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Abstract

In this paper, we propose a new, hierarchical approach to
landmark selection for simultaneous robot localization and
mapping based on visual sensors: a biologically motivated
attention system finds salient regions of interest (ROIs) in
images, and within these regions, Harris corners are de-
tected. This combines the advantages of the ROIs (reducing
complexity, enabling good redetactability of regions) with
the advantages of the Harris corners (high stability). Re-
ducing complexity is important to meet real-time require-
ments and stability of features is essential to compute the
depth of landmarks from structure from motion with a small
baseline. We show that the number of landmarks is highly
reduced compared to all Harris corners while maintaining
the stability of features for the mapping task.

1. Introduction

One of the currently most investigated topics in the
field of robotics is simultaneous localization and mapping
(SLAM), in which a robot builds a map of the environment
using sensor data [13, 1]. While SLAM is considered to
be solved for small 2D scenarios when using range sen-
sors, e.g., laser scanners, much current interest focuses now
on Visual SLAM which uses cameras as external sensors
[2, 5, 10]. Of special interest are systems using a single
camera, because of the low costs of such systems. Here,
one problem is that it is hard to estimate the depth of a
region from a single frame. Several frames from multiple
viewpoints are required to estimate the depth, similar to the
structure-from-motion problem (SFM).

Since the depth of a landmark cannot be initialized from
a single frame, it has to be tracked over several frames. If
the camera is mounted on the robot which is moving along
the optical axes, the baseline between consecutive frames
is small, so the points for the depth estimation have to be
very stable. Even an error of 2 or 3 pixels can result in a
significant error in the depth estimate. Thus, the method re-
lies on stable and reliable tracking of landmarks. Features

which are usually used for tracking are corner points as Har-
ris corners [8] or SIFT keypoints [7]. They are largely stable
under image transformations and illumination changes. On
the other hand, these detectors produce a huge amount of
features, more than can be tracked and stored in a real-time
robotic system for large environments [12]. To our knowl-
edge, there is currently no strategy for selecting a subset of
these features in an intelligent way.

Other approaches to determine regions of interest in im-
ages are computational visual attention systems [14, 6, 3].
They select regions that “pop out” in a scene due to strong
contrasts and uniqueness, e.g., the famous black sheep in
a white herd. The advantage of these systems is that they
determine globally which regions in the image are worth
investigating instead of locally detecting certain properties
like corners. Some systems additionally integrate previous
knowledge (top-down information) into the computations
[9, 3]. This enables a better redetection of landmarks when
presuming to revisit a known location.

In this paper, we present a new, hierarchical approach
to landmark selection for visual SLAM: a combination of
attentional ROIs and Harris corners. Using Harris corners
directly results in a significant number of features which
pose a challenge to real-time performance. Attention can
select a smaller number of ROIs but they do not have the
same positional stability. Through a combination of stable
feature points within ROIs, a stable and more scalable repre-
sentation is presented. For matching across frames, a SIFT
descriptor is attached to each feature point. The integration
into the SLAM framework is subject for future work; the
contribution of this paper is a detailed investigation of the
landmark selection and the introduction of a new selection
strategy for landmarks.

In our experiments, we compare the number of features
created by the different methods as well as the tracking ac-
curacy. We show that the features from the combined ap-
proach meet our requirements best: the number of features
is reduced to a feasible amount and the tracking accuracy is
high. Since each Harris corner is related to a ROI with its
own feature vector, this vector can later be used to actively
redetect a region.



Figure 1. Left: The visual attention system
VOCUS. Right: MSRs (top) and ROIs with
Harris corners (bottom).

Using visual attention systems for robot localization was
also done by [11]. As a topologically map was built and
not a geometrical one, the stability of the regions is not as
important. SLAM with features from a different saliency
measure based on entropy was reported by [10]. However,
here a laser-scanner was used additionally to a camera, so
the approach is not dependent on extracting the depth of
landmarks from image data.

2. The Visual Attention System VOCUS

The computational attention system VOCUS (Visual Ob-
ject detection with a CompUtational attention System) [3]
that we used here, differs from most other ones by the abil-
ity to consider target knowledge (top-down information) to
enable goal-directed search. It consists of a bottom-up part
and a top-down part; global saliency is determined from
both cues (cf. Fig. 1).

