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Abstract. In this paper we present VOCUS: a robust computational
attention system for goal-directed search. A standard bottom-up archi-
tecture is extended by a top-down component, enabling the weighting
of features depending on previously learned weights. The weights are
derived from both target (excitation) and background properties (inhi-
bition). A single system is used for bottom-up saliency computations,
learning of feature weights, and goal-directed search. Detailed perfor-
mance results for artificial and real-world images are presented, showing
that a target is typically among the first 3 focused regions. VOCUS rep-
resents a robust and time-saving front-end for object recognition since
by selecting regions of interest it significantly reduces the amount of data
to be processed by a recognition system.

1 Introduction and State of the Art

Suppose you are looking for your key. You know it to be somewhere on your
desk but it still takes several fixations until your roaming view hits the key. If
you have a salient key fob contrasting with the desk, you will detect the key
with fewer fixations. This is according to the separation of visual processing
into two subtasks as suggested by Neisser [9]: first, a fast parallel pre-selection
of scene regions detects object candidates and second, complex recognition re-
stricted to these regions verifies or falsifies the hypothesis. This dichotomy of
fast localization processes and complex, robust, but slow identification processes
is highly effective: expensive resources are guided towards the most promising
and relevant candidates.

In computer vision, the efficient use of resources is equally important. Al-
though an attention system generates a certain overhead in computation, it
pays off since reliable object recognition is a complex vision task that is usu-
ally computationally expensive. The more general the recognizer – for different
shapes, poses, scales, and illuminations – the more important is a pre-selection
of regions of interest.

Concerning visual attention, most research has so far been done in the field of
bottom-up processing (in psychology [13, 15], neuro-biology [2, 10] and computer
vision [7, 6, 1, 11]). Bottom-up attention is merely data-driven and finds regions
that attract the attention automatically, e.g., a black sheep in a white flock. Koch



& Ullman [7] described the first explicit computational architecture for bottom-
up visual attention; it is strongly influenced by Treisman’s feature-integration
theory [13]. Many computational systems have been presented meanwhile [6, 1,
11, 14], most restricted to bottom-up computations.

While much less analyzed, there is strong neurobiological and psychophysical
evidence for top-down influences modifying early visual processing in the brain
due to pre-knowledge, motivations, and goals [17, 2, 16]. However, only a few
computational attention models integrate top-down information. The earliest
approach is the guided search model by Wolfe [15], a result of his psychological
investigations of human visual search. Tsotsos’ system considers feature channels
separately and uses inhibition for regions of a specified location or those that
do not fit the target features [14]. Hamker performs visual search on selected
images but without considering the target background [5]. The closest related
work is presented by Navalpakkam et al. [8]; however, the region to learn is not
determined automatically and exciting and inhibiting cues as well as bottom-
up and top-down cues are not separated. Furthermore, quality and robustness
of the system are not shown. To our knowledge, there exists no complete, well
investigated system of top-down visual attention comparable to our approach.

In this paper, we present the attention system VOCUS that performs goal-
directed search by extending a well-known bottom-up system [6] by a top-down
part. The bottom-up part computes saliencies for the features intensity, orienta-
tion, and color independently, weights maps according to the uniqueness of the
feature, and finally fuses the saliencies into a single map. The top-down part
uses previously learned weights to enable the search for targets. The weighted
features contribute to a top-down saliency map highlighting regions with target-
relevant features. The relative strengths of bottom-up and top-down influences
are adjustable according to the task. Cues from both maps are fused into a global
saliency map and the focus of attention is directed to its most salient region.
The system shows good performance on artificial as well as on real-world data:
typically, one of the first 3 selected regions contains the target, in many cases it
is the first region. In the future, we will integrate the system into a robot control
architecture enabling the detection of salient regions and goal-directed search.

2 The Visual Attention System VOCUS

The computational attention system VOCUS (Visual Object detection with
a CompUtational attention System) consists of a bottom-up part computing
data-driven saliency and a top-down part enabling goal-directed search. Global
saliency is determined from both cues (cf. Fig. 1).

