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autonomously than we wished. It was fun working with you on this. Chapter 6 was
developed mainly during my postdoc year in Stockholm, mostly in cooperation with
Patric Jensfelt. This was a great year, I want to thank all my Swedish and non-Swedish
friends I met there for a wonderful time, and Henrik I. Christensen for the opportunity
to work in his lab. He had always an open door and was willing to discuss my work.
Patric was a great colleague, and I learned a lot from him about robotics, SLAM, coding,
and paper writing.

I also want to thank all the people that proof-read this summary, especially Henrik
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Zusammenfassung

Sehen ist der wichtigste Sinn des Menschen und visuelle Wahrnehmung fällt uns so
leicht, dass wir üblicherweise gar nicht darüber nachdenken. Dagegen hat sich die Com-
puterinterpretation von Bilddaten in den letzten Jahrzehnten als ausnehmend schwierig
erwiesen. Obwohl es viel Fortschritt im Bereich Computer Vision gegeben hat und
schon sehr gute Systeme für Einzelanwendungen existieren, sind maschinelle Bildver-
arbeitungssysteme immer noch weit von den Fähigkeiten des Menschen entfernt. Ins-
besondere Aufgaben wie die automatische Erkennung von beliebigen Objekten und die
Interpretation und Analyse von Szenen stecken noch in den Kinderschuhen.

In dieser Arbeit verfolgen wir den Ansatz, das menschliche Sehsystem besser zu
verstehen und dessen Mechanismen zu modellieren, um verbesserte technische Systeme
zu erstellen. Wir glauben, dass viel Potenzial in der Ausnutzung der Konzepte liegt,
die das menschliche Sehen so mächtig machen. Die Industrie, die Forschung, und nicht
zuletzt der Endanwender brauchen Systeme, die robust, flexibel, effizient, und intuitiv
zu bedienen sind. All diese Eigenschaften hat der Mensch, optimiert durch Jahrtausende
von Evolution, und eine eingehende Analyse dieser Fähigkeiten und Ausnutzung ihrer
Eigenschaften kann für technische Systeme von großem Nutzen sein.

Die in dieser Habilitationsschrift vorgestellten Arbeiten folgen diesem Ansatz und
wenden Erkenntnisse aus Psychophysik, Neurobiologie und den Kognitionswissenschaften
auf verschiedene Fragestellungen der Bildverarbeitung an. Diese können in vier The-
menbereiche gruppiert werden: Object Discovery, Saliency Detection, Visual Tracking
und Visual SLAM (Simultaneous Localization and Mapping). Hierbei bezeichnet Ob-
ject Discovery die automatische Detektion von vorher unbekannten Objekten in Bild
und Videodaten, ohne vorherige Trainingsphase. Saliency Detection befaßt sich damit,
auffällige Regionen in Bildern zu finden, die als Kandidaten für weitere Verarbeitung
dienen können. Visual Tracking behandelt das Verfolgen von Objekten und Personen in
Bildern. Und Visual SLAM zielt darauf ab, automatisch eine Karte einer unbekannten
Umgebung zu erzeugen und einen Roboter oder eine mobile Kamera in dieser Karte
zu lokalisieren. Die vorgestellten Arbeiten basieren auf Erkenntnissen über die Funk-
tionsweise des menschlichen Sehsystems und nutzen diese aus, um echtzeitfähige und
kompetitive Systeme zu erstellen. Wir zeigen anhand von Experimenten mit Bilddaten
aus realistischen Umgebungen, dass die Systeme, die wir entwickelt haben, robust und
effizient sind, und signifikante Verbesserungen des aktuellen Forschungsstands darstellen.
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Summary
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Chapter 1

Introduction

Computer vision has advanced tremendously during the last two decades and reliable
solutions are available now for many tasks. However, there is still a big gap between
computer vision algorithms and the capability of humans concerning the interpretation
of visual data. Even two year olds outperform computer systems easily in detecting and
recognizing objects as well as in finding their way in their environment based on visual
perception. In a recent survey by Andreopoulos and Tsotsos (2013), it was pointed out
that “artificial recognition systems are still far removed from the elegance and general-
ization capabilities that solutions based on the organic brain are endowed with”.

These capabilities are so natural to us and achieved so effortlessly that we usually
do not realize how complex the tasks are that our visual system accomplishes in every
moment. Think of the ability of humans to interpret images. A description might sound
like this: “The picture shows a large celebration, most likely a wedding. Most people
seem to be in their forties, and the location is probably northern Europe, maybe Sweden.
The atmosphere is relaxed and it seems to be already late in the evening”. No current
computer vision system comes close to such an image analysis.

