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Abstract In this article, we present a component-based visual tracker for mobile plat-

forms with an application to person tracking. The core of the technique is a component-

based descriptor that captures the structure and appearance of a target in a flexible

way. This descriptor can be learned quickly from a single training image and is easily

adaptable to different objects. It is especially well suited to represent humans since

they usually do not have a uniform appearance but, due to clothing, consist of differ-

ent parts with different appearance. We show how this component-based descriptor can

be integrated into a visual tracker based on the well known Condensation algorithm.

Several person tracking experiments carried out with a mobile robot in different labo-

ratory environments show that the system is able to follow people autonomously and

to distinguish individuals. We furthermore illustrate the advantage of our approach

compared to other tracking methods.

Keywords Visual Tracking · Component-based Tracking · Person Tracking

1 Introduction

An important skill for mobile service robots is the ability to detect and keep track of

individual humans in their surrounding. Especially robots that are designed to pro-

vide services to individual persons need to be able to distinguish their client from the

surrounding environment. Usually, such systems shall be able to learn the appearance

of a target person quickly, possibly from a single snapshot. Additionally, to run on a

mobile platform the approaches have to be real-time capable and robust to illumination

changes, motion blur and quick viewpoint changes.
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While many approaches have been proposed to track humans, most of them are not

designed to distinguish individuals. This is especially true for laser-based systems that

usually track the legs of people, or for model-based vision approaches that consider the

shape of objects. Well suited to distinguish people are feature-based vision approaches.

For these methods, it is especially important to detect discriminative features that

distinguish the target well from the background. However different parts of complex

objects, such as people, provide different discriminability from the background. If a

person wears, for example, a shirt in a color similar to the background, it has a low

discriminability while the trousers on the other hand might have a high discriminability.

A good feature descriptor shall consider this variable discriminability and focus on the

most discriminative parts. Since the structure of parts differs from target to target, it is

preferable to automatically detect the different parts instead of using a rigid template.

In this paper, we present a component-based approach to visual tracking that is

able to automatically detect the most discriminative parts of a target person and to

quickly learn its appearance from a single frame. Depending on the appearance of the

person (clothing, hair color, skin color etc.), the system determines a flexible number of

components, each representing a discriminative part with respect to a certain feature

channel. The resulting components form a target template that is used in the follow-

ing frames to detect the most likely target position. A similarity measure determines

the similarity between the target template and image regions in the following frames.

Instead of computing the similarity for each pixel, we employ the component-based

approach within a Condensation-based person tracker [20]. For this purpose, the sim-

ilarity measure is converted to a likelihood function that is used as the observation

model within the particle filter.

This approach leads to a robust and flexible tracker that is quickly applicable to

track arbitrary people in unknown environments. It is able to work in real-time on a

mobile platform. We evaluated the approach in different settings: first, we compared the

approach to other color-based tracking approaches and show that the performance of

the component-based tracking outperforms the other approaches considerably. Second,

we tested the ability of the system to distinguish a target person from other people

that cross their way in front of the robot. Finally, we showed that the robot is able

to follow a person autonomously in different settings of our laboratory environment

under varying lighting conditions and backgrounds.

The remainder of the article is organized as follows. After discussing related work

in Section 2, we introduce the component-based descriptor in Section 3. In Section 4,

we explain the visual tracking system. Section 5 briefly explains how the approach is

integrated into a prototypical person following application and presents experimental

results. We finally conclude in Section 6.

2 Related work

In mobile robotics, researchers have developed person tracking techniques for different

sensors. A frequently used approach is to use laser range finders, as these sensors

are available on many robots for collision avoidance purposes. Because laser sensors

usually only provide distance information to objects in the environment, most laser-

based approaches only keep track of the motion of people and do not try to distinguish

between individuals [25,31]. However, several techniques have been developed that

utilize the appearance of a person’s legs in the data, to reduce the risk of track loss or
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the confusion of tracks of different persons. For example, Arras et al. [2] use AdaBoost to

train a detector for the legs of persons in laser range profiles and in more recent work [3]

they suggest a two-leg constraint in combination with a specialized occlusion handling

technique to increase the robustness against track loss. Taylor and Kleeman [34] use a

switched dynamic model to even track the repetitive leg motion for this purpose.