2.1 Bottom-up saliency

VOCUS’ bottom-up part detects salient image regions by using image contrasts
and uniqueness of a feature, e.g., a red ball on green grass. It was inspired by Itti
et al. [6] but differs in several aspects resulting in considerably improved per-
formance (see [3]). The feature computations are performed on 3 different scales



Feature weights

intensity on/off 0.001
intensity off/on 9.616
orientation 0 ◦ 4.839
orientation 45 ◦ 9.226
orientation 90 ◦ 2.986
orientation 135 ◦ 8.374
color green 76.572
color blue 4.709
color red 0.009
color yellow 0.040
conspicuity I 6.038
conspicuity O 5.350
conspicuity C 12.312

Fig. 1. The goal-directed visual attention system with a bottom-up part (left) and
a top-down part (right). In learning mode, target weights are learned (blue arrows).
These are used in search mode (red arrows). Right: weights for target name plate.

using image pyramids. The feature intensity is computed by center-surround
mechanisms extracting intensity differences between image regions and their sur-
roundings, similar to cells in the human visual system [10]. In contrast to [6], we
compute on-off and off-on contrasts separately [3, 4]; after summing up the scales,
this yields 2 intensity maps. Similar, 4 orientation maps (0 ◦, 45 ◦, 90 ◦, 135 ◦) are
computed by Gabor filters and 4 color maps (green, blue, red, yellow) by first
converting the RGB image into the Lab color space, second determining the
distance of the pixel color to the prototype color (the red map shows high ac-
tivations for red regions and small ones for green regions) and third, applying
center-surround mechanisms. Each feature map X is weighted with the unique-
ness weight W(X) = X/

√
m, where m is the number of local maxima that

exceed a threshold t. This weighting is essential since it emphasizes important
maps with few peaks, enabling the detection of pop-outs (outliers). After weight-
ing, the maps are summed up to the bottom-up saliency map Sbu.

2.2 Top-down saliency

To perform visual search, VOCUS first computes target-specific weights (learn-
ing mode) and, second, uses these weights to adjust the saliency computations
according to the target (search mode). We call this target-specific saliency top-
down saliency.

In learning mode, VOCUS is provided with a training image and coordi-
nates of a region of interest (ROI) that includes the target. The region might
be the output of a classifier specifying the target or determined manually by
the user. Then, the system computes the bottom-up saliency map and the most
salient region (MSR) inside the ROI. So, VOCUS is able to decide autonomously
what is important in a ROI, concentrating on parts that are most salient and
disregarding the background or less salient parts. Note that this makes VOCUS
also robust to small changes of the ROI coordinates.



Feature weights 1 weights 2

orientation 0 ◦ 20.64 29.84
color red 47.60 10.29

Fig. 2. The weights for the target (red horizontal bar, 2nd in 2nd row) differ depending
on the environment: in the left image (black vertical bars) color is more important than
orientation (weights 1), in the other image (red vertical bars) vice versa (weights 2).

Next, weights are determined for the feature and conspicuity maps, indicat-
ing how important a feature is for the target. The weight wi for map Xi is the
ratio of the mean saliency in the target region m(MSR) and in the background
m(image−MSR): wi = m(MSR)/m(image−MSR) where i ∈ {1, ..., 13}. This com-
putation does not only consider which features are the strongest in the target
region, it also regards which features separate the region best from the rest of
the image (cf. Fig. 2).

The learning of weights from one single training image yields good results
if the target object occurs in all test images in a similar way, i.e., on a similar
background and in a similar orientation. These conditions occur if the objects
are fixed elements of the environment, e.g. fire extinguishers. Nevertheless, for
movable objects it is necessary to learn from several training images which fea-
tures are stable and which are not. This is done by determining the average
weights from n training images using the geometric mean of the weights, i.e.,
wi,(1..n) = n

√∏n
j=1 wi,j . Instead of using all images from the training set, we

choose the most suitable ones: first, the weights from one training image are
applied to the training set, next, the image with the worst detection results is
taken and the average weights from both images are computed. This procedure
is repeated iteratively as long as the performance increases (details in [3, 4]).

In search mode, we determine a top-down saliency map that is integrated
with the bottom-up map to yield global saliency. The top-down map itself is
composed of an excitation and an inhibition map. The excitation map E is the
weighted sum of all feature and conspicuity maps Xi that are important for
the learned region, i.e., wi > 1. The inhibition map I shows the features more
present in the background than in the target region, i.e., wi < 1:

E =
∑

i(wi ∗ Xi) ∀i : wi > 1
I =

∑
i((1/wi) ∗ Xi) ∀i : wi < 1 (1)

The top-down saliency map Std results from the difference of E and I and a
clipping of negative values: Std = E − I. To make Std comparable to Sbu, it is
normalized to the same range. I, E, and Std are depicted in Fig. 3, showing that
the excitation map as well as the inhibition map have an important influence.