To better understand and exploit the mechanisms that make human vision so power-
ful, several research groups model the mechanisms of the visual system computationally
(Krüger et al., 2013; Tsotsos, 2011; Serre et al., 2007; Riesenhuber and Poggio, 1999; Liao
et al., 2013). This interdisciplinary research area involves many fields: scientific findings
from psychology, neuroscience, and cognitive sciences are combined with well-approved
methods from computer vision, artificial intelligence, and robotics. Depending on the
community and the focus of the work, there are different names for this research field,
e.g., Biologically-inspired Computer Vision or Computational Neuroscience. We denote
it here as Cognitive Computer Vision, to emphasize our interest in modeling higher-level
cognitive abilities of human vision, e.g., object detection and visual attention. Figure
1.1 illustrates the field and its related disciplines.

This cumulative habilitation thesis presents our research in the field of Cognitive
Computer Vision. The publications that are the basis of this work have been listed at
the beginning of this thesis. They can be divided into four areas that form the chapters
of this summary: object discovery, saliency computation, visual tracking, and visual
robot localization and mapping. Before we give an overview of these chapters in Section
1.2, we will first define terms such as “cognition” and “cognitive (vision) systems” in

3
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Figure 1.1: Cognitive Computer Vision and related fields

Section 1.1, and locate the work of this thesis within the related work. Finally, Section
1.3 summarizes the contributions of this thesis.

1.1 Cognition and Cognitive Systems

“Cognition” and “Cognitive System” are terms that have been used frequently during
the last two decades; they appear in many different fields and contexts, and each of them
interprets the terms slightly differently. This makes it of special importance to define
the terms precisely, to discuss their meaning in different fields and research directions,
and to locate the here presented work within the related literature.

According to Neisser, who is often referred to as the father of cognitive psychology
(Hyman, 2012), the term ’Cognition’ refers to “all the processes by which the sen-
sory input is transformed, reduced, elaborated, stored, recovered, and used” (Neisser,
1967). This includes mental processes such as attention, perception, memory, language
processing, learning, awareness, reasoning, problem solving, and decision making. In
science, cognition is mostly investigated in the field of cognitive psychology, but also dis-
ciplines such as neuroscience, linguistics, and philosophy contribute to the understanding
of these mechanisms. Visual Cognition is the subfield that is concerned with the vi-
sual aspects of cognition, for example object detection and recognition, visual attention,
visual search, scene recognition and categorization, visual memory, and learning based
on visual perception.

Cognitive Systems are computational approaches that aim to achieve cognitive
behavior that is similar to the capabilities of humans. The European Union has put
several hundred millions of Euros into the funding of such systems in their work programs
on “Cognitive Systems” and “Cognitive Systems and Robotics”1. The joining goal to
achieve cognitive behavior can be addressed in many different ways and for different
purposes. We classify the approaches for cognitive systems therefore according to two
dimensions that span a space which we will call Cognitive-System-Space (CS-space) and
which is visualized in Figure 1.2. The area of Cognitive Vision Systems is a subfield
of Cognitive Systems, which is concerned with the interpretation of visual data. This
subfield has the same dimensions as the CS-space.

1http://cordis.europa.eu/fp7/ict/programme/challenge2 en.html
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Figure 1.2: The Cognitive Systems Space (CS-space) defines systems according to their
objective and their level of abstraction from the human brain and mind. The names
denote research communities and they are placed where most of the work of the com-
munity is located (font size shall correspond approximately to community sizes). The
yellow star denotes an approximate location of the work presented in this thesis.

The first dimension of the CS-space addresses the objective a system pursues. While
one group of systems is designed to model and better understand human cognition,
another direction is the development of technical systems that perform well in various
applications. The systems that belong to the first category contribute usually to research
communities such as Cognitive Psychology, Cognitive Science, and Neuroscience. The
systems with a technical objective contribute mostly to engineering fields such as Cogni-
tive Robotics, Cognitive Computer Vision, or Artificial Intelligence. A field that bridges
these two extremes is Computational Neuroscience, which mostly aims at modeling the
human brain, but in which many recent groups build also systems that are competitive
in technical applications.

The second dimension addresses the level of abstraction from the human brain that
is chosen to build a cognitive system. At one end of this dimension are the biologi-
cally plausible, bottom-up approaches that build models based on neurobiological and
psychophysical findings. We do not distinguish here between physical brain and mind
related findings, thus, at this end of the CS-space are models that simulate the neural
hardware of the brain as well as systems that base on psychological models. At the other
end of this dimension are the top-down approaches that regard the inside of the brain as
a black box and aim at modeling cognitive behavior with engineering methods. In these
models, the only brain-related inspiration is the overall goal of the system, for example
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object recognition. In between can be found many approaches on different abstraction
levels that simplify some concepts while retaining enough information to model a specific
cognitive behavior.

We want to note that, although we think this dimension of the level of abstraction
is useful to classify systems, we do not believe that one level is superior to another.
Research has to take place in all of these areas of the CS-space to gain a better un-
derstanding of the principles of the human brain as well as to come up with better
solutions for intelligent cognitive systems. In our belief, hybrid approaches, which take
into consideration findings from different abstraction levels, are of special interest.

