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Abstract

In this paper, we present a new visual attention system for robotic applications
capable of processing data from different sensor modes simultaneously. The con-
sideration of several sensor modalities is an obvious approach to regard a variety
of object properties. Nevertheless, conventional attention systems only consider the
processing of camera images. We present a bimodal system that processes two sen-
sor modes simultaneously and is easily extensible to additional modes. In contrast
to other systems, the input data to our system is provided by a bimodal 3D laser
scanner, mounted on top of an autonomous mobile robot. In a single 3D scan pass,
the scanner yields range as well as reflectance data. Both data modes are illumina-
tion independent, yielding a robust approach that enables all day operation. Data
from both laser modes are fed into our attention system built on principles of one of
the standard models of visual attention by Koch & Ullman. The system computes
conspicuities of both modes in parallel and fuses them into one saliency map. The
focus of attention is directed to the most salient points in this map sequentially.
We present results on recorded scans of indoor and outdoor scenes showing the re-
spective advantages of the sensor modalities enabling the mode-specific detection
of different object properties. Furthermore, we show as an application of the atten-
tion system the recognition of objects for building semantic 3D maps of the robot’s
environment.
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1 Introduction

Human visual attention scans a scene sequentially by directing a focus of at-
tention to regions of potential interest. This helps identify relevant data and
thus efficiently select information from the broad sensory input. These effects
are even more desired in computational applications like image processing and
robotics, since the interpretation of the complex sensor data is often compu-
tationally expensive. One approach to restrict the amount of processing is
to concentrate on regions of potential interest, detected by a computational
attention system.

The visual attention model by Koch and Ullman [1] is a popular basis for
many computational attention systems [2–4]. This model is related to the
psychological work of Treisman [5], the so-called “feature integration theory”.
In the Koch & Ullman model, conspicuities concerning different features like
intensity, color, and orientation are determined in parallel and fused into a
single saliency map that topographically codes salient locations in a visual
scene. A winner-take-all network finds the most salient point in this map.
Finally, the focus of attention is directed to this point and an inhibition of
return mechanism enables directing the focus to the next salient location.

In humans, eye movements are not only influenced by vision but also by other
senses, e.g., the gaze may be directed into the direction of a sound, a smell
or even a touch, and the fusion of different cues competing for attention is an
essential part of human attention. In robotics, attentional mechanisms might
also profit from additional sensor modalities, since they yield a richer set of
data that enable the detection of more object properties, resulting in more
useful and interesting foci of attention. Nevertheless, existing attention models
usually concentrate on camera data.

This paper presents a new approach to fuse salient regions of different sensor
modes. The modes provided to the attention system are depth and reflection
data acquired by a 3D laser scanner in a single 3D scan pass [6]. The attention
system takes the data from both laser modes as input. Both modes are searched
for saliencies according to principles of the Koch & Ullman model [1]: saliencies
of different features, here intensity and orientation, are computed in parallel
and fused into one map. As claimed above, the saliencies of the two laser modes
correspond to different object properties: saliencies in the range mode imply
a depth contrast whereas saliencies in the reflection mode imply a change of
object materials. The saliencies of the two modes compete for attention. This
is done by weighting the data according to their importance (given by the
uniqueness of the features) and fusing them into a single saliency map. The
Focus of Attention (FOA) is directed to the most salient region in this map.
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Since the data from the different sensor modalities result from the same mea-
surement, we know exactly which reflection value belongs to which range value.
There is no need to establish correspondences and to perform costly calibra-
tion by complex algorithms. The laser data are illumination independent, i.e.,
the data is the same in sunshine as in complete darkness and no reflection
artifacts occur. This yields a robust approach that enables all day operation.

We demonstrate the applicability of the laser data for attentional mechanisms
on real-world indoor and outdoor scenes and elaborate on the different advan-
tages of range data and reflectance values. It is shown that these data modes
complement each other: contrasts in range and in intensity need not neces-
sarily correspond for one scene element, i.e., an object of similar material as
its background may not be detected in the reflection image, but in the range
data. On the other hand, a flat object – e.g. a poster on a wall or a letter
on a desk – that could be distinguished in the reflection image, will likely not
be detected in the range data. The results indicate that the combination of
different modes enables considering a larger variety of object properties.

Besides investigating the strengths of the different laser modes, we compare
the performance of attentional mechanisms on laser data with that of classical
camera based approaches. For that purpose, we apply the system of Itti et
al. [2] to camera images taken at the same position as the laser scans. The
comparison reveals the respective advantages of the two kinds of sensors.

Finally, we present an application of our system in robotics: the recognition of
objects for building semantically labeled 3D maps. The salient regions serve
as input for a fast classifier, recognizing previously learned objects in these
regions. Restricting classification to regions of interest enables the detection
of objects in order of their relevance and speeds up the classification process
significantly with a time saving that increases proportionally with the number
of object classes. The autonomous mobile robot Kurt3D registers successive
3D scans to form a coherent 3D representation of an indoor or outdoor scene
via fast scan matching algorithms. The semantic labeling of objects within
these compound maps based on the output of the combined attention and
classification system is ongoing work.

The remainder of this article is structured as follows. We start with a brief
overview of the state of the art followed by a description of the bimodal 3D
laser scanner. The next section introduces the Bimodal Laser-Based Attention
System BILAS. Thereafter, we present our results in detail and describe the
application scenario of object recognition. Finally, we summarize and give an
outlook on future work.
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2 State of the Art

2.1 Visual attention models

Many computational models of human visual attention are based on psycho-
logical and neuro-biological findings. The most relevant psychological theories
include the work of Treisman et al., known as feature-integration theory [5],
and the guided search model by Wolfe [7]. These theories introduced the ideas
of several feature maps locally coding basic features and a master map of
attention integrating them. They also describe the so-called pop-out effect,
i.e., the fast detection of targets defined by a single feature. This enables
for instance the immediate detection of a person wearing a red suit between
many people wearing black ones. These psychological theories are supported
by neuro-biological evidence indicating that different features as color, orien-
tation and motion are processed in parallel in different brain areas [8].