Other authors improve the robustness of laser-based tracking by additionally taking

camera information into account. Using this combination of sensors, the spatial track-

ing can still be performed on the laser data, while the camera immediately provides

informative appearance information to distinguish between persons. For example, Ben-

newitz et al. [5] and Bellotto and Hu [4] use color histograms to discriminate between

the persons being tracked. Schulz [30] uses a shape matching approach to distinguish

between persons; a probabilistic exemplar approach is applied to track characteristic

silhouettes of individuals over time. However, this requires a time-consuming learning

process for the exemplar model of each new person.

In machine vision, people tracking is a well-studied problem. Two main approaches

can be distinguished: model-based and feature-based methods. In model-based tracking,

a model of the object is learned in advance, usually from a large set of training images

which show the object from different viewpoints and in different poses [29]. Learn-

ing a model of a human is difficult because of the dimensionality of the human body

and the variability in human motion. Current approaches include simplified human

body models, e.g. stick, ellipsoidal, cylindric or skeleton models [8,37,24], or shape-

from-silhouettes models [9]. While these approaches have reached good performance in

laboratory settings with static cameras, they are usually not applicable in real-world

environments on a mobile system. They usually do not operate in real-time and often

rely on a static, uniform background. A model-based approach that works from mov-

ing cameras is shape matching. For example, Gavrila [17] suggests an exemplar-based

technique that employs fast Chamfer matching to detect the shapes of pedestrians in

images in real-time. The technique has been adopted for a particle filter tracking algo-

rithm by Toyama and Blake [36]. However, it is not possible to adapt the rather large

exemplar models on-line and, thus, the approach is not capable of distinguishing be-

tween persons during tracking. A modeling technique related to exemplars are implicit

shape models [22] which, in comparison to pure exemplar approaches, improve the ro-

bustness against partial occlusions of objects. However, these models can also not be

adapted online and are generally also not suitable to distinguish individual people. The

final model-based technique, we want to mention, is tracking-by-detection, which has

become increasingly popular over the last years. Typically, these approaches learn clas-

sifiers based on feature descriptors in order to detect and track humans in images [12,

1,38]. Due to carefully chosen object specific feature sets, very reliable detections are

achieved that can directly be used as observations within a tracking algorithm. The

combination of part detectors even allows for partial occlusions. However, the classi-

fiers generally require an off-line learning phase on a rather large training set. Our

descriptor, in contrast, does not allow to detect people, but is used to acquire a robust

observation model for individual objects from a single image for tracking. On-line su-

pervised learning techiques can be applied to train classifiers for a similar purpose [18,

32], but need a larger image sequence to acquire the models.

Feature-based tracking approaches on the other hand do not learn a model but

track an object based on simple features such as color cues or corners. One approach

for feature-based tracking is the Mean Shift algorithm [10,11] which characterizes ob-

jects by their color distribution. The algorithm tracks objects by carrying out a gradient
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descent in the image that minimizes the dissimilarity between the local color statis-

tics in the image and the object’s color histogram. An extension of this method is the

CamShift algorithm [7]. Other groups integrate color histograms into a particle tracker

[27,28]. In previous work, we have used a cognitive observation model for visual track-

ing that was based on features inspired by human visual perception [14,16]. Several

ideas from this work have been integrated into the current approach. Over the last

years, techniques which use interest points, like colored Harris corners [23] or SIFT

features [33] for object tracking have been introduced. Note that these approaches usu-

ally rely on textured objects and a certain image resolution and quality to work well.

While these feature-based techniques are not especially designed for person tracking,

they are commonly applied in this area.

Some people have also suggested to store different representations for different

parts of the objects. For example, Pérez et al. determine different color histograms

for different, rigidly linked parts of the target [27,28]. Beuter et al. train a top-down

attention model to learn the face and the torso of a person separately [6]. We are

however not aware of any work that determines the number and kinds of components

of a target automatically to obtain a flexible descriptor as we will present in this work.