The bottom-up part detects salient image regions by
computing image contrasts and uniqueness of a feature, e.g.,
a red ball on green grass. The feature computations for the
features intensity, orientation, and color are performed on
3 different scales with image pyramids. The feature inten-
sity is computed by center-surround mechanisms [3]; on-off
and off-on contrasts are computed separately. After sum-
ming up the scales, this yields 2 intensity maps. Similarly,
4 orientation maps (0 ◦, 45 ◦, 90 ◦, 135 ◦) are computed by
Gabor filters and 4 color maps (green, blue, red, yellow)
which highlight salient regions of a certain color (details
in [3]). Each feature map X is weighted with the unique-
ness weight W(X) = X/

√
m, where m is the number of

local maxima that exceed a threshold. This weighting is es-
sential since it emphasizes important maps with few peaks,
enabling the detection of pop-outs. After weighting, the
maps are summed up first to 3 conspicuity maps I (inten-
sity), O (orientation) and C (color) and finally, after again

Figure 2. Loop closing example: top: scene
at beginning of sequence. Bottom: revis-
ited scene, 592 frames later, searching for
the black waste bin with top-down attention.
Left: saliency maps Sbu (top) and Std (bot-
tom). Right: the most salient ROI (top) and its
redetection with top-down attention (bottom)
as well as the matching of all Harris points.
In our approach, we use only the points in-
side the ROIs what reduces the complexity
strongly and eliminates false matches.

weighting for uniqueness, to the bottom-up saliency map
Sbu = W(I) + W(O) + W(C) (cf. Fig. 2, top left).

In top-down mode, VOCUS aims to redetect a target, i.e.,
input to the system is the image and some target informa-
tion, provided as a feature vector �v with 13 (2 + 4 + 4 + 3)
entries, one for each feature and conspicuity map. This vec-
tor is learned from a region which is provided manually or
automatically; in this application it is determined automati-
cally from a most salient region (MSR) of Sbu (see below).
In search mode, VOCUS multiplies the feature and con-
spicuity maps with the weights of �v. The resulting maps
are summed up, yielding the top-down saliency map S td

(cf. Fig. 2, bottom left). Finally, Sbu and Std are com-
bined by: S = (1 − t) ∗ Sbu + t ∗ Std, where t determines
the contribution of bottom-up and top-down. Finally, the
MSRs in S are determined by first finding local maxima
in S (seeds) and second finding with region growing recur-
sively all neighboring pixels over a saliency threshold (here:
25% of the seed) (Fig. 1, right top). For simplicity, we use
the rectangle determined by height and width of the MSR
as region of interest (ROI) (cf. Fig. 1, right bottom). Fur-
thermore, we ignore MSRs on the borders of images, since
these are not stable when the viewpoint changes.



Figure 3. Left: the robot environment and the
driven trajectory. Middle/right: movement of
coordinates of two points (middle: center of
attentional ROI. Right: Harris corner) tracked
over a sequence of 13 images.

3. Stable Feature Detection and Tracking

The attentional ROIs are useful since they reduce com-
plexity and enable active search for landmarks when return-
ing to the same area again. However, we found that the
position of the ROIs was roughly stable, but jumped from
frame to frame sometimes by several pixels. Estimating the
depth of a region by SFM, providing only a small baseline
resulting from moving predominantly along the optical axis,
requires precise measurements. Therefore, it is difficult to
use the ROIs directly as landmarks in a geometric map con-
structed using a single camera.

We propose to use the ROIs to guide the search for more
stable features. One type of features which is usually easy
to localize exactly are corner features. We used the Harris-
Laplace feature detector [8] – an extension of the Harris
corner detector to Laplacian pyramids which enables scale
invariance – and applied it inside the ROIs. This resulted in
a few (average 1.6) points per ROI (cf. Fig. 1, right, bottom).

Fig. 3 compares the tracking accuracy of a ROI (middle)
and a Harris corner (right). The robot moved smoothly dur-
ing this sequence, so the image coordinates should lay on
a smooth curve. This is the case for most coordinates of
the ROI, but there are several strong outliers. The tracked
Harris corner shows to be much more accurate.

To allow matching of points, a SIFT descriptor is com-
puted for each detected corner [7]. In this approach, a 4× 4
grid is placed on a point and a pixel gradient magnitude is
calculated at 45◦ intervals for each of the grid cells. This
yields an 4×4×8 = 128 dimensional descriptor vector for
each point.