The first explicit computational architecture for controlling visual attention
was proposed by Koch and Ullman [1]. It already contains the main prop-
erties of many current models of visual attention, including parallel feature
computation, a saliency map, a winner-take-all network, and an inhibition
of return mechanism. Current systems based on this model include the well-
known model of Itti et al. [2]. Additional systems are described in [4,9,3]. All
these systems use classical linear filter operations for feature extraction, what
makes them especially useful for the application to real-world scenes. Another
approach is provided by models consisting of a pyramidal neural processing
architecture, e.g., the selective tuning model by Tsotsos et al. [10].

Typically, these models use features like intensity, color, and orientation.
Depth is rarely considered although it plays a special role in deploying atten-
tion. It is not clear from the literature whether depth is simply a feature, like
color or motion, or something else. Definitely, it has some unusual properties
distinguishing it from other features: if one of the dimensions in a conjunctive
search is depth, a second feature can be searched in parallel [11], a property
that does not exist for the other features. Two groups that include depth are
Backer et al. [12] and Maki et al. [13]. They obtain depth data from stereo
vision and regard it as another feature. The data obtained from stereo vision
is usually not very accurate and contains large regions without depth infor-
mation. This may justify the integration of the depth values as a feature in
the above mentioned models; in our approach the range data come from a
special sensor and yield dense and accurate range information, so we regard
depth as an additional sensor mode. Ouerhani et al. [14] suggest the use of
a 3D range camera to get depth information. They also regard depth as an
additional feature.
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Applications of attentional mechanisms in computer vision can be found, e.g.,
in the area of object recognition [15,16] or in robotics [17–20]. In the field
of object recognition, Pessoa and Exel combine attention and classification
by focusing attention on discriminative parts of pre-segmented objects [15].
Miau, Papageorgiou and Itti detect pedestrians in attentionally focused image
regions using a support vector machine algorithm [16]; however, their approach
is computationally very expensive and lacks real-time abilities.

In robotics, attentional mechanisms are often used to direct a camera to in-
teresting points in the environment or to steer the robot to these regions. For
example, Tsotsos et al. present a robot for disabled children that detects toys
by the help of attention, moves to a toy and grasps it [17] and Breazeal intro-
duces a robot that shall look at people or toys [21]. Bollmann et al. present
a robot that uses attention to play at dominoes [18]. In this kind of applica-
tions it depends on the environment and the objects whether the introduced
bottom-up method of attention is sufficient. If the environment is crowded and
the objects to be grasped are not extremely salient by themselves, top-down
information would be needed to enable the system to focus on the desired
objects. Although a promising approach, this has rarely been considered in
existing models so far.

Another application scenario is the detection of landmarks for localization.
Especially in outdoor environments and open areas, the standard methods for
localization like matching 2D laser range and sonar scans are likely to fail. In-
stead, localization by detection of visual landmarks with a known position can
be used. Attentional mechanisms can facilitate the search of landmarks during
operation by selecting interesting regions in the sensor data. By focusing on
these regions and comparing the candidates with trained landmarks the most
probable location can be determined. A project that follows this approach is
the ARK project [20]. It relies on hand-coded maps, including the locations
of known static obstacles as well as the locations of natural visual landmarks.

All of these approaches are based on cameras as input devices for the atten-
tional systems. The only approach the authors are aware of which combines
the use of laser data with attentional mechanisms is described in [20]. In
contrast to our work, the attentional mechanisms are only applied to the cam-
era data and a single laser beam is merely used to measure the distance to
detected objects. Instead, the approach presented in this paper is to apply
attentional mechanisms to the bimodal data of a 3D laser scanner. According
to the knowledge of the authors, the approach of combining several sensor
modalities for attentional mechanisms has not been considered before.
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2.2 Laser scanners

Laser scanners are common sensors in robotics. They usually retrieve 2D range
data of their environment for a single horizontal plane, and use it to perform
tasks like obstacle avoidance and localization. Recently, laser scanners have
been employed to retrieve 3D information which is usually used to build 3D
volumetric representations of environments [6].

There are different approaches to get 3D data from a laser scanner. Recently,
some groups have developed methods to build 3D volumetric representations
of environments using 2D laser range finders: several approaches [22–25] com-
bine two 2D laser scanners for acquiring 3D data. One scanner is mounted
horizontally, one vertically. Since the vertical scanner is not able to scan lat-
eral surfaces of objects, Zhao et al. use two additional vertically mounted 2D
scanners shifted by 45◦ to reduce occlusions [25]. The horizontal scanner is em-
ployed to compute the robot pose. The precision of 3D data points depends on
that pose and on the precision of the scanners. In all of these approaches the
robots have difficulties to navigate around 3D obstacles with jutting edges.
These obstacles are only detected while passing them.

Another option to obtain 3D range data is to use true 3D laser scanners that
are able to generate consistent 3D data points within a single scan [6,26–
29]. The RESOLV project aimed at modeling interiors for virtual reality and
tele-presence [29]. They employed a RIEGL laser range finder. The AVENUE
project develops a robot for modeling urban environments [26,27]. This robot
is equipped with a CYRAX 3D laser scanner. The research group of M. Hebert
reconstructs environments using the expensive Zoller+Fröhlich laser scanner
and aims to build 3D models without initial position estimates, i.e., without
odometry information [28].

The bimodal 3D laser range finder employed for this work [6] is a precise, fast
scanning, reliable, and cost effective multi purpose sensor that acquires range
and reflectance data in a single 3D scan pass. The interpretation of these data
may require exhaustive time resources. In this paper we will describe how
attentional mechanisms can help to deal with this high amount of data by
finding regions of potential interest.
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Fig. 1. Left: The custom 3D range finder mounted on top of the mobile robot
Kurt3D. Right: An office scene imaged with the 3D scanner in remission value
mode, medium resolution (361 × 210 pixels).

