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Abstract. Visual attention regions are useful for many applications in
the field of computer vision and robotics. Here, we introduce an appli-
cation to simultaneous robot localization and mapping. A biologically
motivated attention system finds regions of interest which serve as vi-
sual landmarks for the robot. The regions are tracked and matched over
consecutive frames to build stable landmarks and to estimate the 3D
position of the landmarks in the environment. Matching of current land-
marks to database entries enables loop closing and global localization.
Additionally, the system is equipped with an active camera control, which
supports the system with a tracking, a re-detection, and an exploration
behaviour. We present experiments which show the applicability of the
system in a real-world scenario. A comparison between the system oper-
ating in active and in passive mode shows the advantage of active camera
control: we achieve a better distribution of landmarks as well as a faster
and more reliable loop closing.

1 Introduction

In the field of robotics, visual SLAM (Simultaneous Localization And Mapping)
has recently been a topic of much research [7, 3, 15, 18, 16, 4]. The task is to build
a map of the environment and to simultaneously stay localized within the map.
In contrast to common laser-based approaches, visual SLAM aims at solving the
problem only based on camera data. The map consists of landmarks and their
relative position to each other and to the robot. It is not intended as reference
for a human but as internal representation of the environment for the robot.

A key competence in visual SLAM is to choose useful visual landmarks which
are easy to track, stable over several frames, and easily re-detectable when re-
turning to a previously visited location. This loop closing is one of the most
important problems in SLAM since it decreases accumulated errors. Further-
more, there should be a limited number of landmarks since the complexity of
SLAM typically is a function of the number of landmarks in the map. On the
other hand, landmarks should be distributed over the environment.

Often, the landmarks are selected by a human expert or the kind of land-
mark is determined in advance, e.g., ceiling lights [28] or Harris-Laplace corners
[18]. As pointed out by [27], there is a need for methods which enable a robot
to choose landmarks autonomously. A good method should pick the landmarks



which are best suitable for the current situation. An adequate method to find
landmarks autonomously depending on the current surrounding are visual at-
tention systems [31, 17, 10]. They select regions that “pop out” in a scene due
to strong contrasts and uniqueness, as the famous black sheep in a white herd.
The advantage of these methods is that they determine globally which regions
in the image discriminate instead of locally detecting predefined properties.

In this paper, we present a visual SLAM system based on an attentional
landmark detector. Regions of interest (ROIs) are detected by the attention
system VOCUS [10], and are tracked and matched over consecutive frames to
build stable landmarks. The 3D position of the landmarks in the environment is
estimated by structure from motion and the landmarks are integrated into the
map. When the robot returns to an already visited location, this loop closing is
detected by matching current landmarks to database entries. This enables the
updating of the current robot position as well as the other landmark entries in the
map. Additionally, active camera control improves the quality and distribution
of detected landmarks with three behaviours: a redetection behaviour actively
searches for expected landmarks to support loop-closing. A tracking behaviour
identifies the most promising landmarks and prevents them from moving out of
the field of view. Finally, an exploration behaviour investigates regions with no
landmarks, leading to a more uniform landmark distribution.

The applicability of the system in a real-world scenario is shown in real-
world experiments in an office environment. The advantages of the active vs.
the passive camera control are shown by comparing the system performance for
both operating modes.

2 Related Work

In robotics, SLAM (Simultaneous localization and mapping) has been a topic
of significant interest over the last decade [8, 9, 29]. The usual approach in these
systems is to use range sensors like laser scanners. As mentioned in the intro-
duction, there has recently been large interest within the robotics community to
solve the SLAM problem with cameras as sensors, since cameras are low-cost,
low-energy and light-weight sensors which might be used in many applications
where laser scanners are too expensive or too heavy [6, 15, 18, 16, 4]. There is also
interest in the computer vision community for visual SLAM systems, since the
techniques may equally be applied to hand-held cameras [7, 3].

