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Abstract—Object discovery is the task of detecting unknown
objects in images. The task is of large interest in many fields
of machine vision, ranging from the automatic analysis of web
images to interpreting data of a mobile robot or a driver assistant
system. Here, we present a new approach for object discovery,
based on findings of the human visual system. Proto-objects are
detected with a segmentation module, generating perceptually
coherent image regions. In parallel, a saliency system detects
regions of interest in images and serves to select segments,
depending on their saliency. We obtain very good results on a
database of salient objects and on real-world office scenes.

I. INTRODUCTION

One essential task in many machine vision applications is
to automatically and quickly detect objects in the environment.
This topic is of interest for many applications, for example
automatically processing web images (thumbnailing, resizing,
etc.), analyzing video data from devices such as Google Glass,
or finding and manipulating objects with an autonomous robot.
In contrast to object recognition or classification, the types of
objects are not known in advance, there is no training phase,
and the system starts without any pre-knowledge. Thus, the
system addresses the question “what is an object?”.1 Object
discovery is a challenging task for machine vision and belongs
to the open problems in the field. The reason is the ’chicken-
and-egg property’ of the problem: how to search for an object
before knowing how it looks like?

While difficult for machines, detecting objects is effort-
lessly, even unconsciously, done by humans. Thus, it is worth
investigating how the human visual system achieves this task.
We investigated the findings of psychology and neurobiology
on object perception (cf. Sec. III) and developed a biologically
inspired strategy that finds objects in a two step approach
(cf. Fig. 1): first the image is segmented into perceptually
coherent parts, called proto-objects; second, a saliency map
is computed and proto-objects are selected depending on their
saliency. The result are object hypotheses or object proposals.

Our contributions in this paper are twofold. First, we
propose an improved saliency system that outperforms 7 state-
of-the-art saliency models. Second, we propose a new approach
for object discovery that is based on concepts from human
perception and is applicable to web images as well as to real-
world video data.

II. RELATED WORK

While object recognition is a well established field, ob-
ject discovery still involves many challenges. Especially the

1When referring to objects, we follow a definition from psychology: Objects
are “manipulable units with internal coherence and external boundaries” [31].
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Fig. 1. Simplified overview of our object discovery approach for web images:
Saliency selects the relevant proto-objects to form object hypotheses.

discovery of objects in 2D images or videos, in which no
depth information is available, is difficult. However, several
people have investigated this problem and suggested promising
approaches; a survey can be found in [30]. Many methods
base on the fact that objects are consistent over several images
while background is not, and identify regions across images
that are visually similar [4], [22]. A related idea is to regard a
sequence over time and detect changes, since it is likely that
these changes correspond to objects [14]. In the approach of
Manén et al. [21], the image is segmented into superpixels
[9] and then, connected superpixels are grouped randomly by
sampling partial spanning trees that have high sums of edge
weights. Other approaches apply machine-learning techniques
to learn which aspects of an image might correspond to an
object [3]. This idea bases on the fusion of several feature
channels, similar as in the field of salient object detection
[5]. These approaches are often designed for web images and
use often assumptions such as objects are large and central
in an image (photographer bias). Instead, we propose here a
generally applicable approach that works for single 2D images
as well as for real-world image sequences.

Recently, especially with the upcoming RGB-D sensors,
several groups have investigated object discovery in 3D data.
Karpathy et al. find objects on the 3D meshes obtained
from RGB-D data [19]. Johnson-Roberson et al. do object
segmentation on full point clouds [17]. The segmentation is
seeded at salient points in the image that are mapped to
the full point cloud. In [26], 3D object models are built by
matching scans from partial views from which they subtract



points that correspond to planar surfaces: floor, walls, etc. In
[10], objects were detected in RGB-D data by observing a
scene over time and incrementally updating 3D object models.
Generally, such 3D approaches have the advantage that they
can exploit depth information which is a very helpful feature
for object discovery. In this paper, we focus instead on 2D
approaches for object discovery in which no depth information
is available.

III. HUMAN OBJECT PERCEPTION

Object perception is deeply rooted in the human visual
system which enables a fast and effortless detection of objects.
Even objects of completely unknown appearance are easily
recognized as objects, even by young infants [28]. It is not
yet completely understood how object perception works in
the human brain, but many findings are well known. We will
concentrate here on the findings which are important for our
framework of computational object discovery.