3 The Bimodal 3D Laser Scanner

3.1 Rendering Images from Laser Data

For the data acquisition in our experiments, we used a custom 3D laser range
finder (Fig. 1, left). The scanner is based on a commercial SICK 2D laser range
finder. In [30], the custom scanner setup is described in detail. The paper also
describes reconstruction algorithms and their use for robot applications. Here,
we provide only a brief overview of the device.

The scanner works according to the time-of-flight principle: It sends out a
laser beam and measures the returning reflected light. This yields two kinds
of data: The time the laser beam needs to come back gives us the distance of
the scanned object (range data) and the intensity of the reflected light provides
information about the reflection properties of the object (reflection data). This
reflectance measurement is the result of the light measurement by the receiver
diode. It measures the amount of infrared light that is returned from the
object to the scanner and thus describes the surface properties concerning
non-human visible light.

The 2D scanner serially sends out laser beams in one horizontal slice using
a rotating mirror (LIDAR: LIght Detection And Ranging). The scanner is
very fast and precise: the processing time is about 13 ms for a 180◦ scan with
181 measurements and the typical range error is about 1 cm. A 3D scan is
performed by step-rotating the 2D scanner around a horizontal axis, i.e., the
3D scan is obtained by scanning one horizontal slice after the other. The area
of 180◦(h) × 120◦(v) is scanned with different horizontal (181, 361, 721 pts)
and vertical (210, 420 pts) resolutions.
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Fig. 2. Visualized laser data. Left: scene from camera image, middle: visualized depth
data, right: visualized remission data. Depending on the sensor, the presented images
have slightly different extensions, the laser scanner getting a wider angle than the
camera in all directions.

The scanner is able to operate in two data modes. In the default mode, it
returns only the range data in a predefined resolution. In an alternative mode,
it is able to yield the range as well as the reflection data in a single scan pass.
The reflection data can directly be converted into a gray scale intensity image
(Fig. 1, right). The visualization of the depth values from the range data
requires some transformation. The basic approach is to interpret the depth
values as intensity values, representing small depth values as bright intensity
values and large depth values as dark ones. Since close objects are considered
more important for robot applications, we introduced an additional double
proximity bias. Firstly, we consider only objects within a radius of 10m of
the robot’s location. Secondly, we code the depth values by using their square
roots, so pixel p computes from depth value d by:

p =





I − (
√

d/max ∗ I) : d ≤ max

0 : d > max
(1)

with the maximal intensity value I and the maximal distance max = 1000 cm.
This measure leads to a finer distinction of range discontinuities in the vicin-
ity of the robot and works better than a linear function. If the robot works
outdoors and distant objects should be detected, the maximal distance can be
increased. Fig. 2 shows an example of the visualized laser data.

3.2 Laser Data versus Stereo Vision

In current attention systems integrating depth information, the range data is
usually extracted from stereo vision. With today’s available computing power
and advanced stereo algorithms, even real-time stereo vision at frame rate is
possible. But for a number of reasons, stereo vision is not our sensor of choice.

Our 3D scanner’s scan pass (between 1.2 and 15 seconds, with typically 7.5 s) is
slow as compared to the frame rates of CCD cameras. However, for our target
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application, the automatic 3D map building, high frame rates are not needed.
Other possible robotic applications, like 3D obstacle avoidance, would benefit
from a higher frame rate. This could be achieved by employing 3D cameras
which yield range and image data in one snapshot. Such cameras are under
development and about to enter the market. The algorithms developed for the
3D scanner can be applied directly to the data of 3D cameras.

For 3D map building, 3D laser range scanning has some considerable advan-
tages over 3D stereo reconstruction. Firstly, range scanning yields very dense
depth information. Only in rare cases the laser beam may be completely ab-
sorbed or reflected away, resulting in missing data for a few measured points.
On the other hand, most 3D stereo vision algorithms rely on matching grey
level values for finding pixel correspondences. This is often not possible:

• correspondences can only be found in overlapping parts of the stereo images,
so that large image regions yield no depth data at all,

• ambiguous grey values that cannot be disambiguated result in false matches
and

• shading may prevent finding matches at all.

Hence the generated depth maps are sparse, often containing large coherent
regions without depth information.

Secondly, the precision of the depth measurement of a laser range scanner relies
only on the tolerance that its construction foresees. Industry standard scanners
like the SICK scanner that we use have an average depth (Z axis) error of 1 cm.
The precision error of the Z axis measurement in 3D stereo reconstruction is
dependent on a number of parameters, namely the width of the stereo base,
the focal lengths of the lenses, the physical width of the CCD pixel, the object
distance and the precision of the matching algorithm. The error increases by
increased squared object distance, and decreases with increasing focal length
(narrowing the field of view). For small robots like Kurt3D, the width of the
stereo base is limited to small values (≤ 20 cm), resulting in a typical Z axis
error of about 78 cm for objects at the scanner’s maximum ranging distance
of about 8 m (stereo base b = 200 mm, f = 4 mm, distance d = 8000 mm,
pixel width w=0,0098 mm, precision 1 pixel, error = d ∗ (d ∗ w)/(b ∗ f)).

And finally, our 3D laser scanner provides a very large field of view and the
data of the laser scanner are illumination independent. This enables all-day
operation and yields robust data. The named strengths make the 3D laser
scanner the sensor of choice for the acquisition of 3D range and reflectance
data and for the generation of input data for the attention system.
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4 The Bimodal, Laser-Based Attention System (BILAS)

The Bimodal Laser-Based Attention System (BILAS) simulates human eye
movements by generating saccades. In contrast to other systems, data from
different sensor modalities are considered which compete for attention. In-
spired by the psychological work of Treisman and Gelade [5], we determine
conspicuities of different features, intensity and orientations, in a bottom-up,
data-driven manner. The conspicuities are fused into a mode-specific saliency
map which contains the saliencies according to the specific sensor mode. The
saliencies of each mode are weighted according to their importance and fused
into a saliency map. The focus of attention (FOA) is directed to the most
salient point in this map and finally, the region surrounding this point is in-
hibited, allowing the computation of the next FOA. The model graphic in
Fig. 3 illustrates this procedure and the algorithm in Fig. 4 elaborates on the
computational details also described in the following.