Concerning visual attention systems, there have been many attention systems
developed during the last two decades [17, 31, 26, 2, 10]. They are all based on
principles of visual attention in the human visual system and adopt many of their
ideas from psychological theories, like the feature integration theory [30] and
the Guided Search model [34]. Most systems focus on bottom-up computations,
that means they consider only image-based information to compute the saliency
regions. Recently, there have been some systems which are able to include top-
down cues, that means they are able to search for a object of interest in a scene
[21, 11, 10]. Here, we use the attention system VOCUS [11, 10], which is able to



perform visual search and has the additional advantage that it is capable to
operate in real-time [14].

Although attention methods are well suited for selecting landmark candi-
dates, the application of attention systems to landmark selection has rarely been
studied. Nickerson et al. detect landmarks in hand-coded maps [23], Ouerhani et
al. built a topological map based on attentional landmarks [24], and Siagian and
Itti use attentional landmarks in combination with the gist of a scene for outdoor
Monte-Carlo Localization [25]. The only approach we are aware of which uses an
approach similar to a visual attention system for landmark detection for SLAM,
is presented in [22]. They use a saliency measure based on entropy to define
important regions in the environment primarily for the loop closing detection in
SLAM. However, the map itself is built using a laser scanner.

The idea of active sensing is not new [1], and has been extensively investigated
for robot exploration. However, in the field of visual SLAM, most approaches use
static cameras. Probably the most advanced work in the field of active camera
control for visual SLAM is presented by the group around Davison. In [5, 6]
they present a robotic system, which chooses landmarks for tracking which best
improve the position knowledge of the system. In more recent work [32, 3], they
apply their visual SLAM approach to a hand-held camera. Active movements
are done by the user, according to instructions from user-interface [32], or they
use the active approach to choose the best landmarks from the current scene
without controlling the camera [3].

3 System Overview

The visual SLAM architecture (Fig. 1) consists of a robot which provides camera
images and odometry information, a feature detector which finds regions of inter-
est (ROIs) in the images, a feature tracker which tracks ROIs over several frames
and builds landmarks, a triangulator which identifies useful landmarks, a SLAM
module which builds a map of the environment, a loop closer which matches cur-
rent ROIs to the database, and a gaze control module which determines where
to direct the camera to.

When a new frame from the camera is available, it is provided to the feature
detector. This module finds ROIs based on the visual attention system VOCUS
and Harris-Laplace corners inside the ROIs. Next, the features are provided to
the feature tracker which stores the last n frames, performs matching of ROIs
and Harris-Laplace corners in these frames and creates landmarks. The purpose
of this buffer is to identify features which are stable over several frames and
have enough parallax information for 3D initialization. These computations are
performed by the triangulator. Selected landmarks are stored in a database and
provided to the SLAM module which computes an estimate of the position of
landmarks and integrates the position estimate into the map (details to SLAM
module in [18]).

The task of the loop closer is to detect if a scene has been seen before.
The features from the current frame are compared with the features from the



Fig. 1. The visual SLAM system builds a map based on image data and odometry

landmarks in the database. To narrow down the search space, the SLAM module
provides the loop closer with expected landmark positions. Only landmarks that
should be currently visible are considered for matching. Finally, the gaze control
module controls the camera actively. It decides whether to actively look for
predicted landmarks, to track currently seen landmarks, or to explore unseen
areas. It computes a new camera position which is provided to the robot.

4 Feature Selection

The feature selection is based on two different kinds of features: attentional ROIs
and Harris-Laplace corners. The attentional ROIs focus the processing on salient
image regions which are thereby well redetectable. Harris-Laplace corners on the
other hand provide well-localized points which enables a precise depth estimation
when performing structure from motion. Additionally, the combination of two
kinds of features makes the matching of regions for loop closing more stable. At
the moment, we are investigating ways to use only the attention regions, which
would simplify and speed up the system.

ROI Detection: Regions of interest (ROIs) are detected with the attention sys-
tem VOCUS (Visual Object detection with a CompUtational attention System)
[10] (Fig. 2). It consists of a bottom-up part similar to [17], and a top-down part
enabling goal-directed search; global saliency is determined from both cues.