3 A Multi-Component Target Descriptor

In this section, we introduce the multi-component descriptor that represents a target.

The computation consists of two steps. First, six intensity and color feature maps are

computed (sec. 3.1), second, components are determined within the feature maps and

combined to form the descriptor (sec. 3.2). Finally, we describe how the descriptor is

matched to a region in a new frame to test if the target is present (sec. 3.3).

3.1 Feature map computations

In this section, we describe the computation of six intensity and color maps as a basis

for the component-based descriptor. The computation of these feature maps is based

on concepts from the human visual system in which color opponent cells determine the

contrast of a center region and its surround [26]. The computation is the same as in

the visual attention system VOCUS [13,15] and similar to Itti’s attention system NVT

[21].1 An overview of the processing is displayed in Fig. 1.

First, the input image is converted to an image in the CIELAB color space (also

L∗a∗b∗), smoothed with a Gaussian filter and subsampled twice to reduce the influence

of image noise. We call the resulting image ILab. The CIELAB space has the dimension

L for lightness and a and b for the color-opponent dimensions; it is perceptually uniform,

which means that a change of a certain amount in a color value is perceived as a change

of about the same amount in human visual perception. Furthermore, the space suits

our purpose especially well since the four main colors red, green, blue and yellow are

at the end of the axes a and b. This will show to be useful for our computations. Each

of the 6 ends of the axes that confine the color space serves as one prototype color,

resulting in two intensity prototypes for white and black and four color prototypes for

red, green, blue, and yellow (cf. Fig. 1, left, top right corner).

1 Differences to NVT include the use of a different color space and of integral images to
speed up processing; more differences outlined in [13].
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Fig. 1 Left: The feature computations: from an input image, 6 feature maps are computed,
showing bright-dark, dark-bright, red-green, green-red, blue-yellow, and yellow-blue contrasts.
Right, top: An illustration of the template MR∗ for the target region R∗. The three colored
rectangles denote the mi,j ; the different colors illustrate the feature maps they result from.
Right, bottom: the template MR′ adapted to region R′.

Then, the computation of feature maps is started. We treat intensity and color com-

putations separately since this results in a higher illumination invariance. The intensity

computations can be performed directly from the L channel IL. The color computa-

tions are performed on the color layer Iab spanned by a and b. Now, we determine four

color specific maps Ci that represent the four colors red, green, blue and yellow.

For each of the color maps Ci, there is one prototype color Pi (cf. Fig. 1, left, top

right corner) and each pixel Ci(x, y) in a color map stores the Euclidean distance to

the corresponding prototype color Pi:

Ci(x, y) = Vmax − ||Iab(x, y)− Pi|| i ∈ {1, ..., 4}, (1)

where Vmax = 255 is the maximal pixel value and the prototypes Pi are the ends of the

a and b axes with coordinates (0, 127), (127, 0), (255, 127), (127, 255) in an 8-bit Iab.

Next, image pyramids with 3 levels are determined from IL and Ci. This enables

flexibility to scale changes. On each of these scale maps in the pyramids we perform

center-surround mechanisms. These are filters that detect image contrasts between a

center c and a surround region s. Applied to our scale maps, the filters detect intensity

and color contrasts. On the color maps, the filters react especially strong to red-green,

green-red, blue-yellow, and yellow-blue contrasts. We use surround regions of two dif-

ferent sizes (radius 3 and 7 pixels, center 1 pixel), resulting in six center-surround maps

Si,j , j ∈ {1, ..., 6} for each color/intensity (details in [13]). Note that center surround

applied to the intensity scale maps detects only bright-dark contrast. To additionally

determine dark-bright contrasts, we compute the opposite difference s − c. To speed

up processing, all center-surround filters are computed with integral images [15].
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Fig. 2 The initial frames used for the experiments in sec. 5.1 and corresponding feature maps.