The attention system is built on principles of one of the standard models of
visual attention by Koch & Ullman [1] that is used by many computational
attention systems [2,4,3,9]. The implementation of the system is influenced
by the Neuromorphic Vision Toolkit (NVT) by Itti et al. [2] that is publicly
available and can be used for comparative experiments (cf. section 5.3). The
NVT has also been adopted by several other groups for their research on
attention [3,9]. Our system contains several major differences as compared to
the NVT. In the following, we will describe our system in detail emphasizing
the differences between both approaches.

The main difference to existing models is the capability of BILAS to process
data of different sensor modalities simultaneously. All existing models the au-
thors know about concentrate on camera data. In humans, eye movements are
not only influenced by vision but also by other senses and the fusion of differ-
ent cues competing for attention is an essential part of human attention. The
sensor modalities used in this work are depth and reflectance values provided
by the 3D laser scanner. The system computes saliencies for every mode in
parallel and finally fuses them into a single saliency map. The system is easily
extensible in a straightforward way to other sensor modalities. All sensor data
that are representable in a 2D map might be used as input to the system.

The input to the attention system consists of two images representing the data
of the two laser modes depth and reflection. On both images, five different
scales (0–4) are computed by Gaussian pyramids, which successively low-pass
filter and subsample the input image; so scale i + 1 has half the width and
height of scale i. Feature computations on different scales enable the detection
of salient regions with different sizes. In the NVT, 9 scales are used but the
scales 5 to 8 are only used for implementation details (see below) so that our
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Fig. 3. The Bimodal Laser-Based Attention System (BILAS). The images from the
two laser modes “depth” and “reflectance” are computed independently. Saliencies
according to intensity and orientations are determined and fused into a mode-specific
saliency map. After combining both of those maps, the focus of attention is directed
to the most salient region.

approach yields the same performance with fewer scales.
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for each mode i ε {depth, reflectance}
compute 5 scales: s0, ..., s4

compute feature maps:
compute 2 intensity maps Ii, i ε {1, 2}

compute 12 intensity maps Ii,c,s, c ε {2, 3, 4}, s ε {3, 7}
I1,c,s = d(on-off)(c, s)

I2,c,s = d(off-on)(c, s)

add per intensity channel: Ii =
⊕

c,s Ii,c,s

divide intensity maps: Ii = Ii/6
compute 4 orientation maps Oσ, σ ε {0 ◦, 45 ◦, 90 ◦, 135 ◦}

compute 12 orientation maps Os,σ

Os,σ = gabor filter σ applied to s
add per orientation: Oσ =

⊕
s Os,σ

divide orientation maps: Oσ = Oσ/3
compute conspicuity maps:

intensity map I:
get maximum of intensity maps: maxI = max(Ic,s)
weight and add maps: I =

⊕
i w(Ii)

normalize I: I = norm(0,maxI)(I)
orientation map O:

get maximum of orientation maps: maxO = max(Oσ)
weight and add maps: O =

⊕
σ w(Oσ)

normalize O: O = norm(0,maxO)(O)
compute mode-specific saliency map:

get maximum of conspicuity maps:maxC = max(I, O)
weight and add maps: Si = w(I) + w(O)
normalize Si: Si = norm(0,maxC)(Si)

end for each mode
compute global saliency map:

get maximum of Si: maxSi
= max(Sdepth, Sreflectance)

weight and add maps: S = w(Sdepth) + w(Sreflectance)
normalize S: S = norm(0,Si)(S)

repeat until maximum number of FOAs is reached:
find most salient region: find global maximum m in S,

determine salient region r surrounding m with region growing
direct FOA to most salient region r
IOR: inhibit region r in S

end repeat

Fig. 4. Algorithm of the Bimodal Laser-baser Attention System (BILAS)
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4.1 Feature Computations

The features considered for the system are intensity and orientation. The inten-
sity feature maps are created by center-surround mechanisms which compute
the intensity differences between image regions and their surroundings. These
mechanisms simulate cells of the human visual system responding to intensity
contrasts (on-center-off-surround cells and off-center-on-surround cells). The
center c is given by a pixel in one of the scales 2 − 4, the surround s is de-
termined by computing the average of the surrounding pixels for two different
sizes of surrounds with a radius of 3 resp. 7 pixels. According to the human
system, we determine two kinds of center-surround differences: the on-center-
off-surround difference d(on-off), responding strongly to bright regions on a

dark background, and the off-center-on-surround difference d(off-on), respond-

ing strongly to dark regions on a bright background:

d(on-off)(c, s) = c− s, c ε {2, 3, 4}, s ε {3, 7} (2)

d(off-on)(c, s) = s− c, c ε {2, 3, 4}, s ε {3, 7} (3)

This yields 2 × 6 = 12 intensity feature maps. The six maps for each center-
surround variation are summed up by inter-scale addition, i.e. all maps are
resized to scale 2 and then added up pixel by pixel. This yields 2 intensity
maps.

The computations differ from these in the NVT, since we compute on-center-
off-surround and off-center-on-surround differences separately. In the NVT,
these computations are combined by taking the absolute value |c − s|. This
approach is a faster approximation of the above solution but yields some prob-
lems. Firstly, a correct intensity pop-out is not warranted. Imagine an image
with a gray background and white and black objects on it, both producing the
same intensity contrast to the background. If there is only one white object,
but several black ones, the white object pops out in our approach but not
in the NVT (cf. Fig. 5, top). The reason is the amplification of maps with
few peaks (cf. section 4.2); in BILAS the on-off-intensity-map contains only
one peak and gets a stronger weighting than the off-on-intensity-map, in the
NVT the combined intensity-map contains six equally strong peaks. Secondly,
if top-down influences are integrated into the system, a bias for dark-on-bright
or bright-on-dark is not possible in the combined approach but in the seper-
ated one. This is for instance an important aspect if the robots searches for
an open door, visible as a dark region in the depth image (cf. Fig. 8).

