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Abstract— In this article we present a cognitive approach
to person tracking from a mobile platform. The core of the
technique is a biologically inspired observation model that
combines several feature channels in an object and background
dependent way, in order to optimally separate the object from
the background. This observation model can be learned quickly
from a single training image and is easily adaptable to different
objects. We show how this model can be integrated into a
visual object tracker based on the well known Condensation
algorithm. Several experiments carried out with a mobile
robot in an office environment illustrate the advantage of the
approach compared to the Camshift algorithm which relies on
fixed features for tracking.

I. INTRODUCTION

An important skill for mobile service robots is the ability
to detect and keep track of individual humans in their
surrounding. Especially robots that are designed to provide
services to individual persons need to be able to distinguish
their client from the surrounding environment. During the
last decade, several algorithms have been developed for
detecting and tracking people with mobile robots using laser
range data, vision, or both [1], [2], [3], [4], [5], [6]. Most
of these approaches have in common that they rely on a
single pre-specified feature domain to compute cues that
allow to discriminate the robot’s client from other objects
in the sensor data. For example, in vision-based approaches
color histograms are often employed, or shape information is
used. Laser-based approaches mainly rely on range-features
extracted from the laser rage scans. However, relying on a
single feature leads to the problem that depending on the
actual environment conditions, the chosen feature might not
be discriminative enough; well known problems for color-
histogram based approaches are changing lighting conditions
or a cluttered multi-colored background.

In this article we propose to employ a visual attention
system for choosing the cues which best distinguish a person
from the background depending on the situation the robot
currently faces [7]. Based on a cognitive perception model
[8], the attention system utilizes a larger set of different
simple features to discriminate particular objects from the
background. Depending on the environment and the appear-
ance of the object to detect, it automatically determines
the suitable cues by computing a weighting of the different
features available, such that the resulting mixture discrim-
inates the object from the background best. The attention
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system being used is able to compute such weight vectors
from a single training image. A similarity measure based on
these weight vectors is then usually applied for finding the
object within images. Instead of searching for the object, we
employ the similarity measure within a CONDENSATION-
based person tracker [9]. For this purpose, the similarity
measure is converted to a likelihood function that is used
as the observation model within the particle filter. Using
this approach, the robot is able to quickly learn the current
appearance of the person it wants to track. This leads to
an improved tracking performance, compared to tracking
approaches based on single feature cues. In order to evaluate
the technique, we implemented an application, where the
robot follows a person on its way through our laboratory
environment. The experiments show that the approach is
able to track the person in varying lighting conditions and
backgrounds, and that it is considerably less prone to track
loss than, for example, the purely color-based Camshift
algorithm.

The remainder of the article is organized as follows. After
discussing related work in Section II we explain the cognitive
tracking system in Section III. In Section IV we briefly
explain how the approach is integrated into a prototypical
person following application and we present experimental
results. We finally conclude in Section V.

II. RELATED WORK

In mobile robotics, person tracking can be performed with
different sensors. Several groups have investigated person
tracking with laser range finders [1], [2], [3]. These ap-
proaches usually only keep track of the motion of people
and do not try to distinguish individuals. One approach
which distinguishes different motion states in laser data is
presented in [4]. Combinations of laser and vision data are
presented in [5] and [6]. Both detect the position of people
in the laser scan and distinguish between persons based on
vision data. Bennewitz et al. [5] base the vision part on
color histograms whereas Schulz [6] learns silhouettes of
individuals from training data. This however requires a time-
consuming learning phase for each new person.

In machine vision, people tracking is a well-studied prob-
lem. Two main approaches can be distinguished: model-
based and feature-based methods. In model-based tracking
approaches, a model of the object is learned in advance,
usually from a large set of training images which show
the object from different viewpoints and in different poses
[10]. Learning a model of a human is difficult because of
the dimensionality of the human body and the variability in
human motion. Current approaches include simplified human



body models, e.g. stick, ellipsoidal, cylindric or skeleton
models [11], [12], [13], or shape-from-silhouettes models
[14]. While these approaches have reached good performance
in laboratory settings with static cameras, they are usually not
applicable in real-world environments on a mobile system.
They usually do not operate in real-time and often rely on a
static, uniform background.

Feature-based tracking approaches on the other hand do
not learn a model but track an object based on simple features
such as color cues or edges. One approach for feature-
based tracking is the Mean Shift algorithm [15], [16] which
classifies objects according to a color distribution. Variations
of this method are presented in [17], [18]. While most
approaches are not especially designed for person tracking,
they might be applied in this area as well. One limitation
with the above methods is that they operate only on color
and are therefore dependent on colored objects.