Finally, we sum up the 36 center-surround scale maps to obtain 6 feature maps Fi:

Fi =
∑6

j=1 Si,j . The feature maps for some example images are displayed in Fig. 2.

3.2 Determining a target descriptor

The target descriptor consists of components that have a strong contrast within a

certain feature dimension. It is derived from the feature maps. A component is a peak

in one of the feature maps within the target region R∗ = (x∗, y∗, w∗, h∗). The peaks

are detected by first detecting local intensity maxima and then segmenting the region

around the maxima with region growing. For easier computations, the regions are

approximated by rectangular bounding boxes that we call mi,j , where i denotes the

feature map and j the different maxima in a map. Hereby, the number of components

per map is flexible and depends on the appearance of the object. Additionally, we add

the whole target region as one of the mi,j to make the descriptor more robust.

The positions of the regions mi,j are stored relative to the center of R∗ and rep-

resent a template MR∗ = {mi,j |i ∈ {1, .., 6}, j ∈ {1, .., li}} (cf. Fig. 1, right top, and

Fig. 5). Now, we compute a descriptor vector from the mi,j . For each mi,j , we compute

the ratio of the mean intensity value within mi,j and the mean value of the background:

ρi,j =
mean(mi,j)

mean(Fi\mi,j)
(2)

The mean is computed with integral images, to speed up processing and enable

constant computation times for each region, independent of the size of the region.

Thus, the target descriptor that we obtain is d∗ = {ρi,j |i ∈ {1, .., 6}, j ∈ {1, .., li}}.

3.3 Matching the descriptor to an image region

In order to match the target descriptor d∗ to an image region R′ of arbitrary size

and dimensions, we first determine the factors fw and fh that represent the difference
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in size between the target region R∗ and R′: fw = R′w/R∗w, fh = R′h/R∗h, where

R′w, R∗w denote the width and R′h, R∗h the height of the regions. Now, an adapted

template MR′ is computed by extending or compressing all mi,j ∈ MR∗ with fw and

fh: m′
w = fw ∗ m∗

w, m′
h = fh ∗ m∗

h, ∀m′ ∈ MR′ , m∗ ∈ MR∗ (cf. Fig. 1, right

bottom). MR′ is now used to compute a descriptor d′ equivalently as in eq. 2.

Finally, the descriptors d∗ and d′ are matched by computing the similarity of the

vectors. As similarity measure, we use the Tanimoto coefficient:

T (d∗,d′) =
d∗ · d′

||d∗||2 + ||d′||2 − d∗ · d′ . (3)

The Tanimoto coefficient produces values in the interval [0, 1], the higher the value

the higher the similarity. If the two vectors are identical, the coefficient is 1.

4 The Visual Tracking System

The tracking system we present uses the component-based descriptor from Sec. 3 for

the observation model of a particle filter. It employs the standard Condensation al-

gorithm [20] which maintains a set of weighted particles over time using a recursive

procedure based on three steps: First, the system draws particles randomly from the

particle set of the previous time step, where each particle is drawn with a probability

proportional to the associated weight of the particle. Second, the particles are trans-

formed (predicted) according to a motion model. Finally, all particles are assigned new

weights according to an observation model and the object state is estimated.

Let us first introduce the notation. At each point in time t ∈ {1, .., T}, the par-

ticle filter recursively computes an estimate of the probability density of the person’s

location within the image using a set of J (here J = 500) particles Φt = {φ1
t , ...φJ

t }
with φj

t = (sj
t , π

j
t ,dj

t ), j ∈ {1, ..., J}. Here, sj
t = (x, y, vx, vy, w, h) is the state vec-

tor that specifies the particle’s region with center (x, y), width w and height h – in

the following, the region is also denoted as Rj
t = (x, y, w, h). vx and vy specify the

current velocity of the particle in x and y directions. Each particle additionally has a

weight πj
t determining the relevance of the particle with respect to the target, and the

component-based descriptor dj
t that describes the appearance of the particle region.

