optical flow. The teacher network
is pre-trained on RGB images. The student learns to replicate the feature rep-
resentation of the teacher from a depth image or optical flow and therefore does
not require training annotations. This distillation setup can be used as a pre-
training for depth or motion vision tasks, where ground truth information is
often very costly to acquire [5]. Dai et al. [4] use CMKD from optical flow to
RGB images for action detection in untrimmed video footage. Miech et al. [14]
employ distillation for multimodal transformer networks, that are trained with
image-text pairs. Both teacher and student use both modalities, making this a
special case of cross-modal distillation. More examples for CMKD can be found
in [6, Sect. 5.3], especially for combinations of modalities that have been tested.

There are comparatively fewer works addressing the setting where the teacher
and student networks process input images of different resolutions. In [18],
the problem of fine-grained classification was considered. However, no explicit
teacher-student network separation was made. Instead, the same network was
first trained on high-resolution images, and later fine-tuned on low-resolution im-
ages. The empirical results confirmed that knowledge of high-resolution features
can be helpful for low-resolution classification tasks. Su and Maji [22] propose
cross-quality knowledge distillation (CQKD) where both the teacher and stu-
dent networks are pre-trained on the ImageNet data. They find cross-quality
distillation performs better than simply fine-tuning the student network on low-
resolution images or training the student first on high-resolution and then on
low-resolution data in two stages. We demonstrate our method on the larger-
scale ImageNet classification task, in contrast to the smaller datasets of around
10k samples each in [22]. Furthermore, we additionally analyze the importance
of calibration for cross-quality distillation. Finally, in our experiments we do not
use pre-trained weights for the student network.

What makes for an effective teaching signal? Knowledge distillation is partly
motivated by human learning, where a teacher can help a student learn more
effectively by providing feedback beyond the correctness of the student’s answer.
However, few works investigate the mathematical foundations of KD to under-
stand the mechanics of the algorithm and what type of teaching signal would
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be most effective. Nevertheless, this is essential to, e.g. explain phenomena such
as the capacity gap that hinders lightweight student networks from learning
effectively from large, highly accurate DNNs [15].

Recent research has investigated the question of what kind of teaching signal
is most effective for KD from complementary perspectives: either by a theoretical
analysis of the learning task [13] or empirically by omitting a teacher network
entirely [28] and replacing it with a manually designed teaching signal. Menon
et al. [13] prove that a teacher that accurately approximates the true Bayes class
probabilities P(y | x) in its output can lower the variance of the student’s and
thus improve performance. How well a predictor such as a DNN approximates
the Bayes class probabilities is quantified by calibration. Despite being accurate,
modern DNNs are susceptible to poor calibration [7]. As argued in [13], a poorly
calibrated network makes for a poor teacher. In [28] the teacher network is re-
placed by a teaching signal obtained by adapting label smoothing [23], a well
known regularization technique for reducing the overconfidence of deep neural
networks. This empirical method for reducing overconfidence, and thereby im-
proving calibration, is also shown to be effective for KD.

Based on these theoretical and empirical findings, we conclude that it is
important to track the quality of the teaching signal by metrics such as the
expected calibration error (ECE, [16]). In our experiments, we measure the ECE
to understand the performance of CQKD and take measures for re-calibration
when needed.

3 Cross-Quality Knowledge Distillation

We now review Cross-Quality Knowledge Distillation (CQKD) [22], where the
student networks learns to predict on low-resolution images, using the target
label and the output of the high-capacity teacher as input. The teacher network
receives the full-resolution images as input, which is why the knowledge is trans-
ferred across different image qualities. Similar to the KD method of [10], CQKD
is also an offline distillation method where we first train the teacher network via
supervised learning, and then transfer the knowledge to a student network in a
distillation phase. After the distillation phase, the teacher network can be dis-
carded, and at inference time only the student network processing low-resolution
images is used. A schematic overview of the distillation phase of CQKD is shown
in Figure 1. We next describe the distillation phase for the image classification
task we target.

We are given a full resolution input image x along with its target label y ∈
{1, 2, . . . ,K}. By feeding the image x to the teacher network f t, we obtain the
vector of teacher logits zt = f t(x). Next, we create a low-resolution version x̃ by
downsampling x by a constant factor4. The low-resolution image is fed to the
student network fs, resulting in the student logits zs = fs(x̃).