The two approaches vary also in the computation of the differences themselves.
In the NVT, the differences are determined by subtracting two scales at a time,
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Fig. 5. Top: The white pop-out is not detected by the NVT (left) but by
BILAS (right). Only separating the on-center-off-surround difference from the
off-center-on-surround difference enables the pop-out. Bottom: Two intensity maps
of a breakfast table scene, computed by the NVT (left) and by BILAS (right). The
square-based structure in the left image resulting from taking the difference between
two scales can be seen clearly, the right image shows a much more accurate solution.

e.g. I6 = scale(4)− scale(8). The problem with this approach is that it yields
sort of “square-based” feature maps and uneven transitions at the borders of
the coarser scale (cf. Fig. 5, bottom left). Our approach results in a slightly
slower computation but is much more accurate (cf. Fig. 5, bottom right) and
needs fewer scales. BILAS uses only five scales (0-4), instead of nine in the
NVT, since Itti et al. need the four coarsest scales (5-8) merely to represent
the surround.

The orientation maps are obtained by creating four oriented Gabor pyramids
detecting bar-like features of orientations {0 ◦, 45 ◦, 90 ◦, 135 ◦}. In contrast to
Itti et al., we do not use the center-surround technique for computing the
orientation maps. The Gabor Filters already provide maps, showing strong
responses in regions of the preferred orientation and weak ones elsewhere,
which is exactly the information needed. So we take the orientation maps
as are, yielding 3 × 4 = 12 orientation maps Os,σ for scales s ε {2, 3, 4} and
orientations σ ε {0 ◦, 45 ◦, 90 ◦, 135 ◦}. The orientation maps are summed up by
inter-scale addition for each orientation, yielding four feature maps Oσ of scale
2, one for each orientation.
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4.2 Fusing Saliencies

If the summation of maps is done in a straightforward manner, all maps have
the same influence. That means, that if there are many maps, the influence of
each map is very small and its values do not contribute much to the summed
map. To prevent this effect, we have to determine the most important maps
and give them a higher influence. An operator enabling this is the operator
N() presented by Itti et al. in [2]. It promotes maps with one strong peak and
suppresses those which contain many almost equivalent peaks. This operator
works by normalizing the maps to a fixed range and multiplying it by the
squared difference of the global maximum M and the average of the local
maxima m̄: N(map) = map ∗ (M − m̄)2.

There are two problems with this approach. The first problem was already
pointed out in [31]: Taking the difference of the global and the local maxima
only yields the desired result if there is just one strong maximum. If there
are two equally high maxima, the difference yields zero, ignoring the map
completely, while humans would consider both maxima as salient (imagine
the eyes of a wolf in the dark). In the same article a sophisticated complex
iterative scheme is proposed to overcome this problem by local competition
between neighboring salient locations. For simplicity reasons, we chose an
alternative approach: we divide each map by the square root of the number of
local maxima in a pre-specified range from the global maximum: w(map) =
map/

√
num-local-max. This method yielded good results in first experiments,

but it should be examined further whether it stands the test.

The second problem with N() concerns the normalization of maps to a fixed
range. This was done by Itti et al. to weed out the differences between a priori
not comparable modalities with different extraction mechanisms. In addition,
it prevents the higher weighting of channels that have more feature maps than
others. However, there is a problem with this approach: normalizing maps to a
fixed range removes important information about the magnitude of the maps.
Assume that one intensity and one orientation map belonging to an image with
high intensity but low orientation contrasts are to be fused into one saliency
map. The intensity map will contain very bright regions, but the orientation
map will show only some moderately bright regions. Normalizing both maps
to a fixed range forces the values of the orientation maps to the same range
as the intensity values, ignoring the fact that orientation is not an important
feature in this case.

Since some normalization has to be done to make the maps comparable after
they were summed up and weighted at least once, we propose the following
normalization technique: we store the maximum m of the maps that have to
be summed up and weighted. Then summation and weighting are performed
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and finally, the normalization is done between 0 and m, expressed by the term
n(0,m)(map) in the algorithm in Fig. 4. This technique yielded much better
results in our experiments than the normalization to a fixed range.

The next step in the feature computation is the generation of the conspicuity
maps. All feature maps belonging to one feature are combined into one con-
spicuity map, yielding map I for intensity and O for orientation. In contrast
to the NVT, we compute the interscale-addition by interpolating scales 3 and
4 to the finest scale 2 and perform point-by-point addition, instead of reducing
all maps to the coarsest scale 4 before adding them. This enables us to keep
all the information. Conspicuity maps I and O are summed up to the mode-
specific saliency map Si, i ε {depth, reflectance}. Each of these maps represents
the salient regions of the respective sensor mode, e.g., the depth map shows
depth contrasts, the reflectance map shows strongly reflecting image regions.
Both of these maps are weighted again with the weighting function w() to de-
termine how strong the salient regions pop out concerning this sensor mode.
Finally, the maps are summed up to the single saliency map S.

4.3 The Focus of Attention

To determine the most salient location in S, a straightforward maximum-
finding strategy is applied instead of the WTA network proposed by Itti et al.
Although biologically less plausible, equivalent results are achieved with less
computational resources. Starting from the most salient point, region growing
recursively finds all neighbors with similar values within a certain range. The
width and height of this region yield an elliptic FOA, considering size and
shape of the salient region in contrast to the circular fixed-sized foci of the
NVT and most other systems. One of the few systems considering the size of
the salient region is presented in [3]. In a final step, inhibition of return (IOR)
is applied to the FOA region in the saliency map. After inhibition, the next
salient region in S is determined and the focus jumps to that position.