In the following, we separate the space into its four quadrants and discuss different
approaches of cognitive systems that fall in each of these areas. It should be noted
however that the distinctions are not hard and systems might fall in between quadrants.
Especially the placement of scientific communities concerns only the majority of ap-
proaches and there are usually also systems belonging to a community that fall into one
of the other quadrants. Additionally, we want to point out that this overview does by
no means attempt to give an exhaustive overview of the field of Cognitive Systems. The
mentioned projects and research groups have been chosen to illustrate the dimensions of
the CS-space and are often related to the work in this thesis. Hopefully, these examples
enable the reader to place also other related work into the CS-space.

A) Objective: building a technical system; level of abstraction: high (top-down).

This quadrant describes approaches with the objective to build technical systems,
which address the problem mainly from an engineering perspective. Work in this
field designs solutions based on techniques from artificial intelligence, logic, machine
learning, or computer vision. The inside of the brain is often considered as a black
box and the relation to performance of the human brain is only given by the fact
that the system shall achieve similar behavior.

This interpretation of cognitive systems is strongly related to artificial intelligence
and machine learning and includes many approaches in the fields of robotics and
computer vision. Correspondingly, the relevant journals and conferences can be
found in these fields, for example the journals “IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI)”, “Journal of Computer Vision and
Image Understanding (CVIU)”, “IEEE Transactions on Robotics”, “Artificial In-
telligence”, “Springer Lecture Notes in Artificial Intelligence”, and the conferences
AAAI, IJCAI, ECAI, RSS, ICRA, IROS, CVPR, ICCV, ECCV, and many more.

An example of a research direction that is at the very right side of the CS-space is
the area of Cognitive Robotics that develops methods for automated, logic-based
reasoning, for example the Cognitive Robotics group at the University of Toronto2

or the Knowledge-Based Systems Group at RWTH Aachen3. An international
event that summarizes work in this area is the international workshop of cognitive
robotics that is held every two years since 1998 at the highly reputable conferences
in artificial intelligence AAAI and ECAI.

2http://www.cs.toronto.edu/cogrobo/
3http://www.kbsg.rwth-aachen.de/
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The research within the German national cluster of excellence CoTeSys (Cognition
for Technical Systems) is located more within the center of this quadrant. CoTeSys,
which was funded from 2006 to 2011, took inspiration from the human brain to
develop systems such as vehicles, robots, and factories with the expectation that
these would be “much easier to interact and cooperate with, and will be more
robust, flexible, and efficient.”4

Also in machine vision, many people work in areas that fall into this quadrant. For
example, the ECVision network5 (European Research Network for Cognitive Com-
puter Vision Systems) was a forum to expose AI-oriented and systems-oriented
areas of cognitive computer vision, such as knowledge representation, learning,
reasoning, recognition and categorization, as well as goal specification and achieve-
ment. It was funded from 2002 to 2005 by the European Commission. One exam-
ple project following this directive was the CogViSys (Cognitive Vision Systems)
project6.

B) Objective: modeling the human brain/mind; level of abstraction: high (top-down).

Interestingly, there is also a large group of approaches that follow a top-down ap-
proach to model human cognition and base on logic and probability theory. While
inspired from human cognition, this inspiration is on a higher level of abstraction
than the systems in quadrant C. Most of this work is located in the cognitive
science community, but some works can also be found in the field of artificial intel-
ligence. A whole research area has developed that models cognitive functions based
on Bayesian theory (Knill and Pouget, 2004; Friston, 2012). The essence of the
underlying “Bayesian brain hypothesis” is that the brain tries to “infer the causes
of our sensations based on a generative model of the world” (Friston, 2012). Impor-
tant journals in this field are “Cognitive Science”, “Topics in Cognitive Science”,
and “Trends in Cognitive Sciences”.

C) Objective: modeling the human brain/mind; level of abstraction: low (bottom-up;
brain/mind-inspired).

Cognitive systems that aim to model and better understand human cognitive be-
havior are often located within this quadrant. Here, the level of abstraction is low
and systems aim to follow the findings of research on the human visual system
closely. Correspondingly, the research communities interested in these topics are
mainly Cognitive Psychology and Neuroscience. Important journals in this field
include “Cognitive Psychology”, “Attention, Perception and Psychophysics”, and,
in the field of vision, the “Journal of Vision” and “Vision Research”. Work in
this area often constructs theoretical models to explain human cognitive behavior,
but more and more groups also implement their ideas. However, these systems are
mostly designed rather as a proof-of-concept and often applicable only to artificial
data instead of being useful for technical applications. It should be mentioned

4http://www.cotesys.org/
5http://www.vernon.eu/ECVision
6http://cogvisys.iaks.uni-karlsruhe.de/
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however that many cognitive models from this area serve as inspiration and basis
for the biologically inspired systems of quadrant D.

The largest project in this area is certainly the Human Brain Project that started in
2013 and aims at building a complete computer simulation of the human brain. It
is funded for 10 years by the European Union and involves more than 80 partners.
Other related projects are FACETS7 and its successor BrainScaleS8.