Physiologically, object detection and recognition take place
in the ventral stream of the human visual system. This stream
is also called what pathway since it is strongly involved in
color and form processing and is responsible for deciding
what is visible in a scene. This is opposed to the dorsal or
where pathway that processes mainly motion and depth cues
and is responsible for object localization [13]. The ventral
visual pathway starts its processing as early as the retina, goes
on through the LGN, V1, V2, and V4, until it ends in the
inferotemporal cortex (IT), responsible for object recognition.

Many cells in these visual areas have a center-surround
structure: they respond excitatorily to light at the center of
their receptive field2 and inhibitorily to light at the surround
or vice versa. This means, they have the strongest response if
the center is bright and the surround dark (ON-OFF cells)
or vice versa (OFF-ON cells). Cells are divided into three
types, organized in three channels: the luminance channel, the
red-green channel, and the blue-yellow channel [12]. These
channels lead from the retina to higher brain areas.

Cells exist with concentric receptive fields and with elon-
gated ones. It has been shown that the concentric fields are
modeled best with a two-dimensional Difference-of-Gaussian
(DoG) function [25], while the elongated fields are modeled
best with Gabor filters [18]. Both types of filters are frequently
used in computer vision, because the blob and edge detection
that they perform is equally important there as in human vision.

Coming back to object detection, there is evidence that
the individuation of objects, which addresses the question of
what is an object, takes place before object recognition [23].
The decision of which parts of the visual scene belong to
objects results from perceptual organization rules, especially
from segmentation processes that bundle parts of the visual
input. Such segmentation mechanisms are believed to exist on
all levels of the visual system [27] and the bundling is based
on concepts such as similarity, proximity, and other processes
described already early by the Gestalt principles. A recent
review about the history of the Gestalt laws as well as new
findings can be found in [32].

2The receptive field of a cell is the collection of other cells that influences
the output of the cell.

The result of these segmentation processes are so called
“proto-objects” [24]. They describe the local scene structure
of a spatially limited region and might correspond to objects,
but they might also be object parts or collections of several
objects. Rensink [24] describes them as “volatile structures of
limited spatial and temporal coherence”, meaning that they are
regenerated constantly and not stored in visual memory. Later
on, proto-objects are combined by focused attention to form
coherent objects. This is an important step, since it enables to
decide which segments an object consists of.

IV. COMPUTATIONAL OBJECT DISCOVERY

Formally, object discovery means we are interested in an
algorithm that can answer the question of whether a given
pixel set corresponds to an object or not. But even if we had
a method to answer this question reliably, the problem would
be complex: an image of w × h = n pixels consists of 2n

possible subsets that could potentially form an object (due
to partial occlusions, object parts do not necessarily have to
be connected). Tsotsos has proven that the related problem
of unbounded visual search, that means search for an object
whose features are unknown, is NP-hard [29]. And even when
restricting the problem to a rectangular bounding box, the
problem is still demanding: O(n · w · h) subwindows have to
be tested for their objectness, since at each pixel, subwindows
of all possible sizes have to be tested. Depending on how
computationally expensive the objectness measure itself is, this
can easily take several seconds or even minutes which makes
the approach inapplicable for real-time applications.

To deal with the complexity of the object discovery prob-
lem, we follow the strategy that nature developed and find
objects in a two step approach: first the image is segmented
into perceptually coherent parts (proto-objects [24]); second, a
saliency map is computed and segments are selected depending
on their saliency. Thus, the saliency system is responsible
for prioritizing the data processing by providing reasonable
regions of interest.

For generating proto-objects, we use the segmentation
approach of Felzenzwalb and Huttenlocher [9] (cf. Fig. 1, left).
This is a graph-based segmentation method that is based on
two important Gestalt principles: the similarity and proximity
of pixels. The method creates, as the authors state, “per-
ceptually important regions”. The second step addresses the
question of which segments belong together to form objects.
According to Rensink [24], we let attention select the relevant
proto-objects. This is done by computing a saliency map that
highlights regions of potential interest: the brighter a pixel in
the saliency map, the more salient this region is and the larger
the probability to contain perceptually relevant data. While
in human vision, bottom-up as well as top-down cues play
an important role for attention, top-down knowledge is not
always available, and in absence of a task, bottom-up saliency
is often the best that can be used. Therefore, we use here a pure
bottom-up saliency map to select proto-objects, but if top-down
information is available, a top-down map can equally well be
used.