Visual attention systems are especially suited to auto-
matically determine the features which are relevant for a
certain object. These systems are motivated by mechanisms
of the human visual system and based on psychological
theories on visual attention [8], [19]. During the last decade,
many computational attention systems have been built, e.g.,
[20], [7], and recently, some systems came up that are able
to operate in real-time [21], [22], [23]. Important for our
application is that the systems compute a feature vector that
describes the appearance of a salient region [24], [7].

Applications of visual attention systems range from object
recognition to robot localization. However, they have rarely
been applied to visual tracking. Some approaches track static
regions, such as visual landmarks, from a mobile platform
for robot localization [25]. This task is easier than tracking
a moving object since the environment of the target remains
stable. Another approach aims to track moving objects such
as fish in an aquarium [26]. In this case however, the camera
is static. The here presented VOCUS tracker is partly based
on [27]. We have also applied a simpler approach based on
visual attention (but without particle filters) to object tracking
[28] and to person tracking [29].

III. THE COGNITIVE TRACKING SYSTEM

The tracking system we present is based on a particle filter
approach with a cognitive observation model. It employs
the standard Condensation algorithm [9] which maintains
a set of weighted particles over time using a recursive
procedure based on the following three steps: First, the
system draws particles randomly from the particle set of
the previous time step, where each particle is drawn with
a probability proportional to the associated weight of the
particle. Second, the particles are transformed (predicted)
according to a motion model. In vision-based tracking this
step usually consists of a drift component in combination
with random noise. Third, all particles are assigned new
weights according to an observation model.

In the following, we first introduce the notation (sec. III-
A), second mention how the system is initialized (sec. III-B),
and third describe the motion model (sec. III-C). Finally, we

specify in detail the observation model as core of the system
(sec. III-D).

A. Notation
At each point in time t ∈ {1, .., T}, the particle filter

recursively computes an estimate of the probability density
of the person’s location within the image using a set of J
particles Φt = {φ1

t , ...φ
J
t } with

φj
t = (sj

t , π
j
t ,w

j
t ), j ∈ {1, ..., J}.

Here, sj
t = (x, y, vx, vy, w, h) is the state vector that specifies

the particle’s region with center (x, y), width w and height
h – in the following, the region is also denoted as Rj

t =
(x, y, w, h). The vx and vy components specify the current
velocity of the particle in the x and y directions. Each particle
additionally has a weight πj

t determining the relevance of the
particle with respect to the target, and a feature vector wj

t

that describes the appearance of the particle’s region.

B. Initialization
In order to start the tracking process, the initial target

region R∗ = (x∗, y∗, w∗, h∗) has to be specified in the
first frame. This can either be carried out manually or
automatically using a separate detection module. Based on
the initial target region R∗, a feature weight vector w∗ is
computed that describes the appearance of the person. The
initial particle set

Φ0 = {(sj
0, π

j
0,w

j
0) | j = 1, ..., J}. (1)

is generated by randomly distributing the initial target lo-
cation around the region’s center (x∗, y∗). The velocity
components vx and vy are initially set to 0 and the region di-
mensions of each particle are initialized with the dimensions
of R∗. The particle weights πj

0 are set to 1/J .

C. Motion model
Currently, the object’s motion is modeled by a simple first

order autoregressive process in which the state sj
t of a particle

depends only on the state of the particle in the previous
frame:

sj
t = M · sj

t−1 + Q.

Here, M is a state transition matrix of a constant velocity
model and Q is a random variable that denotes some white
Gaussian noise. This enables a flexible adaption of position
and size of the particle region as well as of its velocity. Thus
the system is able to quickly react to velocity changes of the
object.

D. Observation model
In visual tracking, the choice of the observation model

is the most crucial step since it decides which particles
will survive. It therefore has the strongest influence on the
estimated position of the target. Here, we use a cognitive
observation model which favors the most discriminative
features in the current setting based on concepts of human
visual perception. It determines the feature description for
the target and for each particle, enabling the comparison and
weighting of particles.



Fig. 1. Initialization: the attention system VOCUS learns the target
appearance by computing feature and conspicuity maps for the image and
determining a feature vector w∗ for the manually provided search region
R∗ (yellow rectangle).