Also work of the field Computational Neuroscience falls mostly into this quadrant,
but partly also into quadrant D. According to Sejnowski et al. (1988), the goal
of computational neuroscience is “to explain how electrical and chemical signals
are used in the brain to represent and process information”. While computa-
tional neuroscience includes also aspects that do not model cognition but rather
low-level behavior, e.g., modeling single neurons, there are also approaches that
model cognitive behavior such as object recognition (Serre et al., 2007; Riesenhu-
ber and Poggio, 1999), visual attention (Kirkland and Gerstein, 1999; Itti et al.,
2005; Hamker, 2004; Itti, 2003), and visual search (Hamker, 1999; Navalpakkam
et al., 2004). A well-known journal that addresses these topics is the “Journal of
Computational Neuroscience”.

D) Objective: building a technical system; level of abstraction: low (bottom-up;
brain/mind-inspired).

Finally, work in this quadrant follows a biologically inspired approach based on
findings from psychology and neuroscience, but aims at building and improving
technical systems that are useful in applications, for example for service robots or
mobile vision devices. During the last decade, there has been increasing interest in
building high quality systems based on biologically inspired methods (Krüger et al.,
2013; Tsotsos, 2011; Serre et al., 2007; Riesenhuber and Poggio, 1999; Liao et al.,
2013). Work of this area is mostly published in the corresponding journals and
conferences of engineering fields that are the same as in quadrant A. Additionally,
some groups publish also in journals from quadrant C. A journal that emphasizes
explicitly the connection of computer science and human perception is the ACM
Transactions on Applied Perception.

A German cluster of excellence that deals with building Cognitive Systems of this
characteristics is CiTeC9 (Cognitive Interaction Technology) at Bielefeld Univer-
sity. Work in this cluster is highly interdisciplinary and deals with the key topics
Motion Intelligence, Attentive Systems, Situated Communication, and Memory
and Learning. Much of the research in CiTeC is dealing with Human Robot Inter-
action (HRI), a field that integrates research from artificial intelligence, robotics,
natural language understanding, design, and social sciences. Thus, most work of
HRI fits perfectly into this quadrant.

In Computational Neuroscience, there are several groups that aim not only at
modeling human brain behavior, but also at building technical systems. Much work

7http://facets.kip.uni-heidelberg.de/index.html
8http://brainscales.kip.uni-heidelberg.de/
9http://www.cit-ec.de/
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in this direction is done by the iLab10 around Laurent Itti. They summarize their
directive vividly on their webpages11: “to be proven truly useful and insightful,
computational neuroscience models should not only be tested against neural or
behavioral data in the context of specialized laboratory experiments, but should
also be exercised in the context of more general applications which confront the
models to the real world.” Some work in the field of Computational Neuroscience is
Itti et al. (1998); Walther et al. (2005); Rutishauser et al. (2004); Navalpakkam and
Itti (2006); Siagian and Itti (2007, 2009); Serre et al. (2007); Tsotsos et al. (1998);
Rotenstein et al. (2007). One of these examples is the PlayBot project that develops
a smart wheelchair to support disabled children (Tsotsos et al., 1998; Rotenstein
et al., 2007). In this project, a wheelchair locates toys in the surrounding based
on biologically-inspired visual attention methods.

The work of this thesis is also located in this quadrant, and its approximate location
is visualized by the yellow star in Figure 1.2.

Generally, there are many hybrid approaches. Especially the systems with a tech-
nical objective can be more or less biologically plausible and systems fill the whole range
of quadrants C and D. Many example projects can be found in the Cognitive Systems
and Robotics portfolio of the European Union, for example CoSy, VAMPIRE, CogSys,
Cogniron, PACO-PLUS, MACS, BACS, CogX, ROBOT-CUP, and SEARISE.12

To the best of our knowledge, our classification of cognitive systems is the first
that classifies systems in such a broad way and allows to place and distinguish different
research directions that deal with cognitive systems. It covers viewpoints from Cognitive
Psychology, Computational Neuroscience, and Cognitive Sciences as well as those from
Artificial Intelligence, Robotics, and Computer Vision. One of the dimensions of our
CS-space, the abstraction-level, has some relations in the literature.

For example, Vernon (2006) introduces a space of cognitive vision. He distinguishes
the cognitivist approach and the emergent approach, which might correspond roughly
to the top-down and bottom-up approaches of our abstraction-level dimension. Note
however that our dimension focuses explicitly on the abstraction from human perception,
while Vernon focuses rather on the manner in which cognition is achieved. Furthermore,
our CS-space defines Cognitive Systems in general, whereas Vernon’s classification is
restricted to Vision Systems. The abstraction-level dimension is also similar to the “levels
of analysis” that O’Reilly and Munakata (2000) mention for Computational Neuroscience
models. But since their models are concerned with modeling the brain, they contain
always some sort of biological inspiration. On the other hand, we explicitly include
systems with a purely technical objective and no brain-inspiration besides the goal. Both
definitions, Vernon’s and O’Reilly’s, lack the dimension of the objective of a system. We
think this dimension is essential to classify approaches since the objective a group pursues
influences strongly the methods, the evaluation, and the interpretation of the systems
they build.