To compute the saliency map, we use the CoDi saliency
system [20] since it is real-time capable, computes precise
saliency maps, and works for web images as well as real-
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Fig. 2. Visualization of the center-surround computations in the original CoDi
saliency system [20] and in our adapted version. Center and surround regions
in the image (red and blue ellipses) are weighted with Gaussian windows
(left) and feature distributions are determined (right: intensity distribution).
The contrast was originally computed with the W2 metric; here we use the
Manhattan distance on the mean values of the distributions (right). The figure
shows how this approach corresponds to a Difference of Gaussian approach
since each mean value corresponds to the weighted mean of values in the
corresponding ellipse.

world images3. The CoDi system has shown to outperform
many other saliency methods in [20] and source code is openly
available4. The idea of the CoDi-Saliency is to compute center-
surround contrast by comparing normal distributions that rep-
resent the feature statistics in the corresponding image regions.
Distributions are compared with the W2-distance (Wasserstein
metric based on the Euclidean norm). This concept is visual-
ized in Fig. 2, left. This center-surround measure is embedded
into a scale-space structure to enable the detection of objects of
different sizes. The computations are performed for intensity
and color features, where the latter operates on an opponent-
color space with one red-green and one blue-yellow axis. These
dimensions correspond to the opponent color channels of the
human visual system (cf. Sec. III).

We made several changes on the CoDi system to improve
performance. The effect of each of the changes is visualized in
Fig. 3 and Fig. 4. First, we adapted the size of the integration
window for the center and the surround distribution from
σc = 1 versus σs = 10 to σc = 1 versus σs = 5. The
latter fits better to human perception [7] and it achieved better
performance also in our experiments. We call CoDi with this
improvement variant 1. Second, we changed the Difference of
Gaussian pyramid to a Gaussian pyramid (variant 2, includes
improvements of variant 1). This makes sense because the DoG
operation computes contrasts, which is anyway done by the
center-surround operation that is applied to each layer later
on. So, it is reasonable to restrict the contrast computation to
one place and operate directly on the Gaussian pyramid. This
change had the largest visible effect from our improvements
since it produces much preciser saliency maps (cf. Fig. 4).

The third change (variant 3, includes improvements of
variants 1 and 2) affects the computation of the center-surround
difference itself. The original CoDi system computes the W2-
distance of normal distributions. However, we found that using

3Many other recent approaches for saliency computation are only suitable
for web images, since they make several assumptions on images, such as
objects are large and central in an image and do not intersect with the image
borders

4http://www.iai.uni-bonn.de/∼kleind/
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Fig. 3. Comparison of the original version of the CoDi-Saliency system [20]
with 3 improvements that we suggested (see text for details). AUC values in
parentheses. Evaluation done as described in Sec. V-A.

instead the much simpler Manhattan distance achieves basi-
cally the same results with less computational effort and results
in cleaner saliency maps. Interestingly, the Manhattan distance
which compares only the mean values of the normal distribu-
tions and ignores the variance, corresponds to a Difference of
Gaussian approach which is the traditional way to simulate
human ganglion and simple cells which are responsible for
contrast detection in the human visual system [7]. The reason
is the following: the normal distributions computed in CoDi are
maximum-likelihood estimates of the center or the surround
region, weighted by a Gaussian integration window. Thus, the
mean of the normal distribution of a center region centered at
pixel position (x,y), is defined as

µ̂c(x, y) =

k∑
i=−k

k∑
j=−k

w(x− i, y − j)F (x− i, y − j), (1)

for a k×k Gaussian window centered at (x,y) with variance
σc

2 and resulting weights w; F contains the values of the
corresponding feature channel, e.g., intensity or 2D color
values. The mean of the surround region µ̂s is obtained in the
same way with a σs that is larger than σc (as mentioned above,
we used σc = 1 versus σs = 5). µ̂c and µ̂s are either single
values (intensity), or two-dimensional vectors (color). Thus,
by simply subtracting µ̂c from µ̂s or vice versa, we obtain the
traditional Difference-of-Gaussian method. Since this can be
done exactly in the same framework as the distribution-based
version, it enables a direct comparison of the methods. This
idea is visualized in Fig. 2.