The bottom-up part detects salient image regions by computing image con-
trasts and uniqueness of a feature. The feature computations for the features
intensity, orientation, and color are performed on 3 different scales with image
pyramids. The feature intensity is computed by center-surround mechanisms; on-
off and off-on contrasts are computed separately. After summing up the scales,
this yields 2 intensity maps. Similarly, 4 orientation maps (0 ◦, 45 ◦, 90 ◦, 135 ◦)
are computed by Gabor filters and 4 color maps (green, blue, red, yellow) which
highlight salient regions of a certain color. Each feature map i is weighted with
a uniqueness weight W(i) = i/

√
m, where m is the number of local maxima that

exceed a threshold. This promotes pop-out features. The maps are summed up



Feature vector v

intensity on/off 0.16
intensity off/on 6.54
orientation 0 ◦ 2.06
orientation 45 ◦ 3.17
orientation 90 ◦ 3.06
orientation 135 ◦ 2.95
color green 3.14
color blue 1.35
color red 1.36
color yellow 0.93
conspicuity I 3.30
conspicuity O 2.60
conspicuity C 1.70

Fig. 2. Left: the visual attention system VOCUS. The red arrow points to the most
salient region (MSR). Right: feature vector for the MSR.

to 3 conspicuity maps I (intensity), O (orientation) and C (color) and combined
to form the bottom-up saliency map Sbu (cf. Fig. 3, top left):

Sbu = W(I) +W(O) +W(C)

If no top-down information is available, Sbu corresponds to the global saliency
map S. In S, the most salient regions (MSRs) are determined: first the local
maxima in S (seeds) are found and second all neighboring pixels over a saliency
threshold (here: 25% of the seed) are detected recursively with region growing.
A region of interest (ROI) is defined as height ∗ width of the MSR. For each
MSR, a feature vector v with (2 + 4 + 4 + 3 = 13) entries (one for each fea-
ture and conspicuity map) is determined. The feature value vi for map i is the
ratio of the mean saliency in the target region m(MSR) and in the background
m(image−MSR): vi = m(MSR)/m(image−MSR). This computation does not only
consider which features are the strongest in the target region, it also regards
which features separate the region best from the rest of the image. Fig. 2 right
shows a feature vector which corresponds to the MSR of the image on the left.
It tells us, e.g., that the region is dark on a bright background (off-on intensity).

In top-down mode, VOCUS aims to detect a target, i.e., input to the system
is the image and some target information, provided as feature vector v. In search
mode, VOCUS multiplies the feature and conspicuity maps with the weights of
v. The resulting maps are summed up, yielding the top-down saliency map Std

(cf. Fig. 3, bottom left). Finally, Sbu and Std are combined by:

S = (1− t) ∗ Sbu + t ∗ Std,

where t determines the contributions of bottom-up and top-down (details
in [10]). Here we use t=0, since the experiments are restricted to bottom-up



Fig. 3. Saliency maps (top, left: Sbu, bottom, left: Std) and MSRs in a loop closing
example: Top: scene at beginning of sequence (all MSRs shown). Bottom: revisited
scene, 592 frames later, searching for the black waste bin with top-down attention
(only most salient MSR shown).

mode. In [12] we show how top-down information can be included into the loop
closer of the visual SLAM system: if a previously found landmark is expected
to be visible in the current frame, the feature vector of the landmark is used as
target information for top-down search. A matching procedure, similar to the
one described in the next section, is used to determine whether the expected
landmark was actually redetected.

The feature computations are efficiently performed on integral images [33].
After once creating an integral image in linear time with respect to the number
of pixels, a rectangular feature value of arbitrary size is computed with only 4
references. This results in a fast computation (50ms for 400 × 300 pixel image,
2.8GHz) that enables real-time performance (details in [14]).