In the following, we first mention how the system is initialized (sec. 4.1), second

describe the motion model (sec. 4.2), and finally, specify the observation model as core

of the system (sec. 4.3).

4.1 Initialization

To start the tracking process, the initial target region R∗ has to be specified in the

first frame. This can be carried out manually or automatically with a separate detec-

tion module. Here, we initialize manually. Based on the initial target region R∗, the

component-based descriptor d∗ is computed that describes the appearance of the per-

son. The initial particle set Φ0 = {(sj
0, πj

0,dj
0) | j = 1, ..., J} is generated by randomly

distributing the initial target location around the region’s center (x∗, y∗). The velocity

components vx and vy are initially set to 0 and the region dimensions of each particle

are initialized with the dimensions of R∗. The particle weights πj
0 are set to 1/J .
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4.2 Motion model

The object’s motion is modeled by a simple first order autoregressive process in which

the state sj
t of a particle depends only on the state of the particle in the previous frame:

sj
t = M · sj

t−1 + Q. (4)

Here, M is a state transition matrix of a constant velocity model and Q is a random

variable that denotes some white Gaussian noise. This enables a flexible adaption of

position and size of the particle region as well as of its velocity.2 Thus the system is

able to quickly react to velocity changes of the object.

4.3 Observation model

In visual tracking, the choice of the observation model is the most crucial step since it

decides which particles will survive. It therefore has the strongest influence on the esti-

mated position of the target. Here, we use the component-based descriptor to determine

the feature description for the target and for each particle, enabling the comparison

and weighting of particles.

First, we compute a descriptor d
j
t for each of the particles according to sec. 3.2.

That means, the target template MR∗ is adapted to the size of the current particle

and the descriptor d
j
t is computed for the resulting template M

j
t. Then, the weight of

a particle is computed based on the Tanimoto coefficient as

πj
t = c · eλ·T (d∗,dj

t). (5)

This function prioritizes particles which are very similar to d∗ by assigning an

especially high weight. A value of λ = 14 has shown to be useful in our experiments.

The parameter c is a normalization factor which is chosen so that
∑J

j=1 πj
t = 1.

Finally, the current target state, including target position and size, can be estimated

as a weighted average of the particles by

xt =

J∑

j=1

πj
t · sj

t . (6)

5 Experiments and Results

The experiments were carried out using a RWI B21 robot equipped with a simple

USB web camera mounted on a pantilt unit (see Fig. 3, left). The camera captures

15 frames/sec, with a resolution of 320× 240. The software runs on a 2GHz dual core

PC onboard the robot. For the experiments, the tracking application was implemented

within the software framework RoSe developed at FKIE [35]. This framework consists

of roughly 30 modules which exchange information over a UDP-based communication

infrastructure. It is specifically designed to allow for the easy assembly of multi-robot

applications, which extensively use wireless ad-hoc communication. However, here we

only required two modules on a single robot:

2 The size of the region is not adapted by M but only by Q.
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Fig. 3 Left: the RWI B21 robot Blücher. The images were taken using the small pantilt
mounted webcam on top of the robot. Middle: An outline of the FKIE hallway environment.
The red arrows indicate the corridors. Right: Experiments in our robot experimentation hall
and in the corridors.

1) A visual tracking module, which captures the images and employs the tracking

algorithm for tracking a single person within the image. Based on the pixel location

of the person computed by the vision-based tracker, the module computes a heading

direction relative to the robot, steers the pantilt unit in order to center the person

within the image and commands the robot to follow the person. This is achieved by

continuously instructing the reactive collision avoidance component of the robot to

drive to a goal location a few meters ahead, in the direction of the moving person.

2) The collision avoidance component of the robot. It is specifically designed for the

task of following moving persons based on motion tracking information. It does so by

applying an expansive spaces tree algorithm, which carries out a search for admissible

paths in time and space, based on information about static obstacles provided by a

laser range scanner, as well as motion information, i.e. position and velocity vectors

of moving obstacles and the person being followed, provided by the external tracking

component [19].