10http://ilab.usc.edu
11http://ilab.usc.edu/research/
12http://cordis.europa.eu/fp7/ict/cognition/projects en.html
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1.2 Overview of this Habilitation Thesis

This thesis presents our contributions in the field of Cognitive Computer Vision. In our
research, we aim to build technical systems inspired by mechanisms of the human visual
system; thus, most of our work can be located within quadrant D of the CS-space from
the previous section (yellow star in Figure 1.2). Parts of our work could also be placed
into quadrants A (Frintrop and Jensfelt, 2008b) and C (Garćıa and Frintrop, 2013).

We follow this approach since we believe that there are great opportunities for techni-
cal systems in better understanding and exploiting the concepts that make human vision
so powerful. Especially the generalization capabilities of human perception as well as
the ability to cope with noise, clutter, and with new situations still outperform current
machine vision systems considerably. Furthermore, there is a large interest in robotics
for systems that are robust, flexible, efficient, and intuitive to interact with — properties
that humans have and that are worth being investigated in depth.

Following this directive, we have addressed four main topics in this thesis that will be
approached in the four main chapters of this summary: object discovery, visual saliency
detection, visual tracking, and visual SLAM (Simultaneous Localization and Mapping).
Additional chapters are this introduction, a brief summary of foundations (Chapter 2),
and a conclusion.

In the following, we summarize the content of the four main chapters. Numbers
in brackets [x] refer to the number of the corresponding publication in the list at the
beginning of this thesis.

• Object discovery: Chapter 3 presents our work on object discovery (Frintrop
et al., 2014; Garćıa and Frintrop, 2013; Garćıa et al., 2013) [1, 2, 3] and (Horbert
et al., 2014). The method detects unknown objects in a scene without any prior
knowledge or training phase and thus answers the question “What is an object?”.
Our object discovery system is applicable to web images, real-world video data, as
well as RGB-D data. The approach follows the principles of human perception:
1) Color and depth information are processed in parallel as in the ventral and
dorsal pathway of the human visual system. 2) A segmentation method clusters
similar pixels as the grouping mechanisms in human perception. 3) The order in
which to analyze a scene is determined by visual attention mechanisms that direct
the processing in a Saccade-Fixate cycle to regions of most potential interest. 4)
Spatial Inhibition-Of-Return mechanisms, inspired from human perception, enable
to remember already visited locations and facilitate the investigation of new areas.
We have shown that our method outperforms several state-of-the-art methods for
object discovery.

• Distribution-based saliency: Chapter 4 introduces our work on distribution-
based saliency (Klein and Frintrop, 2011; Frintrop et al., 2014)[5, 1]. Saliency
detection is a concept of human perception and is used to draw human attention
to regions of potential interest. In a similar way, computational saliency meth-
ods compute a saliency value for each pixel and are useful to determine which
image regions might be worth investigating in more depth. Saliency computation
is useful for many applications and is used throughout this thesis. In contrast to
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traditional saliency approaches, the saliency method in this chapter captures the
statistics of features by probability distributions. Then, saliency is computed in an
information-theoretic way by measuring the Kullback-Leibler divergence between
two distributions of a center and a surround region in the image. We show that
certain types of saliencies can be found with this approach that are not detected
in traditional saliency systems. The representation of distributions by integral
histograms makes the system real-time capable and applicable to real-world sce-
narios. The approach is a mathematically sound way to compute saliency, enables
real-time computation, and outperforms other state-of-the-art methods in terms of
accuracy. At the end of the chapter, we compare the distribution-based approach
to traditional methods and discuss which method is preferable in which settings.

• Multi-component tracking: Chapter 5 presents our work on visual, multi-
component tracking (Frintrop, 2010; Frintrop et al., 2010a)[8, 9]. We construct
a flexible, component-based descriptor of the target object that is computed on-
line from a single frame (Frintrop, 2010)[8]. The components are locally salient
regions since these are especially stable and thus good candidates for tracking;
additionally their extraction is quick. The number of components is chosen auto-
matically dependent on the appearance of the target object. The component-based
descriptor is integrated into the observation model of a visual tracker based on the
Condensation algorithm. The method captures the structure and appearance of
the target in a flexible way and is largely robust to illumination and viewpoint
changes. The tracking method extends our previous work on tracking (Frintrop
and Kessel, 2009, 2008) in which we presented a simple but fast way for general
object tracking based on the visual search mode of a computational attention sys-
tem. In (Frintrop et al., 2010a)[9], we have extended the multi-component tracker
to a person tracking module as part of a mobile robot for the task of tracking
individual persons.