5 Results

We have tested our approach on scans of both indoor and outdoor scenes. The
laser scans were taken at two different resolutions: 152 × 256 and 360 × 211
data points. From these points, images of sizes 244× 256 and 288× 211 were
generated. The pixel dimensions do not match exactly the number of data
points, since some of the border pixels in horizontal direction are ignored
due to distortion effects and in the lower resolution mode the pixels in the
horizontal direction were duplicated to yield adequately dimensioned images.
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The lower resolution proved to be sufficient for the application of attentional
mechanisms. The computations of the first focus on both laser images took
230 ms on a Pentium IV, 2400 MHz. The computation of further foci was
determined nearly at once (less than 10 ms).

The camera images depicted in this section represent the same scenes as the
laser scans to facilitate the scene recognition for the reader and to enable
comparison between the sensor modalities. It has to be remarked that camera
and laser images do not show identical parts of the scene, since the sizes of
their fields of view are different.

In all of the presented examples, it is hard to evaluate which foci are “good
ones” and which are not. This decision depends highly on the current task,
since the robot needs to detect obstacles if its task is obstacle avoidance, but
open doors if the task is navigation into another room. If no such information
is available, every strong cue might pop out and attract the focus of attention,
the same way a human looks around when exploring an unknown scene. The
only possibility to evaluate bottom-up foci is to decide whether the detected
region is also considered salient by humans. A good hint is to regard if the
focus is on something considered being an object. For further information on
the evaluation of attentional systems in comparison to humans refer to [32]
and [33]. However, the main point of this section is to show the diversity of
the saliencies of the different sensor modes, enabling the consideration of more
object properties, rather than to assess the quality of the foci.

In this section, we focus on three aspects. Firstly, we show the general perfor-
mance of attentional mechanisms on laser data. Secondly, the different quali-
ties of the two laser modes are shown, and finally, we compare the performance
of attentional mechanisms on laser images with those on corresponding camera
images.

5.1 General performance

Here, we briefly demonstrate the general performance of attentional mecha-
nisms on laser data to indicate that the choice of a 3D laser scanner as a
sensor for attentional mechanisms is a sensible one. Fig. 6 shows four scenes,
a camera image as reference on the left and the laser image combined from
both laser modes on the right.

In the first three laser images, the FOAs point to objects that also a human
observer would consider as salient: a traffic sign, two flower pots and a statue
with flowers. These objects are focused because they are highly salient in
laser images: the traffic sign has strong reflection properties that yield high
saliencies in the reflection image. Furthermore, it pops out in depth and shows
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Fig. 6. The first two foci of attention computed by BILAS on laser scanner data.
Left: the scene in a camera image. Right: foci on the combination of range and
reflection data.

a vertical orientation (cf. Fig. 3). Similar effects are true for the objects in the
next two images. The last row shows an example of a scene in which the foci
point to regions, the windows, that most human observers would not consider
as conspicuous, since they are not useful to most tasks. However, in a pure
bottom-up approach the window region is highly salient in the laser data,
because the glass is transparent for the laser scanner, yielding black regions
in both laser modes. Note that similar effects would arise in the processing
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of the camera image, which shows the window region much brighter than the
rest of the image.

5.2 The two laser modes

This section concentrates on showing the different qualities of the two laser
modes. For that purpose, we applied our system separately to range and re-
flection data. Additionally, we applied it to the simultaneous input of both
modes, showing how their different properties influence the detection of salient
regions. We start with the presentation of some scenes where certain saliencies
are only detected in the range data and other saliencies only in the reflection
data. The shown examples (Fig. 7–10) are presented in reading order as fol-
lows: depth image, reflection image, combined image, and camera image as a
reference of the scene.

Fig. 7. The foci in laser data show some advantages of the depth mode. In reading
order: depth image, reflection image, combined image, camera image. The rubbish
bin is salient only in the range data. Here, the stronger influence of the depth image
causes the first focus to point to the rubbish bin in the combined image, too.

The advantages of the depth mode are illustrated in Fig. 7 and 8. The example
in Fig. 7 shows a rubbish bin in a corridor. The rubbish bin is highly salient
in the depth image, but not in the reflectance image. Here, the vertical line of
the door attracts the attention. In the combined image, the influence of the
depth focus is stronger, resulting in a focus on the rubbish bin. Remember
that the influence of the maps is determined by the weighting function w that
strengthens maps with few salient regions (cf. sec. 4). Of course, the focus in
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Fig. 8. The foci in laser data show some advantages of the depth mode. In reading
order: depth image, reflection image, combined image, camera image. The open door
is salient only in the range data.

the combined image is not always on the desired object since this is a task-
dependent evaluation. The region with the highest bottom-up saliency wins
and attracts the FOA.

The example in Fig. 8 shows a hallway scene. The depth image shows a FOA
on an open door which could be interesting for a robot. In the reflection image
the foci point to other regions. Here again, the influence of the depth image
is stronger, resulting in FOAs on the open door in the combined image, too.

Please note that the foci in the combined image are not a union of the foci
of both modes. In the combined image, the first focus might point to a region
that is the most salient region neither in the depth nor in the reflection image.
This might happen for a simple reason: if the depth image has its most salient
point at location a and the reflection image at location b, whereas both images
have a point with lower saliency at location c, then the saliency of location
c can sum up to the highest saliency in the combined image, yielding the
primary focus of attention.

The advantages of the reflection mode are shown in Fig. 9 and 10. Although
the traffic sign in Fig. 9 attracts the first FOA in both laser modes, in the
reflection image the 5th FOA is directed to the handicapped person sign on
the floor. In the depth data this sign is completely invisible. In the combined
data this detection occurs later: the 6th FOA is on the handicapped person
sign.
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Fig. 9. The foci in laser data show some advantages of the reflection mode. In
reading order: depth image, reflection image, combined image, camera image. The
handicapped person sign is salient only in the reflection data.

Fig. 10. The foci in laser data show some advantages of the reflection mode. In
reading order: depth image, reflection image, combined image, camera image. All of
the four cars are among the first six focus regions in the reflection data.
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Fig. 11. Foci showing the same region in camera and in laser data. Left: a camera
image with a focus on a red traffic sign generated by the NVT. Right: a laser image,
combined from depth and reflection data, with a focus generated by BILAS.