For later use, we will also define temperature smoothing or soft targets [10].
Temperature smoothing re-calibrates predictive models by distributing the prob-

4 We evaluate the effect of the downsampling factor in the next section.
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Low-resolution image

Full-resolution image

Label

Teacher output

Student output

Fig. 1: In cross-quality knowledge distillation (CQKD), the input to the teacher
network is a full-resolution image, and the student receives a downscaled low-
resolution image as input. The student is trained with a weighted loss using the
cross-entropy on the target label and the Kullback-Leibler divergence between
the student and teacher output distributions. At inference time, the student
network is retained and only low-resolution images need to be processed.

ability mass between classes more uniformly [7]. Soft targets are also one of the
essential components for the successful transfer of knowledge with KD [28,13].
Given a vector zt =

[
zt1 z

t
2 . . . z

t
K

]
of teacher logits and a temperature hyperpa-

rameter τ ∈ R, the ith soft target is defined as

ptτ (zti) =
exp(

zti
τ )∑

j exp(
ztj
τ )
. (1)

The definition is analogous for the student logits zs. We denote the entire
vector of teacher soft targets and student soft targets by ptτ and psτ , respectively.
Note that setting τ = 1 recovers the Softmax activation function commonly
applied in classification networks.

To train the student network, we apply a loss function defined as a weighted
sum of a label loss term that compares the student logits with the target label,
and a distillation loss term that compares the student logits with the teacher
logits. The CQKD loss is otherwise similar to the KD loss of [10], except that
the teacher and student logits originate from images of different resolutions. The
CQKD loss to be minimized is defined as

LCQKD = (1− α)H(y, ps1) + αD(ptτ , p
s
τ ), (2)
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where α ∈ (0, 1) is a weighting factor, H(y, ps1) is the cross-entropy between
the target label and the student output without temperature smoothing, and
D(ptτ , p

s
τ ) is the Kullback-Leibler divergence between the soft targets of teacher

and student. By choosing the weighting factor, we can change the balance be-
tween training the student network to accurately predict the target label and
training it to mimic the teacher’s output distribution. In our experiments, we
use α = 0.5 throughout.

4 Empirical Evaluation

We empirically compare CQKD to a supervised learning baseline, and an al-
ternative online KD algorithm. We evaluate the effect of downsampling and
temperature smoothing on the performance of the student network, and quan-
titatively compare the student networks in terms of calibration, the ability of
the networks to output accurate probability estimates reflecting the true uncer-
tainty in their predictions. In the next subsections, we review the experimen-
tal setup and evaluation metrics, present the results of the experiments, and
then discuss the significance of the results. The implementation is available at:
https://github.com/PiaCuk/distillistic.

4.1 Experimental setup

For cross-quality distillation, the teacher always receives the input images with
dimensions 224 × 224 (full resolution), while the students receive the images
downscaled. We experiment with downscaled images of size h× h, with h equal
to 168, 112, 56, 42, or 28. For CQKD, we tested soft targets with τ = 10 and
τ = 20 in the divergence loss.

Dataset and network architectures. In all our experiments, we use the Ima-
geNet [20], a 1000-class image classification dataset. ImageNet is particularly
suitable for cross-quality distillation, as all images are at least 224 × 224 pix-
els in width and height, allowing for sufficient opportunity for downsampling.
We use a pre-trained ResNet-50 teacher network from torchvision [17], scoring
76.130% top-1 and 92.862% top-5 accuracy on the ImageNet full-resolution val-
idation set. All student networks we use are ResNet-18 networks [9], that are
initialized randomly.

Baselines. We compare CQKD to two main baselines. First, we consider a su-
pervised learning baseline where a ResNet-18 student model is trained directly
with the cross-entropy loss on low-resolution images. Second, we consider deep
mutual learning (DML) [29], an online knowledge distillation method with a co-
hort of ResNet-18 student networks trained concurrently on the low-resolution
images. We choose DML as it has previously obtained good performance on
ImageNet [29], showing significant improvements over the supervised learning

https://github.com/PiaCuk/distillistic
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baseline. In each training step of DML, we iterate over the student networks
i = 1, 2, . . . ,m, training the ith network using the loss function

LDML,i = H(y, pi) +
1

m− 1

m∑
j=1,j 6=i

D(pj , pi), (3)

where pi and pj are the output probabilities of the ith and jth student network,
respectively. We use a student cohort of size m = 3.

