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Abstract— In this paper, we present a method to improve the
loop closing behaviour for visual SLAM. Landmarks consist of
a combination of attention regions and Harris-Laplace corners.
The attention regions are detected by a visual attention system
which combines image-based, bottom-up and target-related, top-
down information. The ability to perform target-directed search
is used to search for expected landmarks.

We analyze the amount of correct and false matches for
bottom-up and top-down matching depending on different match-
ing thresholds. It shows that whereas bottom-up matching is
useful for situations in which the scene changes only slightly
like during tracking, top-down matching has advantages in loop
closing situations by detecting a much higher amount of correctly
matched landmarks.

Index Terms— Visual SLAM, loop closing, saliency, visual
attention

I. INTRODUCTION

An essential task of mobile robots which explore unknown
environments is SLAM (Simultaneous localization and map-
ping), the task of building a map and staying localized within it
at the same time [3, 4, 18]. Special interest during the last years
has been on visual SLAM, which uses cameras as main sensors
[1, 10, 12, 17]. In contrast to laser-scanners, cameras are low-
cost, low-power, and lightweight sensors which may be used
in many applications where laser scanners are too expensive or
too heavy. Additionally, the rich visual information of camera
images holds potential for better data association and more
accurate 3D representations of the environment. Challenges
in this field are the high amount of data which requires
intelligent landmark selection strategies and the sensitivity
of image data to illumination and viewpoint changes which
requires robust tracking and matching methods. Additionally,
when performing bearing-only SLAM with a single camera,
depth estimation is difficult because it has to be estimated by
triangulation from several frames.

One of the most challenging problems in SLAM is the data
association, the task of associating current observations with
map elements. In visual SLAM, this means to match currently
detected visual landmarks to landmarks from a database. For
consecutive frames, this problem is relatively easy, especially
if additional odometry information is used, since usually
images change only slightly between frames and since the
odometry provides the system with rather accurate position
estimates. The problem becomes much more difficult when
the robot revisits a location after some time. This loop closing
has to deal with illumination variations and viewpoint changes,
and since the odometry estimation is much less accurate, large
areas have to be considered for matching.

The choice of the feature detector is important to obtain
useful landmarks which are on the one hand robust and easy

to redetect and which have, on the other hand, high positional
stability to obtain precise depth estimations when triangulat-
ing. Often, the landmarks are selected by a human expert or
the kind of landmark is determined in advance, e.g., ceiling
lights [17], artificial landmarks [2], Harris corners [12], SIFT
features [13], or maximally stable extremal regions (MSERs)
[15]. As pointed out by [19], there is a need for methods which
enable a robot to choose landmarks autonomously. A good
method should pick the landmarks which are most suitable for
the current situation. An especially useful method to find land-
marks autonomously depending on the current surrounding are
visual attention systems [20, 11, 5]. They select regions that
“pop out” in a scene due to strong contrasts and uniqueness.
The advantage of these methods is that they determine globally
which regions in the image are discriminative instead of locally
detecting predefined properties. In previous work, we have
shown that a combination of attention regions with Harris-
Laplace corners is especially useful to obtain both, positional
stability and good discrimination for loop closing [7, 6].

In this paper, we focus on an improvement of the loop
closing module of our visual SLAM system. All approaches
we are aware of match landmarks in a bottom-up manner,
i.e., the same feature detection methods are applied to two
frames and the detected features are compared afterwards
[16, 15, 12, 8]. In contrast to this, we change the feature
computations depending on the kind of landmarks we currently
expect: we use the ability of the attention system to search
in a top-down, target-directed manner for expected landmarks
by explicitly supporting expected features. Information about
which landmarks are expected is provided by the SLAM
module, based on the estimate robot pose and the map.

We compare in real-world experiments the new top-down
matching with the conventional bottom-up matching. It turns
out that whereas the bottom-up matching shows advantages in
easy matching situations like tracking, the top-down matching
outperforms the bottom-up matching clearly in difficult match-
ing situations with changing viewpoints. Therefore, the new
method is more useful for loop-closing situations.