• Attentive visual SLAM: In Chapter 6, we summarize our work on visual SLAM
(simultaneous localization and mapping) (Frintrop and Jensfelt, 2008b; Frintrop
and Cremers, 2007, 2010)[11, 12, 10]. We have presented a novel approach for
visual simultaneous localization and mapping (SLAM) called “Attentive visual
SLAM”(Frintrop and Jensfelt, 2008b)[11]. It proposes a new landmark selection
scheme which allows the robot to reliably estimate its pose based on a sparse set
of especially discriminative landmarks. In (Frintrop and Cremers, 2010)[10], we
showed that salient landmarks are particularly well suited for robot localization
and map generation since they have a high repeatability and are easily redetected.
Using our SLAM approach, the robot can reliably estimate its location with a
very sparse set of landmarks. We have also presented a new approach for active
gaze control on a mobile robot to improve the previously introduced SLAM sys-
tem (Frintrop and Jensfelt, 2008b)[11]. We show that the new method results in
better landmarks, more frequent loop closings, and a more uniform distribution of
landmarks. Using the active SLAM system, the robot is able to maintain a correct
pose estimate also in difficult cases in which the passive approach fails.
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Figure 1.3: Overview of the topics of this thesis. Dashed lines indicate future directions
to extend the current work by linking the topics addressed in this thesis.

A joining element of the topics mentioned above is the concept of visual attention
and the sub-problem of saliency detection. In the human brain, attention pervades all
our perception. It selects what is of current interest and disregards what is irrelevant.
Attention does not only enable us to deal with the huge complexity of the perceptual
input, it also enables us to act, since being able to focus attention on things of interest
is the prerequisite for decisions. In this thesis, attentional mechanisms enable to select
the candidates for the detection of objects, choose the parts of objects that are most
promising for tracking, and select the landmarks for robot localization and mapping.
Because of this omnipresence of attention in this work, we introduce the foundations of
visual attention and saliency in Chapter 2.

While we investigated the above topics separately in the publications of this thesis,
they can all be part of a larger cognitive system. In Figure 1.3, we show in a diagram
how all these components could be combined into one system. Object discovery can
be a pre-processing step for object recognition and thus improve speed and accuracy
(most recognition methods work best on pre-segmented images). We are currently in-
vestigating this extension in our cooperation with RWTH Aachen (Horbert et al., 2014).
Additionally, the visual tracker can be initialized with the object candidates that the
discovery method delivers, similar as in the work in our on-going work in (Horbert et al.,
2014). Up to now, most methods in this work, except (Frintrop and Cremers, 2007)[12],
utilize only bottom-up saliency. Using top-down information, for example prior knowl-
edge about the target and the scene, context information, etc., can help all methods
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Habilitation Additional related
paper Chapter Topic publications

from the author

[1] 3 2D Object Discovery Horbert et al. (2014)
[2] 3 3D Object Discovery and

Spatial Inhibition of Return
[3] 3 3D Object Discovery and

Situated Vision
[4] 2 Survey Article
[5] 4 Distribution-based Saliency Klein and Frintrop (2012)
[6] 2 Survey Article
[7] 2 Survey Article
[8] 5 Multi-component Tracking Frintrop and Kessel (2009)

Klein et al. (2010)
Garćıa et al. (2012)

[9] 5 Person Tracking Frintrop et al. (2009)
[10] 6 Localization, Landmark Stability Frintrop (2008)
[11] 6 Attentive Visual SLAM and Frintrop and Jensfelt (2008a)

Active Gaze Control Frintrop et al. (2007)
Frintrop et al. (2006a)
Frintrop et al. (2006b)

[12] 6 Top-down Landmark Detection Frintrop (2007)

Table 1.1: Relation of the papers of this cumulative habilitation thesis to the chapters
of this summary and to other related publications of the author. The references in the
first column refer to the publications that form this cumulative habilitation (listed at
the beginning of this thesis).

considerably to focus on objects of interest. Finally, all modules can benefit from active
camera control. Currently, this is only integrated into the active visual SLAM method
(Frintrop and Jensfelt, 2008b)[11], but also object discovery, object recognition, and vi-
sual tracking can benefit from high-resolution images obtained by focusing and zooming
into the region of interest. However, when competing for resources and hardware access
in such a complex system, an additional control and planning module is essential that
decides how to use the resources. An attention module can support this by providing
information about how relevant or promising certain perceptions are.

1.3 Contributions of this Habilitation Thesis

In this section, we outline the contributions of the publications that form this cumulative
habilitation thesis. The numbers refer to the list of publications at the beginning of this
thesis. Table 1.1 relates the papers to the chapters of this summary and to other related
publications of the author.
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[1] Topic: 2D object discovery

This work is part of the DFG project “Situated Vision to Perceive Object Shape
and Affordances”, a cooperation project with the universities in Vienna (TUW,
Prof. Dr. Markus Vincze) and Aachen (RWTH, Prof. Dr. Bastian Leibe) and the
research institute IDIAP in Martigny (Prof. Dr. Barbara Caputo). The aim of the
project is to detect, recognize, and categorize objects, and one of the subtasks of
our group is to detect candidate objects.