We do not evaluate on baselines such as directly training the student on low-
resolution images, or stage-wise training on both datasets, as these were already
considered in [22] and found to perform worse than CQKD.

Hyperparameter settings and implementation details. We use a cyclical learning
rate schedule [21] with a maximum learning rate of η = 0.001 and an AdamW
optimizer [11]. For all methods, we use RandAugment [3] for data augmentation
with two augmentation transformations per image and a magnitude of 9. For
each setting, we train for 20 epochs. The experiments were conducted using an
NVIDIA T4 GPU with CUDA 11.3.

4.2 Evaluation metrics

We record the average classification accuracy to measure the fraction of valida-
tion images correctly classified by the network. For classification, it is often useful
to not only predict a class but also include a measure of confidence. Confidence is
the probability of a prediction being correct and accounts for uncertainty in the
predictions. In the context of neural networks, the output of a model is scaled to
have the characteristics of a probability distribution. However, this scaling does
not automatically guarantee that the scores, which express the model’s confi-
dence, represent the accuracy of the predictions. DNNs in particular are known
to be prone to overconfident predictions [7]. It is possible for a network to have
high or low accuracy independently of how confident it is in its predictions.
Therefore, it is necessary to consider additional metrics other than accuracy to
measure confidence.

We record the average entropy of the output distribution as a measure of the
uncertainty related to the predictions of the network. A network with low average
entropy is confident in its predictions, whereas a network with high entropy is
uncertain. Finally, we measure the expected calibration error (ECE) [16] of the
student networks. ECE is calculated on the entire set of predictions output by
the network as follows. We first partition the interval [0, 1] of probabilities into
B equally spaced bins. Then, we consider each output prediction of the network
as a tuple (ŷ, p̂, y), where ŷ is the predicted class, p̂ is the probability associated
with the predicted class, and y is the true target label. Each prediction of the
network is assigned to the bin b that covers p̂. ECE is calculated as

ECE =

B∑
b=1

mb

n
|acc(b)− conf(b)| , (4)
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(c) Expected calibration error (ECE).
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Fig. 2: Accuracy, training time, ECE, and entropy on ImageNet as a function of
training image size. For cross-quality KD, we report a setting with τ = 10 and
τ = 20. Up to image size 112, the baseline and DML outperform KD. For larger
image sizes, KD performs best.

where n is the total number of predictions, mb is the number of predictions in
bin b, acc(b) is the average accuracy of predictions in bin b obtained from ŷ and
y, and conf(b) is the average of the output probabilities p̂ for the predictions in
bin b. The lower the ECE is, the better calibrated the network is.

4.3 Results

Figure 2 shows the validation accuracy, training time, expected calibration error
(ECE), and output distribution entropy as a function of the size h of the stu-
dent’s input image x̃. In terms of accuracy, CQKD outperforms both supervised
learning and DML for an image size of 112 pixels and greater. The accuracy of
the supervised learning baseline and DML are similar, with DML scoring 2 to 3
percentage points lower. As expected, the overall accuracy increases with higher
resolution.

For image size smaller than 112, CQKD has a lower accuracy than supervised
learning and DML (Fig. 2a). In these cases, the student image x̃ is less than one
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fourth of the size of the teacher image x. We suspect that a large difference in
image sizes makes it challenging to transfer knowledge from the teacher to the
student, as the features the teacher and student networks can potentially learn
also differ. For image sizes above 112, there is no performance difference for
CQKD with τ = 10 or τ = 20. In contrast, CQKD with τ = 20 outperforms τ =
10 in accuracy for image sizes less than 112 pixels. Setting τ = 20 corresponds to
stronger smoothing and therefore lower confidence for the teaching signal, which
helps the CQKD student avoid overconfident and inaccurate predictions. This is
also confirmed by the lower ECE (Fig. 2c) for τ = 20 for image sizes less than
and including 112.