In the following, we first give an overview over the whole
visual SLAM system (sec. II). Then, we describe the feature
detection (sec. III), the feature matching (sec. IV), the feature
tracking (sec. V), and the loop closing (sec. VI). Finally, we
present several experiments on real-world data in sec. VII
before we conclude (sec. VIII).

II. SYSTEM OVERVIEW

The visual SLAM architecture is displayed in Fig. 1. The
main components are a robot which provides camera images
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Fig. 1. The visual SLAM system

and odometry information, a feature detector which finds
regions of interest (ROIs) in the images, a feature tracker
which tracks ROIs over several frames and builds landmarks,
a triangulator which identifies useful landmarks, a SLAM
module which builds a map of the environment, a loop closer
which matches current ROIs to the database and, as main part
of the current paper, a gaze control module which determines
where to direct the camera to.

When a new frame from the camera is available, it is
provided to the feature detector, which finds ROIs based on a
visual attention system and Harris-Laplace corners inside the
ROIs. Next, the features are provided to the feature tracker
which stores the last n frames, performs matching of ROIs
and Harris corners in these frames and creates landmarks. The
purpose of this buffer is to identify features which are stable
over several frames and have enough parallax information for
3D initialization. These computations are performed by the
triangulator. Selected landmarks are stored in a database and
provided to the SLAM module which computes an estimate
of the position of landmarks and integrates the position es-
timate into the map. Details about the robot and the SLAM
architecture can be found in [12].

The task of the loop closer is to detect if a scene has been
seen before. Therefore, the features from the current frame
are compared with the features from the landmarks in the
database. To narrow down the search space, the SLAM module
provides the loop closer with expected landmark positions.
Only landmarks that should be currently visible are considered
for matching.

Finally, the gaze control module actively controls the cam-
era. It decides whether to track currently seen landmarks, to
actively look for predicted landmarks, or to explore unseen
areas. It computes a new camera position which is provided
to the robot. Details on this module can be found in [8].

III. THE FEATURE DETECTOR

The feature selection is based on two different kinds of fea-
tures: attentional ROIs and Harris-Laplace corners. In [7] we
have shown that this combination is useful, since it combines
the advantages of both approaches: the attentional ROIs focus
the processing on salient image regions which are thereby
well redetectable. The corners on the other hand provide well
localized points as required for precise depth estimation for
structure from motion with a small baseline. Additionally, the
combination improves the matching of landmarks (cf. sec. IV).

Fig. 2. ROI detection: The visual attention system VOCUS.

A. ROI Detection

The ROIs are detected with the attention system VOCUS
(Visual Object detection with a CompUtational attention Sys-
tem) [5] (Fig. 2). It consists of a bottom-up part similar to
[11], and a top-down part enabling goal-directed search; global
saliency is determined from both cues.

1) Bottom-up computations: The bottom-up part detects
salient image regions by computing image contrasts and
uniqueness of a feature. The feature computations for the
features intensity, orientation, and color are performed on 3
different scales with image pyramids. The feature intensity
is computed by center-surround mechanisms; on-off and off-
on contrasts are computed separately. After summing up the
scales, this yields 2 intensity maps. Similarly, 4 orientation
maps (0 ◦, 45 ◦, 90 ◦, 135 ◦) are computed by Gabor filters and
4 color maps (green, blue, red, yellow) which highlight salient
regions of a certain color. Each feature map i is weighted with
a uniqueness weight W(i) = i/

√
m, where m is the number

of local maxima that exceed a threshold. This promotes pop-
out features. The maps are summed up to 3 conspicuity maps
I (intensity), O (orientation) and C (color) and combined to
form the bottom-up saliency map Sbu = W(I) + W(O) +
W(C). Details on the feature computations in [5].

To achieve real-time performance, the feature computations
in VOCUS are efficiently performed on integral images [21].
After once creating an integral image in linear time with
respect to the number of pixels, a rectangular feature value of
arbitrary size is computed with only 4 references. This results
in a fast computation (50ms for a 400 × 300 pixel image,
2.8GHz) that enables real-time performance (details in [9]).