1) Computation of the feature vector: The feature vector
is computed based on a cognitive perception model which
computes the saliency of a region based on concepts of
the human visual system (cf. Fig. 1). This computational
attention system is called VOCUS and was originally built
to simulate human eye movements [7]. It computes feature
contrasts for different scales and feature types and assigns a
saliency value to each image region. Additionally, a feature
vector is computed for each salient region that determines the
contribution of the different feature channels to the region.

In this paper, we use the system in a slightly different
manner than the usual case: we do not determine the most
salient regions in an image, but the feature saliency of prede-
fined regions, the particle regions. However, the computation
of the feature maps is the same.

The feature computations are performed on 3 differ-
ent scales using image pyramids. The feature intensity is
computed by center-surround mechanisms (similar to DoG
filters); on-off (bright on dark) and off-on (dark on bright)
contrasts are determined separately. After summing up the
scales, this yields 2 intensity maps. Similarly, 4 color
maps (green, blue, red, yellow) and 4 orientation maps
(0 ◦, 45 ◦, 90 ◦, 135 ◦) are computed. The color maps compute
color contrasts based on the Lab color space (CIELAB),
since this is known to approximate human perception well.
To achieve real-time performance, the intensity and color
maps are computed using integral images [30]. These provide
an efficient way to determine the average value of a rectan-
gular region of arbitrary size in constant time (4 operations
per region), after once creating the integral image in linear
time. For the orientation maps, Gabor filters highlight the
gradients with a certain orientation (details in [7]).

Before the features are fused, they are weighted according
to their uniqueness, i.e. a feature which occurs seldomly
in a scene is assigned a higher saliency than a frequently
occurring feature. This is a mechanism which enables hu-
mans to instantly detect outliers like a black sheep in a
white herd. The uniqueness W of map X is computed as

W(X) = X/
√

m, where m is the number of local maxima
that exceed a threshold. Here, ’/’ stands for the pixel-wise
division of an image with a scalar. The weighted maps are
summed up to 3 conspicuity maps for intensity, orientation,
and color. In the following, we denote the 10 feature and
3 conspicuity maps for image It as Fi(It), i ∈ {1, .., 13}.
In the original VOCUS system, the conspicuity maps are
weighted again and fused into a saliency map. However, this
map is not required in our approach.

For an arbitrary region in the image, a feature vector
can be computed which describes the appearance of the
region with respect to its surrounding. In the original system,
feature vectors are computed for the most salient regions in
a saliency map. Here, we compute a vector for each particle
region. The feature vector w = (w1, ..., w13) for a region R
is computed as follows. For each map Fi(I), the ratio of the
mean saliency in the target region R and in the background
I\R is determined as:

wi =
mean(R)

mean(I\R)
, i ∈ {1, .., 13}. (2)

This computation does not only consider which features
are the strongest in the target region, it also regards which
features separate the region best from the rest of the image.

Since this computation involves computing the average
value of a particle region of arbitrary size for a usually large
collection of particles and for 13 feature maps, the process
can be time consuming. To maintain real-time performance,
the computations are also performed with integral images.
This increased the average processing speed of VOCUS
considerably from 10 Hz to 40 Hz. The result of the compu-
tations in this section is a feature vector wj

t for each particle.
2) Weighting of the particles: The feature vector wj

t of
a particle φj

t is now used to determine the similarity of
the particle region Rj

t with the initial target region R∗. As
similarity measure we use the Tanimoto-coefficient

T (w∗,wj
t ) =

w∗ ·wj
t

||w∗||2 + ||wj
t ||2 −w∗ ·wj

t

.

The Tanimoto coefficient produces values in the interval
[0, 1], the higher the value the higher the similarity. If the
two vectors are identical, the coefficient is 1. Compared to
Euclidean distance, it turned out that the Tanimoto coefficient
is better suited to distinguish between true and false matches
[28]. Based on the Tanimoto coefficient the weight of a
particle is computed as

πj
t = c · eλ·T (w∗,wj

t ).

This function prioritizes particles which are very similar to
the target vector w∗ by assigning an especially high weight.
A value of λ = 14 has shown to be useful in our experiments.
The parameter c is a normalization factor which is chosen
so that

∑J
j=1 πj

t = 1.
3) Determining the target state: From the weighted parti-

cle set, the current target state, including target position and
size, can be estimated by



xt =
J∑

j=1

πj
t · sj

t .