The global saliency map S is the weighted sum of Sbu and Std. The contri-
bution of each map is adjusted by the top-down factor t ∈ [0..1]: S = (1 − t) ∗
Sbu + t ∗ Std. For t = 1, VOCUS considers only target-relevant features (pure



Fig. 3. Excitation and inhibition are both important: search target: cyan vertical bar
(5th, last row). Left to right: test image, excitation map E, inhibition map I, top-down
map Std. E shows bright values for cyan, but brighter ones for the green bar (7th, 3rd
row). Only the inhibition of the green bar enables the single peak for cyan in Std.

top-down). For a lower t, salient bottom-up cues may divert the focus of atten-
tion, an important mechanism in human attention: a person suddenly entering
a room immediately catches our attention. Also colored cues divert the search
for non-colored objects as shown in [12]. Determining appropriate values for t
depends on the system state, the environment and the current task; this is be-
yond the scope of this article and will be tackled when integrating our attention
system into robotic applications.

After the computation of the global saliency map S, the most salient region
is determined by region growing starting with the maximum of S. Finally, the
focus of attention (FOA) is directed to this region. To compute the next FOA,
this region is inhibited and the selection process is repeated.

3 Results

In this section, we present experimental results on artificial images to establish
the link to human visual attention and on numerous real-world images. The
quality of the search is given by the hit number, i.e., the number of the focus that
hits the target (for several images the average hit number). Since we concentrate
on computing the first n foci on a scene (usually n = 10), we additionally show
the detection rate, i.e., the percentage of images in which the target was detected
within the first n FOAs. Note that VOCUS works with the same parameters in
all experiments; there is no target-specific adaptation.

Visual search in artificial images: first, VOCUS was trained on the image in
Fig. 3 (left) to find different bars. Tab. 1 shows the hit number. The green, cyan,
and yellow bar are not focused in bottom-up mode within the first 10 foci, since
their saliency values are lower than those of the black vertical bars.

For t = 1, all targets are focused immediately with one exception (magenta
vertical). Magenta has a lot of blue portions so the blue regions are also en-
hanced during search for magenta. This leads to focusing the blue before the
magenta bar. Note that also black bars are found, considering the lack of color
by inhibiting colored objects. For t = 0.5, bottom-up and top-down cues are
both regarded. It shows that in most cases the hit number is the same as for
t = 1, except for the red vertical bar. Here, the bottom-up saliency of the red
horizontal bar diverts the focus. It looks as if the bottom-up cues have less influ-
ence than the top-down cues, but note that the saliency values in the bottom-up



Hit number for several target bars (and saliency value)
red blue black magenta red black green cyan yellow

top-down factor horiz vert horiz vert vert vert vert vert vert

t = 0.0 1 (24) 2 (23) 3 (21) 4 (18) 5 (17) 6 (15) - (12) - (8) - (7)
t = 0.5 1 1 1 2 2 1 1 1 1
t = 1.0 1 1 1 2 1 1 1 1 1

Table 1. Search performance for different target bars for the training image of Fig. 3,
left; test image is the horizontally flipped training image. The first 10 FOAs are com-
puted. t = 0 is pure bottom-up search, t = 1 pure top-down search. The performance is
given by the hit number on the target. The numbers in parentheses show the saliency
value at the target region.

Intensity of 10 20 30 40 50 60 70 80 90
background in %

Required t 0 0 0 0.3 0.4 0.5 0.6 0.9 -
to override pop-out

Fig. 4. When searching for a black dot (left), the required value of the top-down factor
t increases with rising background intensity (right).

saliency map (values in parentheses) do not differ a lot, so little influence by the
top-down map is enough to change the order of the foci. In a pop-out experiment
[15], the contrasts between target and distractor values are much larger.