If no top-down information is available, Sbu corresponds
to the global saliency map S. In S, the most salient regions
(MSRs) are determined: first the local maxima (seeds) in S
are found and second all neighboring pixels over a saliency
threshold (here: 25% of the seed) are detected recursively with
region growing. A ROI is defined as the smallest rectangle
including the MSR. It is an approximation, to allow easier
storing of features.

For each MSR, a bottom-up feature vector ~vbu with (2 +
4 + 4 + 3 = 13) entries (one for each feature and conspicuity
map) is determined. The feature value vi for map i is the ratio
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Fig. 3. Procedure to create a top-down vector ~vtd: First, the bottom-up
saliency Map Sbu is created from the input image. Then, for each MSR in
Sbu the corresponding bottom-up vector ~vbu is created. This vector is used
to apply top-down search to the input image, yielding in a top-down saliency
map Std. The feature vector describing the corresponding MSR in Std is
the vector ~vtd. The values in the vectors stand for the feature maps intensity
on-off, intensity off-on, orientations 0 ◦, 45 ◦, 90 ◦, 135 ◦, colors green, blue,
red, yellow and for the conspicuity maps I, O, C.

of the mean saliency in the target region m(MSR) and in the
background m(image−MSR): vi = m(MSR)/m(image−MSR).
This computation does not only consider which features are
the strongest in the target region, it also regards which
features separate the region best from the rest of the image.
Fig. 3 shows the feature vector ~vbu which corresponds to the
wastebin. It tells us, e.g., that the region is dark on a bright
background, since the highest value is the 2nd value of the
vector, which represents the off-on intensity.

2) Top-down computations: In top-down mode, VOCUS
aims to detect a target, i.e., input to the system is the image
and some target information, provided as feature vector ~v. In
search mode, VOCUS multiplies the feature and conspicuity
maps with the corresponding weights of ~v. The resulting maps
are summed up, yielding the top-down saliency map Std.
Finally, Sbu and Std are combined by: S = (1−t)∗Sbu+t∗Std,
where t determines the contributions of bottom-up and top-
down (details in [5]). Here, we use t = 0 for bottom-up and
t = 1 for top-down computations.

Fig. 3 shows a bottom-up and a top-down saliency map: the
bottom-up saliency map highlights all regions which might be
of interest, regardless of a certain target. The top-down map
highlights especially the target region (the black wastebin) and
suppresses regions which do not look similar.

If the similarity of two ROIs shall be compared (see sec. IV),
we cannot compare a top-down ROI with a bottom-up ROI
because the feature values result from different computations.
Instead, we additionally compute a top-down vector ~vtd for
each bottom-up ROI. This is done by using the bottom-up
vector ~vbu as target information and search for this region
within the same image. This results in a top-down saliency
map in which the top-down MSR within the target region,
defined by the bottom-up ROI, is determined. Fig. 3 shows
the procedure to create such a top-down vector ~vtd.

B. Harris-Laplace detector:

To detect features with high position stability inside the
ROIs, we used the Harris-Laplace feature detector [14] – an

extension of the Harris corner detector to Laplacian pyramids
which enables scale invariance. For convenience, we talk
briefly about Harris corners in the following. The method finds
a few (av. 1.6) points per ROI. To allow matching of points,
a SIFT descriptor is computed for each detected corner [13].

IV. FEATURE MATCHING

Feature matching is performed between consecutive frames
(in the feature tracker) and with features from the database (in
the loop closer). The general matching procedure is the same
in both modules. It is based on two criteria: proximity and
similarity. First, the features in the new frame have to be close
enough to the predicted position. Second, the similarity of the
features is determined. This is done differently for attentional
ROIs and for Harris corners: the matching of Harris corners
is based on the SIFT descriptor by determining the Euclidean
distance between the descriptors. When the distance is below
a threshold, the points match.