IV. EXPERIMENTS AND RESULTS

The experiments were carried out using a RWI B21 robot
equipped with a simple USB web camera mounted on a pan-
tilt unit (see Fig. 2, left). The camera captures 15 frames/sec,
with a resolution of 320×240. The complete software runs on
a 2GHz dual core PC onboard the robot. For the experiments,
the tracking application was implemented within the software
framework RoSe developed at FKIE [31]. This framework
consists of roughly 30 modules which exchange information
over a UDP-based communication infrastructure. The RoSe
framework is specifically designed to allow for the easy
assembly of multi-robot applications, which extensively use
wireless ad-hoc communication. However, for the tracking
experiments, we only required two modules on a single robot:

1) A visual tracking module, which captures the images
and employs the tracking algorithm (VOCUS or Camshift)
for tracking a single person within the image. Based on the
pixel location of the person computed by the vision-based
tracker, the module computes a heading direction relative
to the robot, steers the pantilt unit in order to center the
person within the image and commands the robot to follow
the person. This is achieved by continuously instructing the
reactive collision avoidance component of the robot to drive
to goal locations behind the moving person.

2) The collision avoidance component of the robot. It
is specifically designed for the task of following moving
persons based on motion tracking information. It does so by
applying an expansive spaces tree algorithm, which carries
out a search for admissible paths in time and space, based on
information about static obstacles provided by a laser range
scanner, as well as motion information, i.e. position and
velocity vectors of moving obstacles and the person being
followed, provided by the external tracking component [32].

We performed two series of experiments with this system
within the hallways of the FKIE building – an outline of
the floorplan is shown in Figure 2, right. The first series of
experiments illustrates the benefit of the VOCUS tracker for
the actual people tracking task; the second series evaluates
the robustness of the image-based tracker using the VOCUS
system, compared to simpler feature-based techniques like
Camshift.

Both series were performed during normal working hours
with people walking around. The lighting conditions varied
strongly during the experiments: some areas show natural
daylight (see Fig. 2, right), others artificial light. In some
parts, the light was switched off resulting in rather poorly
illuminated areas. These conditions resulted in several im-
ages with very poor quality (cf. Fig. 5). Furthermore, after
quick camera movements the camera was out of focus for
some frames and capturing images was sometimes delayed
resulting in large changes between consecutive frames.

Fig. 2. Left: the RWI B21 robot Blücher used for the experiment. The
images were taken using the small pantilt mounted webcam on top of the
robot. Right: An outline of the environment used for the experiments. The
robot tracked the person through the indicated round trip tour (red arrows)
and encountered different lighting conditions on its path. The start and end
location is marked with a small red circle.

A. Autonomous Person Tracking

In the first series of experiments, the robot followed a
person autonomously through the hallways (red arrows in
Fig. 2, right). We performed 4 runs with 2 different persons
and 3 different kinds of clothing. Initialization of the target
was done with user interaction by marking the person in
the first frame. After that, the robot estimated the position
of the person in each frame and drove autonomously into
the direction of the estimated target state. The camera was
controlled to center the target in the frame.

To evaluate the tracking, we counted the number of
detections manually. A detection occurs if the center of the
target state was on the person1. The results are shown in
Tab. I. Images in which the target was not visible were not
considered for the detection rate but are shown in Tab. I. In
three of the runs, the detection rate was about 80%. In the
2nd run, the detection rate is considerably lower. The reason
was that the center of gravity of the particle cloud was in
many frames next to the target (cf. Fig. 5, right).

B. Comparison with Camshift

Most similar to the here presented VOCUS tracking are
color-based trackers such as trackers based on the MeanShift
algorithm [16]. One well-known modification is the Camshift
algorithm [17] that is able to adapt dynamically to the
target it is tracking2. It is a statistical method of finding the
peak of a probability distribution, usually obtained with a
color histogram. In the 2nd series of experiments, we used
Camshift as benchmarking system for our approach.

1This is an approximation which is actually too optimistic since the region
might include a part of the background and still have its center on the region.
It is reasonable here anyway since the center is the point the robot uses as
target direction.

2Camshift is publically available from the OpenCV library:
http://opencvlibrary.sourceforge.net/



# Frames detections [%] # frames without target
1 1918 81 1
2 1486 58 37
3 1202 87 8
4 559 80 79

Average 1291 77 31

TABLE I
VOCUS TRACKING IN ONLINE EXPERIMENTS

# Frames correct detections [%]
VOCUS Cam (HSV) Cam (RG) Cam (Lab)

1 1477 79 51 88 39
2 1158 96 53 62 54
3 1596 65 5 28 50
4 1392 54 13 1 10
5 1519 71 46 47 46

Average 73 33 45 40

TABLE II
COMPARISON OF VOCUS AND CAMSHIFT TRACKING. CAMSHIFT IS

INVESTIGATED FOR DIFFERENT COLOR SPACES (HSV, RG, LAB). THE

ROWS SHOW THE RESULTS FOR THE 5 PERSONS IN FIG. 3.