Harris-Laplace corners: To detect features with high position stability inside
the ROIs, we used the Harris-Laplace feature detector [20] – an extension of the
Harris corner detector to Laplacian pyramids which enables scale invariance.
This resulted in a few (average 1.6) points per ROI (cf. Fig. 4 bottom right).
To allow matching of points, a SIFT descriptor is computed for each detected
corner [19].

5 Matching and Tracking of Features

Feature matching is performed in the feature tracker (for creating landmarks)
and in the loop closer (to detect if this landmark has been seen before). The



matching is based on two criteria: proximity and similarity. First, the features in
the new frame have to be close enough to the predicted position. Secondly, the
similarity of the features is determined. This is done differently for attentional
ROIs and for Harris-Laplace corners: the matching of Harris-Laplace corners is
based on the SIFT descriptor by determining the Euclidean distance between
the descriptors. When the distance is below a threshold, the points match.

For the attentional ROIs, we consider the size of the ROIs and the similar-
ity of the feature values. We set the allowed deviation in width and height of
the ROI to 10 pixels to allow some variations. This is required, because first,
the ROIs might differ slightly in shape depending on image noise and illumina-
tion variations and, second, seeing a region in the environment from different
viewpoints changes the size of the region in the image.

The similarity of two feature vectors v and w is determined by

d(v, w) =

√√√√ v11w11

∑
i=1,2

(vi − wi)
2

+ v12w12

∑
i=3,..,6

(vi − wi)
2

+ v13w13

∑
i=7,..,10

(vi − wi)
2

v11w11 + v12w12 + v13w13
.

The smaller the distance d(v, w), the higher the similarity of the ROIs. If
d(v,w) is below a certain threshold δ, the ROIs match (see sec. 7 for the choice
of δ). The computation is similar to the Euclidean distance of the vectors, but it
treats the feature map values (v1,..,v10) differently than the conspicuity map
values (v11,..., v13). The reason is as follows: the conspicuity values provide
information about how important the respective feature maps are. For example,
a low value for the color conspicuity map v13 means the values of the color
feature maps (v7,...,v10) are not discriminative and should be assigned less weight
than the other values. Therefore, we use the conspicuity values to weight the
feature values. We found out that this matching procedure outperforms the
simple Euclidean distance of the feature vectors.

If the distance d is below a certain threshold δ, the ROIs match. We use
different values for tracking (δ = 3.0) and loop closing (δ = 1.7). When tracking,
the estimated position from odometry is usually accurate, and we can afford a
more relaxed threshold than for loop closing where the position estimation is
less accurate. In [13], we investigated the choice of the threshold in detail.

In the feature tracker, the features are tracked over several frames. We store
the last n frames in a buffer (here: n = 30). This buffer provides a way to
determine which landmarks are stable over time and thus good candidates to
use in the map. The output from the buffer is thus delayed by n frames but in
return quality assessment can be utilized before using the data. The matching
is performed not only between consecutive frames, but allows for gaps of several
(here: 2) frames where a ROI is not found. We call frames which are at most 3
frames behind the current frame close frames.

Creating Landmarks: A landmark is a list of tracked features. Features can be
ROIs (ROI-landmark) or Harris-Laplace corners (Harris-landmark). The length
of a landmark is the number of elements in the list, which is equivalent to the



−100 −50 0 50 100
0

2

4

6

8

10

12

U
se

fu
ln

es
s

Angle [deg] in the possible field of view

The usefulness of landmark as a function of angle

Fig. 4. Left: the three camera behaviours. Right top: usefulness function w. Bottom:
example image with two ROI-landmarks and several Harris-landmarks. The landmarks
of the left ROI are more useful, since they are not in the center of the field of view.

number of frames the feature was detected in. The procedure to create land-
marks is the following: when a new frame comes into the buffer, each of its ROIs
is matched to all existing landmarks of close frames. If the matching is successful,
the new ROI is appended to the end of the best matching landmark. Addition-
ally, the ROIs that did not match any existing landmarks are matched to the
unmatched ROIs of the previous frame. If two ROIs match, a new landmark is
created consisting of these two ROIs. At the end of the buffer, we consider the
length of the resulting landmarks and filter out too short ones (here ≤ 5).