Another example is shown in Fig. 10. Three of the four cars in the scene are
among the first four FOAs in the reflection image and within the first seven
FOAs in the combined data. Obviously, the strongly reflecting license plates
are the reason for high saliency in these regions. In the depth image, the cars
are not focused, because the saliency of the nearer tree is stronger.

These examples show the different advantages of the two laser modes. Note
again that the decision which results are better depends highly on the task.
The point of these experiments is to show the complementary effect of the two
modes and the possibility to concentrate on different object properties. In an
application scenario with a special task, top-down influence should strengthen
the influence of one mode to enable focusing on special object properties.

5.3 Camera versus laser

Usually, computational visual attention systems take camera images as input.
In this section, we compare this approach to our one, considering the respec-
tive advantages of the sensors. The computations for the camera images were
performed by the NVT by Itti et al. [2], the computations for the laser images
by BILAS. Note that some differences in performance may not only result
from the different sensors, but also from the differences in the implementation
of the two systems.

We present three different cases: FOAs that are similar in both kinds of sensor
data, those that are unique in camera images and those being unique in laser
data. Fig. 11 shows an example of a scene where both sensor modalities yield
the same results: the focus is immediately attracted by the traffic sign in
both images. We remark that this is due to different reasons: the camera
FOA is attracted by the color of the traffic sign, the laser FOA by its depth
and reflection properties. Obviously, the design of traffic signs is carefully
examined, attracting bottom-up attention of different kinds.
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Fig. 12. The foci show some advantages of camera images: the red car and the red
telephone box are only focused in the camera images (left), but not in laser data
(right).

One of the advantages of a camera is its ability to obtain color information.
Although laser scanners exist that are able to record color and even tempera-
ture information, ours is not. Both scenes in Fig. 12 show cases in which color
properties alone produced saliencies in image regions (the car in the upper
image, the telephone box in the lower one) that would hardly be salient in the
laser mode data.

On the other hand, Fig. 13 shows objects that are only focused in the laser
images. The traffic sign pops out in the laser data, whereas the FOA in the
camera image sticks to the yellow blinds. In the lower row of Fig. 13, the
person is only focused in the laser image.

Of course, the decision which sensor yields the better results depends not only
on the scenes but also on the task. The advantage of the laser scanner is
that it is able to detect salient object attributes that can not or hardly be
found in camera images. Best results should be achieved by a combination of
both sensors, inducing a much richer variety of salient regions. Selection from
these regions could be controlled by integrating top-down mechanisms to the
system. These topics are subject to future work.
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Fig. 13. The foci show some advantages of the laser data: the traffic sign (ahead)
and the person (below) are only focused in the laser data (right), but not in camera
images (left).

6 An Application Scenario: Semantic Map Building with Kurt3D

As discussed in section 2, one of the application fields of computational visual
attention is robotics. Here, we describe the application of attentional mecha-
nisms for a task that was not investigated before: the recognition of objects in
bimodal laser scanner data and the registration of the objects in semantic 3D
maps created autonomously by the mobile robot Kurt3D. In an exploration
phase, 3D maps of a room or a building are generated and objects within these
maps shall be labelled. The goal is to label not all objects in the maps but the
ones that are most salient and at the same time belong to task specific classes
that are predetermined and trained in advance. This prevents the maps from
being overcrowded, preserves high quality of recognition despite of limited
time and computation power, and enables the robot to detect objects in order
of their relevance. The approach prefers objects near the robot, resulting in a
detailed map representation in the explored regions. Later, the robot is able
to navigate in an already known and mapped environment.

While the integration of the objects into the 3D maps is subject for future
work, we already investigated the detection and recognition of objects in laser
data supported by the visual attention system BILAS. This specific method
combination is motivated by the fact that objects are hard to detect and to
segment in 3D range data alone, when no 3D or CAD models of the objects are
available. By applying object detection algorithms to the visualized bimodal
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data, we can identify regions in these visualizations that contain searched
objects. For each such object, we can determine exactly the 3D points that
belong to it. In the remainder of this section, we concentrate on the first step.

The attention system searches the scene for salient regions and thus performs
a preselection of locations. The salient regions detected by the attention sys-
tem serve as input for a fast classifier by Viola & Jones [34] that was originally
developed for face detection. To detect objects, their algorithm uses a cascade
of simple classifiers, i.e., a linear decision tree. Each stage of the cascade con-
sists of several primitive classifiers for detecting edge, line or center surround
features. A fast computation of these primitive features is enabled by using
an intermediate representation called integral image. For learning the desired
object classes from a large set of sample images, the boosting technique Ada
Boost is used [34].

We trained the classifier to recognize two object classes: office chairs and the
autonomous mobile robot Kurt3D; for further information on object detection
in 3D laser range data, please refer to [35]. The restriction of classification to
salient regions enables a preference of salient objects against less salient ones.
Furthermore, it significantly speeds up the classification part, since only about
30% of the image have to be investigated. This is especially useful if many
object classes are considered: the time saving increases proportionally with
the number of object classes. Some of the results of the object recognition are
shown in Fig. 14 and 15. A detailed discussion of the combination of visual
attention and classification in 3D laser data can be found in [36].

7 Discussion and Outlook

7.1 Summary

In this paper, we have introduced a new computational system of visual at-
tention capable of processing data from different sensor modalities simultane-
ously. The bimodal input data for the attention system, depth and reflection,
were provided by a 3D laser scanner, in contrast to other systems that usu-
ally only work on camera images. Our new Bimodal Laser-Based Attention
System (BILAS) processes the depth and reflection data in parallel, determin-
ing conspicuities concerning intensity and orientations and fusing them in an
appropriate way.

We have tested our system on both indoor and outdoor real-world scenes.
The results show that BILAS is able to focus on a large number of regions
in the environment that contain objects of potential interest for robot tasks.
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Fig. 14. Salient regions detected by the attention system serve as starting points for
a classifier. Top row: The first resp. the first 5 foci of attention computed on depth
and reflection data. Bottom row: Recognized objects in the focus regions.