According to this, we present in (Frintrop et al., 2014)[1] a new approach for object
discovery in 2D images, based on concepts of the human visual system. We compute
perceptually coherent proto-objects which were assembled by saliency. We show
that our method clearly outperforms several state-of-the-art methods for object
detection in terms of precision and recall (more in our current work Horbert et al.
(2014)). Additionally, we improved the saliency system from Klein and Frintrop
(2012) and show that it outperforms 7 state-of-the-art saliency methods. The
saliency system is able to work on web images as well as on real-world images from
a moving camera.

[2, 3] Topic: 3D Object Discovery

This topic is also part of the above mentioned DFG project. The work in (Garćıa
and Frintrop, 2013; Garćıa et al., 2013)[2, 3] addresses a second subtask of our
group: building a 3D map of the environment that integrates object information
over time. According to this, we have performed Object Discovery in 3D data from
an RGB-D sensor. Our main contributions are:

• Color-Depth Stream and Saccade-Fixate Cycle: We generate 3D ob-
jects models with an attention-guided object discovery method on RGB-D
data. Following the concepts of human vision, we separate color and depth
processing and fixate object candidates sequentially in a Saccade-Fixate Cy-
cle. This accumulates object information over time and results in 3D object
models. To our knowledge, our approach is the first that performs attentional
scene exploration in 3D data.

• Spatial Inhibition of Return: In our 3D object discovery method, we
simulate the human mechanisms of inhibition of return (IOR) to enable ori-
entation towards novelty. In contrast to previous work, we root the inhibition
information not in image but in spatial coordinates which corresponds to
findings from human vision and enables us to deal with dynamic scenes.

While (Garćıa and Frintrop, 2013)[2] focuses stronger on the spatial inhibition
of return and the 3D map generation, (Garćıa et al., 2013)[3] gives emphasis on
rooting the 3D object discovery in a Situated Vision paradigm.

[4] Topic: Survey on Attentive Robots

The interest for attentional modules has strongly increased in robotics within the
last decade. Systems are now mature enough to enable more complex behaviors and



1.3. CONTRIBUTIONS OF THIS HABILITATION THESIS 15

interaction of different modules. Therefore, more and more groups are interested
in attentional modules that prioritize the processing. To reflect this interest and to
provide an overview of approaches in this field, we present in (Frintrop, 2011b)[4]
a survey on attentive robots. These are systems, which have a visual attention
module that directs their resources to the most promising parts of the sensory
input. We have outlined the similarities of the needs and requirements of robots
and humans, and discussed the chances and challenges in this field.

[5] Topic: Distribution-based Saliency

We introduce in (Klein and Frintrop, 2011) a new method to compute saliency
based on probability distributions. Feature statistics are represented by distribu-
tions and compared in an information-theoretic way by the Kullback-Leibler diver-
gence between distributions of center and surround regions. To maintain real-time
performance despite the computational complexity of comparing distributions of
large image regions, the approach uses integral histograms to represent the distri-
butions. The approach is a mathematically well-founded way to compute saliency,
enables real-time computation, and outperforms other state-of-the-art methods in
terms of accuracy. Since its appearance in November 2011, it was already cited 43
times (Google Scholar, March 2014).

[6] Topic: Textbook Introduction to Attention

We present in (Frintrop, 2011a) a book chapter in a textbook for graduate students
that explains the concepts of computational visual attention for newcomers to the
field. Methods and background are explained in a comprehensive way and illus-
trated with many examples. A list of available source code and of benchmarking
databases completes the overview.

[7] Topic: Interdisciplinary Survey on Visual Attention

Due to the increasing interest in computer vision and robotics in attentional mech-
anisms, it is essential to make the background of visual attention in human percep-
tion accessible to technically and mathematically educated researchers. This need
is addressed by our survey on computational attention systems and their cognitive
foundations in the interdisciplinary journal “ACM Transactions on Applied Per-
ception” (Frintrop et al., 2010b). It aims to bridge the gap between researchers
from different disciplines, namely psychology, neurobiology, and cognitive science
on the one hand, and computer vision, robotics, and artificial intelligence on the
other hand. It introduces the cognitive foundations required to understand the
biological basis of visual attention, explains computational approaches, and gives
an overview of existing methods. Since its appearance in 2010, it was cited already
152 times (Google Scholar, March 2014).

[8] Topic: Multi-component Object Tracking

We present in (Frintrop, 2010) a novel approach for general object tracking that is
based on a multi-component target representation. It can be applied to arbitrary
objects without previous training phase, the method learns the appearance of the
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target online from a single frame. The main idea of the approach is to build a
flexible, component-based descriptor of the target object which can be used for
tracking. The components are locally salient regions since these are especially
stable and thus good candidates for tracking; additionally their extraction is quick.
The component-based descriptor is integrated into the observation model of a visual
tracker based on the Condensation algorithm. The method captures the structure
and appearance of the target in a flexible way and is largely robust to illumination
and viewpoint changes. With these properties and its real-time capability, the
method meets all requirements that have to be fulfilled to use the method on
mobile vision systems, e.g., on autonomous service robots.