To perform the tracking of ROIs and Harris corners be-
tween frames, we consider both proximity and similarity.
For the Harris points we make use of the odometry to esti-
mate how the camera moved between two frames and pre-
dict how the points should move assuming a certain depth
(here 4m). We look for matching around the predicated po-
sition (proximity) and use the SIFT descriptor to find the
best match (similarity). Although most points were only de-

tected once (av. 1.5 frames), there were several points that
could be tracked over a large number of frames, one was
even tracked over 70 frames.

For VOCUS, we consider ROIs that are close (here:
within 15 pixels) to the ROI of the previous frame (proxim-
ity) and have a local maximum in the saliency map (simi-
larity). In current work [4], we have improved the matching
by using odometry prediction and feature matching based
on �v. There, we show that this approach gives good results
in tracking as well as in loop closing situations.

Although the Harris corners outperform the ROIs in po-
sition accuracy, the ROIs showed to be tracked easier than
Harris corners: On average, a ROI is tracked over 5.0
frames, the maximum was 110 frames. In the combined
Harris/ROI approach, landmarks were tracked in average
over 1.7 frames; the longest track contained 65 frames.

To sum up, the approach works as follows (cf. Fig. 1
and 2): VOCUS computes a bottom-up saliency map, the
MSRs, and the ROIs. Then, Harris corners are determined
inside the ROIs. From tracking the Harris corners and the
ROIs over several frames, landmarks are computed and in-
cluded into the environment map (for details cf. [4]). For
each landmark, the attentional feature vector �v is saved to-
gether with the SIFT descriptor of the Harris points. When
closing a loop, i.e., returning to an already visited loca-
tion, the estimated robot position provides a prediction of
expected landmarks. The feature information �v from the
expected landmark is used to search actively for the land-
mark with top-down attention: a top-down saliency map
is computed and the MSRs are determined. Harris corners
are determined inside the corresponding ROI and finally the
matching is performed between the expected landmark and
the current ROI. Fig. 2 (right) shows the matching between
all corners of two frames. From the 12 matches, 3 are false.
Since we match the ROIs first and consider then only the
Harris points inside the ROIs, no false matches occur and
the matching complexity is highly reduced.

4. Experiments and Results

For our experiments, we used a sequence of 658 images,
obtained in a hallway by a robot driving as shown in Fig. 3,
left. The experiments consist of two parts: first, we inves-
tigated the complexity reduction of points and, second, we
tested the stability of the different approaches.

The number of points/regions selected by the different
approaches is shown here:

Harris ROI Harris in ROI
# pts in all frames 21258 2871 4569
# landmarks 14036 570 2664

The first row shows that the number of points in all frames
was 78% smaller in the Harris/ROI approach than when



Figure 4. number of points per frame

Figure 5. Prediction error distributions

computing all Harris corners. After tracking, the points
were associated with 2664 landmarks, 81% less than in the
Harris approach. The number of points per frame is de-
picted in Fig. 4. It clearly shows that in the new approach,
significantly less points are selected per frame than when
using only Harris corners.

To quantitatively evaluate the tracking of ROIs vs. Harris
points, we computed the error between the measured points
and the predicted position. To get the predicted position, we
used the robot’s odometry for motion prediction and laser
scanner measurements for depth prediction. Note, that the
laser values are only used for evaluation, the method itself
relies only on camera data.

Fig. 5 shows histograms of the prediction errors for the
for the Harris points, for the ROI center points, and for the
Harris points in ROIs. It shows, that the prediction error for
VOCUS is typically less then 3 pixels, but there are several
outliers. The tracking of the Harris points gives much bet-
ter results: most points have a prediction error of less than 2
pixels. The quality is about the same when the Harris points
inside the ROIs are considered; the median is even slightly
improved. Therefore, when restricting the Harris points to
ROIs, we keep the quality but have the advantage of a rea-
sonable sized subset of points for visual SLAM which are
easily redetectable by the top-down part of VOCUS.

5. Conclusion

We have presented a new hierarchical landmark selection
scheme for visual SLAM: an attention system provides re-
gions of interest and inside these regions Harris corners are
computed. We show that this approach reduces the number
of detected points significantly, an important property for
real-time performance, and that the points are highly stable,
a condition for precise depth computations of landmarks.
In future work, the landmarks will be integrated in our cur-

rent SLAM architecture, to enable loop closing and active
relocalization of landmarks utilizing the top-down saliency.
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