6 Active Gaze Control

The active gaze control is divided into three behaviours: a) redetection of land-
marks to close loops, b) tracking of landmarks, and c) exploration of unknown
areas. The strategy to decide which behaviour to choose is as follows (Fig. 3):
Redetection has the highest priority, but it is only chosen if the position uncer-
tainty is over a certain value. If the uncertainty is low or if there is no expected
landmark for redetection, the tracking behaviour is activated. Tracking is only
performed if there are not yet enough landmarks in this area. As soon as a certain
amount of landmarks is obtained in the field of view, the exploration behaviour
takes over. It moves the camera to an area with no detected landmarks. In the
following we describe the behaviours in more detail.

Redetection: The redetection of landmarks is performed if the current robot
pose uncertainty is high and there are old landmarks that are or could be made
visible through active camera control. This information is provided by the SLAM
module. If there is an expected landmark and the robot pose uncertainty is high,
the camera is moved to focus on the expected landmark. If we have more than



one expected landmark, we have to choose the potentially most useful landmark
for redetection. Here, we consider only the length of the current ROI-landmark:
the longer this landmark, the better. The new camera position is maintained
until a match is performed or until a waiting threshold is exceeded.

Tracking: Tracking a landmark means to follow it with the camera so that it
stays longer within the field of view. This enables better triangulation results.
First, one of the ROIs in the current frame has to be chosen for tracking. There
are several aspects which make a landmark useful for tracking. First, the length
of ROI- and Harris-landmarks are important factors for the usefulness of a land-
mark, since longer landmarks are more likely to be triangulated soon. Second,
an important factor is the horizontal angle of the landmark: points in the di-
rection of motion result in a very small baseline over several frames and result
often in poor triangulation results. Points at the side usually give much better
triangulation results, but on the other hand they are more likely to move outside
the image borders soon so that tracking is lost.

Therefore, we determine the usefulness of a landmark by first considering the
length of the ROI-landmark, second the angle of the landmark in the potential
field of view, and third the length of the Harris-landmark. The length of the ROI-
landmarks is considered by sorting out landmarks below a certain size (here: 5).
The usefulness of the angle of a ROI is determined by the following function:

w = (k1 (1.0 + cos(4 (α− 180))) + k2 (1.0 + cos(2α))) (1)

where α is the angle and k1 = 5 and k2 = 1. The function is displayed in
Fig. 4 (top right). The usefulness is highest for points at α = 45◦ and α = −45◦

and lowest at α = 0◦ and α = ± 90◦. Since points which are at the border of the
field of view are likely to move out of view very soon, they are considered even
worse than points in the center.

The usefulness U of a Harris-landmark is then determined by: U = w
√

l,
where l is the length of the landmark. In Fig. 4, we demonstrate the effect
of U . The bottom-right image shows two identical regions on the wall, both
are detected by VOCUS and have several Harris-Laplace corners which were
detected inside the ROI. The main difference between the landmarks is that one
of them is almost in the center of the image and the other one at the border (the
camera points straight ahead). The values w and U are higher for the landmark
on the left. This leads to choosing the left landmark for tracking since it is likely
that it provides a better baseline for triangulation.

After determining the most useful landmark for tracking, the camera is moved
into the direction of the landmark. It is moved slowly (here 0.1 radians per step),
since this turned out to be more successful than moving it quickly to center the
landmark. This corresponds to the pursuit eye movements of humans when fol-
lowing a target. On the other hand, the quick camera motion for the redetection
and exploration behaviour corresponds to saccades (quick eye movements) in
human viewing behaviour, which are performed when searching for a target or
exploring a scene. The tracking ends when the landmark is not visible any more



(because it left the field of view or because the matching failed) or when the
landmark was successfully triangulated.