For the attentional ROIs, we consider the size of the ROIs
and the similarity of the feature values. We set the allowed
deviation in width and height of the ROI to 10 pixels to
allow some variations. This is required, because the ROIs
might differ slightly in shape depending on image noise and
illumination variations.

The similarity of two feature vectors ~v and ~w is determined
by eq. 1; the smaller the distance d(~v, ~w), the higher the
similarity of the ROIs. If d(~v, ~w) is below a certain threshold
δ, the ROIs match (see sec. VII for the choice of δ). The
computation is similar to the Euclidean distance of the vectors,
but it treats the feature map values (v1,..,v10) differently than
the conspicuity map values (v11,..., v13). The reason is as
follows: the conspicuity values provide information about how
important the respective feature maps are. For example, a low
value for the color conspicuity map v13 means the values
of the color feature maps (v7,...,v10) are not discriminative
and should be assigned less weight than the other values.
Therefore, we use the conspicuity values to weight the feature
values. We found out that this matching procedure outperforms
the simple Euclidean distance of the feature vectors.

We distinguish two matching approaches: bottom-up and
top-down matching. They differ in the kind of vectors which
are used to determine the similarity. We describe both in the
following.

A. Bottom-up matching
For bottom-up matching, each ROI from a frame f1 is

compared to each ROI from a frame f2. If the matching
distance d(~v, ~w) for the vectors ~v and ~w of two ROIs is below
the matching threshold δ, the ROIs are considered as a match.
If several ROIs from f2 match to the same ROI from f1, the
best match with the smallest distance is chosen. The bottom-up
matching procedure is illustrated in Fig. 4, left.

The bottom-up matching works especially well, if the two
frames differ only slightly. This is the case for tracking. For
loop-closing, the bottom-up matching works well if the view-
point of the landmark differs only slightly to the viewpoint
it had when seeing the landmark for the first time. For more
different viewpoints, the top-down matching is preferable.
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d(~v, ~w) =

√√√√√
v11w11

∑

i=1,2

(vi − wi)2 + v12w12

∑

i=3,..,6

(vi − wi)2 + v13w13

∑

i=7,..,10

(vi − wi)2

v11w11 + v12w12 + v13w13
(1)

(a) bottom-up matching (b) top-down matching

Fig. 4. Left: bottom-up matching. To find a match for a ROI from frame 1,
it is compared to each ROI from frame 2. Right: top-down matching. To find
a match for a ROI from frame 1, its top-down feature vector vtd is used as
target information to search for this ROI in frame 2. The resulting ROIs all
look similar to the ROI from frame 1.

B. Top-down matching

For top-down matching, we determine for each ROI a top-
down feature vector ~vtd, as described in sec. III-A.2. These
vectors are later used for comparison.

To find a match for ROI r1 from frame f1 in frame f2,
the vector ~vtd which describes r1 is used to apply top-down
search to f2. From the resulting top-down saliency map, the
most salient ROIs are extracted and their top-down feature
vectors are compared to ~vtd. As for the bottom-up matching,
the ROIs are considered as a match if the matching distance
d is below the matching threshold δ, and if several ROIs from
f2 match to r1, the best match with the smallest d is chosen.
The top-down matching procedure is illustrated in Fig. 4, right.
The colors and the shape of the ROIs illustrate their similarity.
Top-down matching compares a ROI only to similar regions,
whereas the bottom-up matching compares it with all salient
regions.

Top-down matching pays off especially if the appearance of
two frames differs strongly. Since this is usually the case in
loop closing situations, we apply the top-down matching for
loop-closing. To search for an expected ROI does not mean
that all computations of VOCUS have to be repeated for each
expected ROI. The most time consuming computations, the
computations of the feature maps, do not have to be done
again. They are the same for the bottom-up computations and
for each expected ROI. Therefore, these computations are still
possible in real-time.