We performed three series of experiments with this system within the robot ex-

perimentation hall and the hallways of the FKIE building (cf. Fig. 3). The first series

evaluates the robustness of the component-based tracker compared to simpler feature-

based techniques. In the second series, the robot autonomously controls the camera to

track a target person while other persons are moving around in the field of view of the

robot and try to distract it. In the third series, the robot uses the people tracker to

autonomously follow a person.

All series were performed during normal working hours with people walking around.

The lighting conditions varied strongly during the experiments: some areas show nat-

ural daylight, others artificial light. In some parts, the light was switched off resulting

in poorly illuminated areas. These conditions resulted in several images with very poor

quality. Furthermore, after quick camera movements the camera was out of focus for

some frames and capturing images was sometimes delayed resulting in large changes

between consecutive frames. To evaluate the tracking, we counted the number of detec-
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Fig. 4 Some tracking results. Green points: particles that matched to target; cyan points:
particles that didn’t match. Rectangles show estimated target state. Yellow rectangle: more
than 30% of particles match, otherwise the rectangle is blue.

tions manually. A detection occurs if the center of the target state was on the person3.

In Fig. 4 we display some of the tracking results.

5.1 Experiment 1: Comparison with Other Feature-based Techniques

Most similar to the here presented approach are color-based trackers. Here, we compare

our approach to three other color-based tracking methods. The first is the Camshift

tracker [7] based on the MeanShift algorithm [11]. It is a statistical method of finding

the peak of a probability distribution, usually obtained with a color histogram. Addi-

tionally to the implementation based on the HSV color space that is available from the

OpenCV library4, we used it with two other color spaces: RG chromaticity space and

LAB space.

The second and the third method are both based on particle filters. The second

approach is a standard method based on color histograms and was implemented ac-

cording to [27]. The third approach that we call ROI (region of interest) tracking is a

simplified version of the here presented method. It uses the same feature maps as in

sec. 3.1 but no components. Instead, it considers the whole target region and computes

a descriptor based on the ratio of the mean of the target region and the mean of the

background as in eq. 2. Thus, it computes a 6-dimensional target descriptor.5

To be able to compare the approaches on the same data, several image sequences

were acquired by tele-operating the robot and processed offline. We tested 5 different

runs, each covering one circle through the hallways (approx. 160 m per run). Each run

was performed with a different person as target, with different clothing (cf. Fig. 5).

The runs consisted of 1000–1600 frames each. The results are displayed in Tab. 1. In

all cases, the component-based tracker performed best, with an average detection rate

of 90%. The simpler ROI tracking achieved 77% on average. The approaches based on

color histograms (Camshift and histogram with particles) approaches perform consid-

erably worse (33, 45, 40%, and 37%). This is mainly due to problems with illumination

changes. For all approaches it turned out that the clothing of the person made a strong

3 This approximation is actually too optimistic since the region might include a part of the
background and still have its center on the target. It is reasonable here anyway since the center
is the point the robot uses as target direction.

4 OpenCV library: http://opencvlibrary.sourceforge.net/ For Camshift, it is usually neces-
sary to adapt the parameters newly for each object. This is difficult for targets like persons
which vary strongly in appearance due to different clothing. Since our tracker is applicable
to different objects without adapting parameters, we used the Camshift algorithm with the
standard parameter set of the OpenCV implementation for all test sequences to make the
approaches comparable.

5 We used almost the same method in [16], but omitted here the orientation features to
make the approach comparable to the other methods which are purely color-based.
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Fig. 5 Experiment 1: Top: initial frames and target regions R∗ (yellow rectangles) used to
learn the appearance of the 5 persons. Bottom: the templates MR∗ that are determined for
each of the targets. Each rectangle represents an mi,j , its color represents the feature map it
was extracted from.