Exploration: In exploration mode, the camera is moved to an area in the possible
field of view where the map contains no landmarks. To avoid too many camera
movements and to enable building of landmarks over several frames, the camera
focuses one region for a while (here 10 frames). As soon as a landmark for
tracking is found, the system switches automatically the behaviour.

7 Experiments and Results

To illustrate the performance of the robot equipped with the visual SLAM sys-
tem, the robot drove a loop within our office environment. It drove through a
room, entered the corridor, entered the same room through a different door and
closed a loop. During this trajectory, it built a map of the environment. Remem-
ber that in visual SLAM systems, the map consists of visual landmarks, that
means the green and blue dots in Fig. 5 form the maps. In order to show the
advantages of active gaze control, we let the robot drive the same trajectory
once in passive and once in active mode. The trajectories are displayed in Fig. 5
((a): passive. (e): active). Although the loop is very small compared to some
other SLAM-scenarios, it is sufficient here to show that active camera control
outperforms the passive approach. However, applying the system to scenarios
with larger loops is an interesting topic for future work.

The second column shows a snapshot after driving about 2m. In passive
mode, many landmarks are extracted in the table area, but nothing is found
in the area of the bookshelf (b). In contrast to this, the active mode enables a
better distribution of landmarks: as soon as 5 landmarks are triangulated in the
table area, the exploration behaviour is activated, the camera is moved to the
left. There, the system finds a ROI to track and keeps fixating the region until
several landmarks are triangulated in the bookshelf area (f).

The next column shows the situation when the robot enters the room again
through the second door. The robot faces the couch area and has in passive
mode no chance to recognize any existing landmarks although they are close
(c). On the other hand, in active mode there are expected landmarks within the
possible field of view as indicated by the blue line in (g). The camera is directed
to the table area and matches current ROIs to expected landmarks. Successful
matches are displayed as big red squares (g). Two examples of these matches
are displayed in Fig. 6. So, in active mode loop closing is already performed at
a stage where this is not possible in passive mode, and a decrease of uncertainty
is achieved earlier.

Finally, the end of the sequence is displayed in the last column. Here, the
robot has achieved a position, in which matching is also possible in passive
mode (d). On the other hand, in active mode the robot has already started
to additionally match the landmarks in the bookshelf area (h). Altogether, by
active gaze control we achieve a better distribution of landmarks and a faster
and more reliable loop closing.



(a) trajectory pas-
sive

(b) triangulating (c) re-entering room (d) final position

(e) trajectory ac-
tive

(f) active exploration (g) active redetection (h) final position

Fig. 5. Comparison of visual SLAM with passive (top) vs active (bottom) camera
control. Two robots in one image correspond to the robot at the beginning and at the
end of the buffer, i.e., the robot further ahead on the path is the real robot, the one
behind is the virtual robot position 30 frames later. Currently visible landmarks are
displayed as cyan dots, currently not visible landmarks in green. Landmarks matched
to database entries are larger and displayed in red (d,g,h). When the robot tries to
redetect a landmark, the estimated direction of the landmark is displayed as a blue
line (g).

8 Conclusion

In this paper, we have presented a visual SLAM system based on an attentional
landmark detector. The attentional regions are especially useful landmarks for
tracking and redetection. Three behaviours for active camera control help to
handle some of the problems of visual SLAM: landmarks with a better baseline
are preferred and a better distribution of landmarks is achieved.

Needless to say, there is a lot which could be done to improve the perfor-
mance of the system. The redetection rate of landmarks could be improved by
considering not only one expected landmark for matching, but all in the current
field of view. Monitoring redetection over several frames is another possibility
to exclude false matches. Extending the system to larger environment is also
not trivial, since the complexity of the SLAM system grows with the number of
landmarks. Removing landmarks which are not redetectable from the map would



Fig. 6. Two matches of ROIs (rectangles) and Harris-Laplace points (crosses) between
a current frame (top) and a scene from the database (bottom).

help to keep the number of landmarks low. Working with hierarchical maps as
in [3], in which many local maps are built which do not exceed a certain size, is
another possibility to cope with large environments.
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