Although the Camshift algorithm has shown good results
in other applications, it is only of limited use for a flexible
online tracker. Usually, it is necessary to adapt the parameters
of the algorithm for each object to obtain good results.
While this may be acceptable for some applications like face
tracking in which each face has a similar hue value, it is
difficult for targets like persons which vary strongly in ap-
pearance due to different clothing. Since our VOCUS tracker
is applicable to different objects without adapting parameters,
we used the Camshift algorithm with the standard parameter
set of the OpenCV implementation for all test sequences to
make the approaches comparable. The Camshift usually uses
the HSV color space. Additionally to this implementation, we
used it with two other color spaces: RG chromaticity space
and Lab space.

To be able to compare the approaches on the same data,
several image sequences were acquired by teleoperating the
robot and processed offline. We tested 5 different runs, each
covering one circle in our environment (approx. 160 m per
run). Each run was performed with a different person as
target, with different clothing (cf. Fig. 3). The runs consisted
of 1000–1600 frames each. Tab. III shows the initial feature
vectors w∗ that were learned from the frames in Fig. 3. The
results are displayed in Tab. II. All approaches clearly have
difficulties with the challenging conditions, mainly resulting
from the strong changes in illumination. In most cases, the
VOCUS tracker performed best, with an average detection
rate of 73%. The Camshift approaches perform considerably
worse (33, 45 and 40%). All approaches had most difficulties
with person 4. This is partly due to the white shirt which is
similar to the color of the walls. For all approaches it turned
out that the clothing of the person made a strong difference
in performance: the larger the contrast and difference to the
background, the easier the tracking.

Feature 1) 2) 3) 4) 5)
intensity on-off 0.14 0.14 0.19 0.62 0.44
intensity off-on 2.48 4.06 4.36 1.95 4.30
orientation 0 ◦ 1.2 1.58 2.00 2.56 1.86
orientation 45 ◦ 1.66 2.35 1.25 1.75 1.69
orientation 90 ◦ 1.08 1.90 1.40 1.65 1.81
orientation 135 ◦ 1.27 1.59 1.21 1.52 2.07
color green 0.35 2.62 0.90 0.75 1.10
color blue 5.55 2.68 3.24 3.02 6.02
color red 1.53 31.40 3.41 1.67 6.88
color yellow 1.48 3.71 0.80 1.54 1.41
intensity 1.26 1.86 2.18 1.14 2.85
orientation 1.21 1.81 1.38 1.80 1.84
color 1.93 10.44 1.60 1.81 2.61

TABLE III
FEATURE VECTORS w∗ THAT ARE LEARNED FOR THE TARGET PERSONS

IN FIG. 3 (THE COLUMNS CORRESPOND TO THE IMAGES).

V. CONCLUSION

In this paper, we have presented a cognitive approach for
person tracking from a mobile platform. The appearance of
an object of interest is learned from an initially provided
target region and the resulting target feature vector is used
to search for the target in subsequent frames. Advantages
of the system are that it uses several feature channels in
parallel, that it considers not only the target appearance
but also the appearance of the background, and that it is
quickly adaptable to a new target without a time-consuming
learning phase. Furthermore, it is capable to work on a
mobile platform since it works in real-time, does not rely
on a static background, and copes with varying illumination
conditions.

We obtained promising first results in different settings.
However, the task of person tracking in natural conditions
is very challenging and we just scratched the surface of the
problem. Although our image sequences are more difficult
than most of the data used in research groups for similar
tasks, they show by far not the most difficult settings. Persons
with similar clothing to the background, bright sunlight, and
crowded environments in which the person is temporarily
occluded would make the problem worse. We will investigate
such settings in future work.

There are several ways the current approach could be im-
proved. Currently, we learn target appearance from a single
frame. While this works reasonably well in many cases,
it will fail if the environment changes strongly. Learning
target appearance online from several frames and adapting
the feature vector to new conditions is subject to future work.
We also plan to integrate additional features, e.g. motion
cues, into the tracking system.
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