V. THE FEATURE TRACKER

In the feature tracker, the frames are stored in a buffer
with length n (here: n = 30) and features are tracked over
several frames. This buffer provides a way to determine which
landmarks are stable over time and thus good candidates to use
in the map. The output from the buffer is thus delayed by n
frames but in return quality assessment can be utilized before
using the data. The matching is performed not only between
consecutive frames, but allows for gaps of several (here: 2)

frames where a ROI is not found. We call frames which are
at most 3 frames behind the current frame close frames.

A landmark is a list of tracked features. Features can be
ROIs (ROI-landmark) or Harris corners (Harris-landmark).
The length of a landmark is the number of elements in the
list, which is equivalent to the number of frames the feature
was detected in. The procedure to create landmarks is the
following: when a new frame comes into the buffer, each
of its ROIs is matched to all existing landmarks of close
frames. We apply bottom-up matching here. If the matching
is successful, the new ROI is appended to the end of the best
matching landmark. Additionally, the ROIs that did not match
any existing landmarks are matched to the unmatched ROIs
of the previous frame. If two ROIs match, a new landmark is
created consisting of these two ROIs. The same procedure is
used to create the Harris-landmarks.

At the end of the buffer, the landmarks are transferred to
the triangulator, which first checks whether the landmarks are
long enough (≥ 5). Then, the Harris corners inside of ROIs
are determined, and it is checked whether the corresponding
Harris-landmarks are long enough and stable enough. Finally,
the Harris-landmarks which survive the process are reported
to the SLAM module.

VI. THE LOOP CLOSER

The loop closer obtains landmark predictions from the
SLAM module and checks if these landmarks are visible in
the current frame. In bottom-up matching mode, it compares
each ROI from the expected landmarks to each ROI of the
current frame. In top-down mode, it takes each ROI from each
expected landmark, uses it as target information, and searches
for it with top-down attention within the current frame. Then,
the resulting top-down ROIs are compared to the ROIs from
the expected landmarks with top-down matching. If there are
several matches in the current frame, the best match is taken.

If there is a ROI-match, all of the Harris corners within the
matching ROIs are compared based on their SIFT descriptor. If
there is also a match, the corresponding landmark is reported
to the SLAM module, to update the map. The combination
of ROI and Harris matching enables a reliable matching with
almost no false positives.

VII. EXPERIMENTS AND RESULTS

In this section, we illustrate the differences between bottom-
up and top-down matching and the advantages of the top-
down matching for loop closing. We investigated the system
behaviour twice for the same data obtained from the trajectory
displayed in Fig. 5. The robot drove through a room, left the
room, drove through the corridor, and entered the room again
through a different door. After entering the room, it faced the
same region as in the beginning. At this point, it should be



5

Fig. 5. The robot environment and the driven trajectory.

able to detect that it closed a loop. Although the loop is very
small compared to some other SLAM-scenarios, it is sufficient
here to show that top-down matching outperforms bottom-up
matching in loop-closing situations. The effect of larger loops
would be a higher uncertainty of robot and landmark positions,
resulting in larger search areas in the images, in the worst case
the whole image. In these cases, the advantage of top-down
matching is expected to be even more important.

The visual SLAM system runs online in real-time, but for
our experiments we needed offline data to enable experiments
on the same data for both matching methods. Therefore, we
stored the image sequence, consisting of 283 images, as well
as the odometry information. We ran the system twice on this
sequence, once the loop closing was implemented with the
bottom-up matching and once with the top-down matching.
Note, that in offline mode the gaze control module cannot
be used. But since gaze control and top-down matching are
two largely independent mechanisms (gaze control controls
the camera actively whereas top-down matching focuses the
processing actively to regions of interest within the current
image), this does not affect the current experiments.

Each ROI of each expected landmark was considered for
matching. Fig. 6 shows the matching results for different
thresholds δ. It shows, that the increase of false matches (red,
dashed line) for increasing thresholds is about the same for
bottom-up and top-down matching, whereas the increase of
correct matches (blue, solid line) is steeper for the top-down
matching. That means, more correct matches are obtained in
top-down mode.