ECE (Fig. 2c) measures how well the student network is calibrated, with
lower values being better. We note that CQKD with τ = 20 is the best calibrated
with full resolution images (size 224), while also reaching the highest accuracy.
ECE alone does not convey whether the models are over- or under-confident in
their predictions, which is why it is essential to evaluate it in combination with
the entropy of the output distribution (Fig. 2d). Informally speaking, entropy
indicates whether the predicted distribution is closer to uniform (high entropy) or
peaked (low entropy). For image size 56, where CQKD has the highest ECE, both
smoothing settings τ have a much lower entropy than the supervised learning
baseline and DML. These results suggest that the CQKD models have poor ECE
due to over-confidence, assigning a higher probability to the predicted class than
the actual accuracy of the model.

For the supervised learning baseline and DML, ECE increases as a function
of the student image size (Fig. 2c). As the image size increases and accuracy
improves, entropy decreases indicating overconfidence, and the calibration of
the student networks degrades.

On top of the time required to train the teacher model, CQKD requires only
up to 10% more training time than the supervised learning baseline (Fig. 2b),
while reaching a higher accuracy for image sizes above 112. DML requires up
to 2 times longer to train than the supervised learning baseline. This is not
surprising, as in DML three networks instead of one are trained.

4.4 Discussion

When using a teacher model trained on full-resolution images to transfer knowl-
edge to a student network using low-resolution images, it is crucial to “bridge
the gap” between the learning task of the student and the teacher’s predictions.
The miscalibration of the CQKD student for small image sizes illustrates how
the teaching signal biases the student to learn a solution that does not fit the
problem. The student learns to predict a low-entropy distribution that does not
match the uncertainty inherent in the problem due to the decreased input im-
age size. We quickly obtain a more fitting solution by increasing temperature
smoothing of the teaching signal, showing how effective the simple method of
soft targets is. We believe that the key to making cross-quality distillation widely
applicable is to find an effective, automatic way to adapt the teacher’s distri-
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bution to the student’s learning problem. Reflecting the aleatoric uncertainty of
the problem through calibrated predictions is one fundamental component of it.

As confirmed by our results, reducing the image resolution causes a degrada-
tion in accuracy in the student models. However, this is a trade-off worth con-
sidering for many applications. For CQKD and DML, reducing the resolution
to 168 in width and height reduces the training time by a third while reducing
the accuracy by only 5%. This speed-up is especially interesting for CQKD, as
it outperforms the baseline by almost two percentage points for the same reso-
lution and scores only one percentage point lower than the baseline trained on
full resolution. The trade-off between accuracy and computational efficiency is
likely to be domain-dependent, and there may be applications where it is even
more effective to use downscaling.

It is possible that slight changes in the overall results would still be observed
when training for a greater number of epochs. Especially the calibration of a
model’s predictions can change towards full convergence, as networks often be-
come overconfident to match the target labels [7]. Nevertheless, we believe that
the trends and differences between the algorithms remain unchanged, albeit at
a lower accuracy.

5 Conclusion

We investigate cross-quality knowledge distillation (CQKD) [22] where knowl-
edge from a teacher network trained with full-resolution images is transferred to
a student network with low-resolution inputs. We apply CQKD to large-scale im-
age classification, and find that compared to other KD methods, CQKD obtains
computational savings at inference time as the student network only processes
a low resolution image. CQKD outperforms supervised learning and an online
knowledge distillation approach in large-scale image classification in terms of
accuracy, while only incurring a modest increase in training time.

Our empirical results confirm the importance of measuring the calibration of
the networks. In particular, we found that it is crucial to apply re-calibration
methods such as temperature smoothing to the teaching signal to avoid over-
confident student networks when training with CQKD. Applying temperature
smoothing to the teacher’s output distribution, we found that the student dis-
tribution has a greater entropy, lower calibration error, and a higher accuracy.

Exploring CQKD in other domains and problems is an exciting direction
for future work. This could lead to further insights about when the trade-off
between lower accuracy and shorter training and inference times is warranted.
A theoretical analysis of CQKD could lead to a better understanding of the
limitations of distillation when the student network obtains a compressed version
of the teacher input. This could be the first step towards automatic re-calibration
methods that adapt the teacher’s output distribution to the learning problem
faced by the student network, further improving the applicability of CQKD.
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