While the AUC value did not change when switching
from W2 to Manhattan distance (cf. Fig. 3), the system is
faster and obtained cleaner saliency maps (there are less bright
borders around objects, cf. Fig. 4, right). The latter aspect
resulted in considerably better performance when combining
the saliency maps with segmentation. We call this variant 3 of
CoDi “simple CoDi”, since it is simpler and faster to compute
while producing cleaner saliency maps than the original CoDi
system.

Selecting proto-objects based on saliency is then done by
combining all segments in which at least k% of the pixels are



Fig. 4. From left to right: Original image, saliency maps of the original version of the CoDi-Saliency system [20], of CoDi variant 1, of CoDi variant 2, and
of CoDi variant 3 (“simple CoDi”) (see text for details). We used “simple CoDi” in this work.

Fig. 5. Object discovery in real-world images.

above a saliency threshold t (we used k = 25 and t = 112).
From these selected segments, all connected components form
an object hypothesis (see Fig. 1).

While the described approach works very well on many
web images, even without using assumptions about the location
of objects (e.g. center-bias), real-world applications are more
challenging in many aspects. When interpreting data from
an autonomous mobile robot or a mobile device like Google
Glass, images are, on the one hand, usually of lower quality
due to illumination changes, motion blur, and cheaper cameras,
but on the other hand much more complex in content because
they contain more objects and clutter. To deal with several
objects, we have to determine which proto-objects belong to
which object hypothesis. Therefore, we have extended our
approach for object discovery as follows. Here again, the
saliency map is computed with our “simple CoDi” system.
Then, adaptive thresholding5 (OpenCV method) thresholds the
saliency map with help of a local Gaussian kernel, and con-
nected components are found in the resulting map and ranked
by average saliency. Finally, the overlap of each proto-object
with these salient components is determined and all proto-
objects that are covered by at least k% of a salient component
are chosen to belong to the current object candidate. Thus,
each salient component results in an object hypothesis and the
precise boundaries are obtained by the segmentation process.
Fig. 5 visualizes the process.

V. EXPERIMENTS AND RESULTS

Our experiments are divided into three parts: first, we eval-
uate the improvements on the CoDi-saliency system. Second,
we show the performance of the proposed object discovery
approach on a database of salient objects. Finally, we show

5In most recent work, we obtained even better results with region growing
instead of adaptive thresholding. Please check our newest publications at
http://www.iai.uni-bonn.de/∼frintrop

that the approach is also applicable to challenging real-world
settings with many objects and clutter.

A. Saliency evaluation

We have compared our new adaption of the CoDi-saliency
system with 6 other saliency systems: HSaliency [34], Yang
2013 [35], AC 2010 [2], HZ [15], AIM [6], and the Salien-
cyToolbox (ST) [33] which is a reimplementation of the Itti-
system [16]. They have been chosen due to their popularity
and frequency of citations [6], [15] or due to their recency
and very good results on similar tasks [2], [34], [35], and due
to the availability of source code.

We have evaluated the results on images from the coffee
machine sequence which was also used in [11]. The sequence
has 600 frames and shows a complex office scene. Each frame
contains between 20 and 50 objects. Object ground truth was
annotated on every 30-th frame. We chose this setting for
evaluation instead of the commonly used benchmark datasets
with web images, because we want to test the ability of the
systems to deal with challenging real-world scenes that contain
many objects. The images were evaluated according to the
procedure proposed in [1]: thresholding the saliency maps
with an increasing k ∈ [0, 255] results in binarized maps.
Then, each of these maps is matched against the ground truth
to obtain precision and recall.

The results of the comparison are displayed in Fig. 6, some
of the saliency maps are displayed in Fig. 7. It can be seen
that the “simple CoDi” saliency system clearly outperforms all
other systems in terms of precision and recall. Furthermore, the
system is with 0.098 sec. on an 320× 240 image (Intel Core
i3-2330M, 4 x 2,2 GHz, 32bit, 4GB RAM) close to real-time
on non-optimized code. Parallelization could further improve
the speed of the system.