Fig. 15. Salient regions detected by the attention system serve as starting points for
a classifier. Top row: The first resp. the first 5 foci of attention computed on depth
and reflection data. Bottom row: Recognized objects in the focus regions.
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An application scenario is presented, in which the attended regions serve as
candidate regions for an object classification algorithm. This speeds up the
object detection, since only a small part of the image needs to be processed
by the classifier.

Furthermore, it has been demonstrated that range and reflection values com-
plement each other: Some objects are salient in depth but not in reflection data
and vice versa. The comparison between the 3D laser scanner and a camera as
input sensors exhibited that their data also contain complementary features.
In camera images, regions may be salient due to color contrast, which is not
existent in laser data. On the other hand, laser data allow the detection of
salient regions that cannot be identified in camera data. The ability to detect
complementary features in the enviroment is considered crucial for robust and
reliable object detection for robots.

7.2 Strengths and limitations

The approach presented in this paper offers an innovative idea to consider
different sensor modalities for attentional mechanisms. This is the first step
for the integration of multiple sensors for an attention system. The same way
the two laser modes are fused, the system can be augmented to combine in-
formation of arbitrary sensors that provide the possibility to locate the sensor
information in the environment. Not only camera data, even auditory infor-
mation could be depicted in a map and searched for salient regions. However,
the integration of different sensor information requires careful examination.

The laser scanner offers new possibilities for the detection of objects that
can not or hardly be detected in camera images. This is done by taking into
account so far unconsidered object properties. As the results show, there are
situations in which a camera system fails to detect objects of low saliency.
The 3D laser scanner is able to consider qualities like reflectance and depth
discontinuities, enabling the detection of objects that are missed otherwise.
Since the laser scanner does not provide color information, the best results
could probably be achieved by combining the scanner data with those of a
camera, utilizing the union of saliencies.

Furthermore, the scanner is independent of illumination variances. Different
lighting conditions are a big problem in computer vision applications that
rely on camera images. The laser scanner can be applied even in complete
darkness, yielding the same results and providing a visual impression of the
scene based on the reflection data. This can be an advantage in applications
like surveillance in which the robot has to operate at night.

A limiting factor for the application of a scanning device in robot control is
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the low scan speed. The minimum speed of the scanner is 1.7 seconds for a
low resolution 3D scan. Therefore, data from other sensors have to be used
for robot navigation in quickly changing environments. However, the attention
system is not dependent on the sensor hardware and is equally able to process
data from a 3D camera. On the other hand, the 3D scanner is well-suited for
applications in low dynamics environments, like security inspection tasks in
facility maintenance, interior survey of buildings and 3D digitalization.

As some of the laser images show, the raw data from the scanner is spherically
distorted. The feature extraction methods are not designed for distorted im-
ages, so problems could arise. For example, straight lines in the environment
are only mapped onto straight lines in the sensor data if they are located near
the center of the image. At the borders, the distortion makes them curved, so
they are not or only partly detected by the orientation filters. Two solutions
are possible: Firstly, special filters could be designed for distorted images.
This could be difficult, because the distortion is not evenly distributed. Sec-
ondly, the laser data could be rectified. The second approach was successfully
examinated in later experiments as can be seen in Fig. 14 and 15.

One of the strengths of our attention system is that it is able to deal with real-
world scenes (cf. sec. 5). Many attention systems are mainly applied to artificial
images. This is much easier because these scenes usually do not contain as
many details as real scenes, so the focus of attention is more likely to detect
the desired objects.

Some limitations of the NVT of Itti et al. were shown by Draper et al. [3].
They point out that the system is not invariant to rotation, translation and
reflection due to compromises in the implementation made for higher speed.
Some of the suggestions of Draper are realized in our system too. Moreover, we
have proposed some other improvements (cf. sec. 4). Currently, our system is
still not completely invariant to the mentioned transformations, but it provides
a robust solution for the detection of salient regions.

A general limitation of bottom-up attention systems is that they are only
able to detect objects with high saliency. Our approach enables us to consider
additional object properties enlarging the set of detectable objects. However,
that does not help if the current interest is to detect an object with low
saliency even concerning these properties or if there are other regions of very
high saliency in the image, that attract the focus. This is not only true for
laser data but also for camera images and even for human vision. Imagine
driving a car at night. The attention is immediately attracted by the lights
from the cars at the other side of the road. Only deliberately directing gaze
and attention to the own side of the road enables safe driving. Similarly, top-
down influences could enable the detection of desired objects in computational
attention systems, a topic we consider for future work.
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7.3 Future work

As the next step towards integrating more data modes, we plan to use the laser
scanner together with an affordable ordinary camera to enable the simulta-
neous use of color, depth and reflectance information. The data modes will
be searched in parallel for interesting regions and fused into a single saliency
map. Due to the distortions of the laser data and the different fields of view
of laser and camera, this fusion is not a trivial task and has to be examined
carefully [29].

Concerning the visual attention system, there are many possible extensions
and improvements. For example, there is psychological evidence that more
than three features play an important part in the human attentional system
[5]. Relevant features like motion, blob or region size, region shape etc. could be
included in the model. The inclusion of motion would allow for tracking objects
over time, but requires an extension of the system to cope with dynamic image
sequences.

A major issue for future work will be the inclusion of top-down mechanisms
into the model. This will help in several situations which are difficult for a
bottom-up system: As mentioned above, the detection of objects with low
saliency could be facilitated. Moreover, it would be possible to immediately
focus on a relevant object, although there are several other salient regions in
the image. For robot control, bottom-up attention is well-suited for exploring
unknown environments; in contrast, top-down modulation utilizes knowledge
of the environment in order to effectively search for expected objects or regions
with known features.

The embedding of our attention system into the automatic building of seman-
tically labelled 3D maps as described in section 6 will also be an important
issue. To achieve this goal, the classifier has to be trained for further objects
and the objects have to be localized not only in the 2D images, but also in
the 3D point cloud.
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