To illustrate the correspondence between false and correct
matches in more detail, Fig. 7 displays the correct matches
depending on the number of false matches. This figure is
similar to a ROC (receiver operating characteristic) curve, but
note that here the axes denote numbers of matches instead of
ratios. This is sufficient here, because in contrast to recognition
tasks, where the ratio of correct matches is important, we are
not interested in detecting all possible matches; some matches
are sufficient to close the loop. However, a higher detection
rate is still preferable, because it speeds up the loop closing
process and makes it more stable.

We expected the top-down matching to outperform the
bottom-up matching. Interestingly, this was not always the
case. For low thresholds which accept only very few or no
false detections at all, the bottom-up matching showed to be

better and provided more correct matches. The turning point
is between 8 and 15 false matches, where both bottom-up
and top-down matching perform equally. For higher thresholds
which accept more false matches, the top-down matching out-
performed the bottom-up matching, resulting in a considerably
higher number of correct matches: for 50 false matches, the
bottom-up matching detected 183 correct matches whereas the
top-down matching achieved 261 correct matches, which is an
increase of 42%.

Note that this number of false ROI matches is not the
number of false landmark matches which is reported to
SLAM. First, several of the matched ROIs belong to the
same landmark, since each ROI from an expected landmark is
matched to current ROIs. For example, the 50 false matches
of the top-down matching belonged to only 5 different ROI-
landmarks with 10 matches on average and the 261 correct
matches belonged to 9 ROI-landmarks with 29 matches on
average. Since there are usually considerably more matches
from correctly matching landmarks then from not-matching
landmarks, the number of matching ROIs per landmark is an
additional hint whether a landmark is redetected. We plan to
consider this for future work. Second, since we additionally
use the sift matching of the Harris corners, we are able to get
rid of almost all of the remaining false ROI-landmark matches.
In this example, only one Harris-landmark was classified
wrongly with the top-down matching. Interestingly, this false
match does not result from a false ROI match but from a
wrong association of a Harris corner in the top-right corner of
a ROI to one in the bottom-right corner.

To investigate the difference between the cases in which the
bottom-up matching performed better and the ones in which
top-down matching performed better, we had a closer look
at the matches. It turned out that “easy” matches are better
redetected with bottom-up matching. Easy matches are those
in which ROIs are seen under almost the same conditions (i.e.
from almost the same viewpoint and under almost the same
lightning conditions) as when they were detected the first time.
One example of such an easy match is displayed in Fig. 8, left.
More difficult matches are better redetected with top-down
matching. In some of these examples, the ROI is seen from
a quite different viewpoint as the example in Fig. 8, right.
These examples are of course more interesting, since usually
the robot does not face a landmark from exactly the same
position as before, so a viewpoint tolerance is necessary.

Since the matches in tracking situations are usually easy
matches, we suggest to use the bottom-up matching in the
feature tracker and top-down matching in the loop closer.

VIII. CONCLUSIONS

In this paper, we have presented a method to improve the
loop closing behaviour for visual SLAM. The visual attention
system, which detects regions of interest in a frame, is tuned
in a top-down manner to search for expected landmarks.
Whereas in easy matching situations the bottom-up matching
is preferable, the top-down matching outperforms the bottom-
up approach clearly in difficult matching situations: especially
when the viewpoint changes, the top-down matching enables a
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Fig. 6. Correct and false ROI matches for bottom-up (top) and top-down
matching (bottom) depending on the matching threshold δ.

Fig. 7. Correct matches for bottom-up and top-down matching depending
on the error rate: For a low number of false detections, bottom-up matching
results in more correct matches. If more false matches are acceptable, top-
down matching provides more correct matches.

more stable redetection with a considerably higher amount of
correct matches. Remaining false detections are removed with
an additional SIFT matching of Harris corners. This makes the
method useful for loop closing situations. In future work, we
plan to make the matching even more robust by considering the
matching stability of features over time and the constellation
of landmarks to each other within frames. Another topic of
research will be to investigate the limits of the method, i.e.,
to check how strongly the viewpoint may differ to still enable
redetection.
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