B. Object discovery on web images

In this section, we evaluate our object discovery approach
on the MSRA-1000 database of salient objects [1]. The images
contain objects that were marked as salient by 2 out of 3 users.
Fig. 8 shows several examples from our approach for object
discovery, and Fig. 9 shows how the new approach outperforms
the CoDi-saliency method without segmentation. It can be seen
that the curve drops considerably later when the recall values
grow.

C. Object discovery on real-world scenes

Finally, we have applied the object discovery approach
to real-world images obtained from the office sequence men-
tioned before. Some example images are shown in Fig. 11: on



Fig. 7. Saliency maps from AC [2], AIM [6], SaliencyToolbox [33], HZ [15], HSaliency [34], Yang [35], and our “simple CoDi” saliency system
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Fig. 6. Comparing our “simple CoDi” saliency system to 7 state-of-the-art
methods: CoDi orig [20], HSaliency [34], Yang [35], AC [2], HZ [15], AIM
[6], and the SaliencyToolbox [33]. AUC values in parentheses.

Fig. 8. Several examples of our object discovery. From top to bottom: original
images, saliency maps, segmentations, object hypotheses, ground truth.

the left, a simple table-top scene to illustrate the idea (not used
for the quantitative analysis), in the middle and on the right
two examples for the office database (used for quantitative
analysis).

We compute the recall, i.e., the percentage of objects which
are found by our approach, and the precision, i.e., the percent-
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Fig. 9. Object discovery on the MSRA database. Blue curve (Sal.): CoDi-
Saliency [20]; red curve (Sal. + Seg.): new combination of saliency and
segmentation. AUC values in parentheses.

age of valid object hypotheses that really represent an object6.
For this, we consider a match as valid if the Pascal measure is
satisfied (intersection-over-union > 0.5) [8]. We compare our
method with two other approaches: the “objectness” measure
of Alexe et al. [3], and the object discovery method of Manén
and colleagues [21]. Since our approach assigns a saliency
value to each detected proposal and the two other methods have
a ranking for their proposals, we have a fair way of comparing
the best N object candidates of all three approaches. This is
often of advantage for real-time systems that have to prioritize
processing capacities. Therefore, we sort the detected objects
by their quality and evaluate the performance of the systems
depending of the number of object hypotheses per image that
are considered. Since the objectness measure returns bounding
boxes instead of precise regions, we represent the ground truth
also by boxes for their approach and evaluate our measure once
with pixel-precise regions (green curve) and once with boxes
(red curve) to enable a fair comparison.

The results of the quantitative evaluation are shown in
Fig. 10. It shows that our method outperforms the objectness
measure clearly. Although it is also visible that the approach
still misses many objects (there is no current method that
can detect all objects in such challenging scenes), it can
also be seen that the detected object hypotheses have a good
quality and are good candidates as input for object recognition
modules or for manipulation by a mobile robot. In the future,
we plan to track proposals over time to improve the quality of
the approach.

6Note that recall and precision measure different qualities here than in
Sec. V-A
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Fig. 10. Comparison of our object discovery method (once with pixel-
precise regions and ground truth (green curve), once with bounding boxes
(red curve) with the objectness measure from [3] (blue curve). Left: the
percentage of discovered objects per frame (recall), right: the percentage of
valid proposals (precision). Performance is plotted depending on the number
of object proposals that were considered (best N proposals per frame).

Fig. 11. Top: some examples of our object discovery method on real-world
office scenes. Each colored contour shows one detected object hypothesis.
Bottom: separately displayed object hypotheses of the above images.

VI. CONCLUSION

We have presented a cognitive approach for object dis-
covery that is based on several findings from human object
perception. Perceptually coherent regions are detected with a
segmentation method and saliency serves to select and combine
segments to form object hypotheses. We have shown that
the approach is able to detect objects in web images, which
is useful for applications such as thumbnailing or automatic
resizing, as well as to operate on real-world data as a mobile
robot or a head-mounted camera would obtain. In future work,
we will add Gestalt principles such as symmetry or convexity
to evaluate whether the obtained object hypotheses are valid.

ACKNOWLEDGMENT

The authors would like to thank DFG for financing this
research and Thomas Werner for his help with the experiments.

REFERENCES

[1] R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk. Frequency-tuned
salient region detection. In Proc. CVPR, 2009.
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