# Frames correct detections [%]
Cam (HSV) Cam (RG) Cam (LAB) Hist. ROI component

1 1477 51 88 39 42 85 95
2 1158 53 62 54 73 98 94
3 1596 5 28 50 17 60 85
4 1392 13 1 10 15 61 90
5 1519 46 47 46 38 80 84

Average 33 45 40 37 77 90

Table 1 Experiment 1: Comparison of Camshift tracking with three different color spaces
(HSV, RG, LAB), color histogram tracking with particles, ROI tracking, and our new
component-based tracking. The rows show the results for the 5 persons in Fig. 5.

difference in performance: the larger the contrast and difference to the background, the

easier the tracking.

5.2 Experiment 2: Tracking with Autonomous Camera Control

In the 2nd series of experiments, the robot was not moving itself, but autonomously

controlled its camera to keep the target person in the center of the frame. We performed

4 runs with 4 different target persons. During all runs other persons were walking in

the same area, occasionally occluding the target (cf. Fig. 3, 3rd col., and Fig. 4, a,b).

This experiment demonstrates the robustness of the tracking mechanism and espe-

cially the ability to discriminate individual persons. The results are shown in Tab. 2.

Images in which the target was not visible were not considered for the detection rate

but are mentioned in col. 4. It shows that the tracking works generally very well, the

average detection rate is 91%. Most difficulties occurred in example 4, since here two

people were sometimes confused.

5.3 Experiment 3: Autonomous Person Tracking

In the 3rd series of experiments, the robot followed a person autonomously. Three runs

were performed in the robot experimentation hall and another four in the hallways of

FKIE (cf. Fig. 3 and Fig. 4, c-e). The robot estimated the position of the person in each
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# Frames detections [%] # frames without target
1 278 91 0
2 509 92 9
3 437 99 0
4 491 82 0

Average 429 91 2.25

Table 2 Experiment 2: Results of component-based tracking on a stationary robot with au-
tonomous camera control and several people walking around.

# Frames detections [%] # frames without target
1 431 93 1
2 472 96 0
3 560 96 75
4 1533 88 13
5 1199 94 0
6 1612 95 8
7 1116 99 0

Average 989 94 14

Table 3 Experiment 3: Component-based tracking in online experiments used to au-
tonomously drive a robot.

frame and drove autonomously into the direction of the estimated target state.6 The

camera was again controlled to center the target in the frame. The results are displayed

in Tab. 3. In all of the runs, the detection rate was above 80%. The robot managed

to keep the target person in its field of view very well. If the person was lost by the

tracker, an audible signal told the person that it should wait for the robot to catch up

again. One example in which the person was lost since it was too far away from the

robot is displayed in Fig. 4 e. On the four runs through the hallways the sharp corners

were the biggest challenge for the system. The 5th run was aborted on such a corner,

because the robot lost the person and then was not sure enough if it detected the right

person again. The average detection rate was 94%, showing that a robot equipped with

the component-based tracker is able to follow a person autonomously.

6 Conclusion

In this paper, we have presented a component-based approach for visual tracking. We

have applied the method to person tracking on a mobile platform which is especially

challenging due to real-time constraints, a moving camera, and strong illumination and

viewpoint changes. The appearance of a person is learned from an initially provided

target region and the resulting target descriptor is used to search for the target in

subsequent frames. Advantages of the system are that it determines automatically the

most descriminative parts of a target, that it considers not only the appearance of the

target but also of the background, and that it is quickly adaptable to a new target

without a time-consuming learning phase.

6 Here, control of the distance to the person is left to the laser-based collision avoidance.
The robot approaches the person until a certain minimal distance is achieved.
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We showed that the system is able to distinguish individuals and can follow a

person autonomously through an environment. However, the task of person tracking in

natural conditions is very challenging and there are still settings in which the system has

difficulties. Persons with clothing similar to the background (especially camouflage),

bright sunlight, and crowded environments are settings in which most systems fail.

Adding additional features, e.g. motion cues, and asking for feedback from the target

person in cases of ambiguity might help to tackle such problems. There are also cases in

which the current approach has difficulties if the appearance of target and background

change strongly, e.g. due to strong illumination changes. We are currently working on

automatically detecting such changes and adapting the target descriptor accordingly.
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