To test the influence of the top-down factor t systematically, we use an image
with one white and 5 black dots on a grey background (Fig. 4). We vary the
intensity of the background between 10% (nearly white) and 90% (nearly black)
and determine the top-down factor required to override the white pop-out and
find a black dot. It shows that with increasing intensity, the value of t required
to override the pop-out increases too, up to t = 0.9 for 80% intensity. For 90%,
the pop-out is so strong that it cannot be overriden anymore.
Visual search in real-world images: In Tab. 2 and Fig. 5, we show some search
results obtained from more than 1000 real-world images. We chose targets with
high and with low bottom-up saliency, fixed at the wall as well as movable ones.
The objects occupy about 1% of the image and occur in different contexts, with
different distractors, and on differently colored and structured backgrounds.

We chose two kinds of targets fixed in an office environment: name plates and
fire extinguishers. The largest test set was available for the name plates: we took
906 test and 54 training images of 3 different halls of our institute, showing about
50 different doors and name plates in different contexts due to differently colored
and structured posters and photos at walls and doors. The movable objects are
a key fob and a highlighter. The highlighter was placed on two different desks:
a dark and a bright one. For each kind of target, one was highly salient by itself
(fire extinguishers and highlighters are designed to attract attention), while the
bottom-up saliency for the name plates and the key fob was much smaller.



Target # test Average hit number and detection rate [%]
im. t = 0 (d.r.) t = 0.5 (d.r.) t = 1 (d.r.)

fire extinguisher 46 2.69 (94%) 1.09 (100%) 1.06 (100%)

key fob 28 4.42 (80%) 1.27 (100%) 1.23 (100%)

name plate 906 3.94 (48%) 2.48 (85%) 2.06 (89%)

highlighter 60 2.54 (90%) 1.73 (98%) 1.48 (100%)

Table 2. Search performance on real world data. Left: the targets and the extracted
region for learning. Note that this is not the training data, training images contain
a whole scene instead of an extracted object. The training images are chosen from
training sets of 10 to 40 images with an algorithm described in [3]. For each target, 10
FOAs are computed. The table shows the average hit number for different top-down
factors t and, in parentheses, the detection rate (d.r.) within 10 FOAs.

Fig. 5. Some of the results from Tab. 2. Search for a a fire extinguisher, a key fob,
a name plate, and a highlighter. The FOAs are depicted by red ellipses. All targets
detected with 1st FOA, only in the 3rd image with the 6th FOA.

Tab. 2 shows that the performance depends on the kind of target and on its
environment. We identified 3 scenarios: 1) The object is very salient and often
detected at once in bottom-up mode, e.g., fire extinguisher and highlighter. Here,
VOCUS is also very successful: the target is in average detected with the 1st or
2nd FOA. 2) The object is not very salient so the bottom-up value is low, but
there are few regions in the scene with similar features. This enables VOCUS
to separate the target well from the environment, resulting in a high detection
rate (e.g. the key fob). 3) The target is not salient and there are a lot of similar
regions in the environment that divert the focus. Even for humans, these are
difficult conditions for visual search. An example is the name plate: in some of
the test images, there are posters on walls or doors with colors similar to the
logo of the name plate making the search difficult (cf. Fig. 5).

The results show convincingly that VOCUS is successful in finding targets.
Salient objects are nearly always detected with the 1st or 2nd FOA, and even
in difficult settings, the amount of regions to be investigated by a classifier is
drastically reduced. The results also reveal that the system is highly robust: the
images were taken under natural conditions, i.e., illumination and viewpoint of
the target vary (details in [3]). Most difficult are images with several regions
having nearly the same saliency values as the target; there, small variations of
the image data may lead to a changed order of the foci. We also compared
VOCUS to Itti’s attention system NVT on the data presented in [8]; in [3] we
showed that VOCUS clearly outperforms the NVT.



4 Conclusion

We introduced the new attention system VOCUS that uses previously learned
target information to perform goal-directed search. During learning, it considers
not only the properties of the target, but also of the background. In search mode,
bottom-up and top-down influences compete for global saliency. The biologically
plausible system has been thoroughly tested on artificial and real-world data and
its suitability for detecting different targets was extensively demonstrated. In our
examples, the target usually was among the first three selected regions.

In future work, we plan to utilize the system for robot control. Therefore,
first the runtime (currently 1.7 sec on a 1.7 GHz Pentium IV for 300× 300 pixel
images) has to be improved to enable real-time performance. Then, VOCUS will
determine salient regions in the robot’s environment and search for previously
learned objects. Directing the attention to regions of potential interest will be
the basis for efficient object detection and manipulation.
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