[9] Topic: Person Tracking

This work (Frintrop et al., 2010a) was performed in cooperation with the group
of Dr. Dirk Schulz at the Fraunhofer FKIE institute, and robot experiments were
performed at the FKIE institute. Here, we extend the multi-component tracker
from Frintrop (2010) to a person tracking module as part of a mobile robot for
the task of tracking individual persons. In contrast to shape-based people track-
ers, our method aims to distinguish individuals. This is of special importance for
service robots, for example for guiding a specific person through a museum or hos-
pital. Depending on the appearance of the person (clothing, hair color, skin color
etc.), the system determines a flexible number of components, each representing
a discriminative part with respect to a certain feature dimension. Because of its
flexibility, the approach is also able to deal with unusual appearances, for example
with people wearing a backpack or carrying a large object. Our method is able
to run in real-time on a mobile platform and can track persons in real-world envi-
ronments under varying lighting conditions and backgrounds. We have compared
the method with other tracking approaches and show that it outperforms other
methods clearly.

[10] Topic: Localization, Landmark Stability

In (Frintrop and Cremers, 2010), we show that salient landmarks are especially well
suited for robot localization and map generation since they have a high repeata-
bility and are easily redetected. We compare salient regions with other feature
detectors and show that we obtain a higher repeatability in tracking as well as in
viewpoint change situations. Our experiments show that visual landmark gener-
ation and redetection is possible with a single feature per frame because of the
high redetectability of the salient landmarks. This can be exploited for topological
robot localization, since in this application, it is in principle sufficient to have one
landmark every few meters, it is not necessary to see a landmark in each frame as
long as the scene is recognized every few seconds. We show in an office environ-
ment with different floors that a reliable scene localization can be performed with
a single feature per frame.

[11] Topic: Attentive Visual SLAM

This work (Frintrop and Jensfelt, 2008b) on attentive visual SLAM (Simultaneous
Localization and Mapping) was performed during my postdoctoral stay at KTH
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Stockholm within the EU project NEUROBOTICS. The article in the highly rep-
utable journal “IEEE Transaction on Robotics” was cited already 84 times (Google
Scholar, March 2014). The main contributions are the following:

• Attentive Visual SLAM with Salient Landmarks:

We present a novel approach for visual simultaneous localization and map-
ping (SLAM) called “Attentive visual SLAM”. It proposes a new landmark
selection scheme which allows the robot to reliably estimate its pose based
on a sparse set of especially discriminative landmarks. A visual attention
system detects salient features that are highly discriminative because of the
uniqueness property of salient regions. Therefore, they are ideal candidates
for visual landmarks that are easy to redetect. Features are tracked over sev-
eral frames to determine stable landmarks and to estimate their 3D position
in the environment. Matching of current landmarks to database entries en-
ables loop closing. In real-world robot experiments, we show that reliable pose
estimation is possible with a very sparse set of landmarks (below 100 per envi-
ronment) which is in contrast to other visual SLAM approaches that usually
require hundreds of features per frame and several thousands of landmarks
per environment.

• Active Gaze Control:

We present a new approach for active gaze control on a mobile robot to im-
prove the attentive SLAM system. The active gaze control module controls
the camera according to three behaviors: redetection of landmarks, tracking of
landmarks, and exploration of unknown areas. These behaviors make it possi-
ble to, first, observe landmarks for a longer time resulting in better landmark
representations, second, actively redetect landmarks to enable more frequent
loop closings, and finally, achieve a more uniform distribution of landmarks
in the environment. We present several experiments showing that the active
SLAM approach enables to regain a correct robot pose in difficult cases in
which the passive approach fails.

[12] Topic: Top-down Landmark Detection

We extended in (Frintrop and Cremers, 2007) the landmark redetection module
of our attentive SLAM approach with top-down information about expected land-
marks. This results in explicitly supporting the features of expected landmarks.
Information about which landmarks are expected is provided by the SLAM mod-
ule, based on the estimated robot pose and the map. In several real-world experi-
ments, we show that while bottom-up matching shows advantages in easy matching
situations like tracking features in consecutive frames, the top-down matching out-
performs the bottom-up strategy considerably in difficult matching situations with
changing viewpoints. Therefore, the method is especially suited for loop-closing
situations in which the robot returns to a previously visited location.
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Chapter 2

Foundations

In this chapter, we will introduce some of the basic foundations required as background
in the following chapters. We start in Section 2.1 with a brief overview of human vision.
In Section 2.2, we introduce then the basic concepts of computational attention and
saliency systems, since these will play a role in all of the following chapters.

2.1 The Human Visual System

In this section, we will provide a brief overview over the basic principles of human
perception. The overview is by no means exhaustive but focuses on the aspects of
perception that are relevant for the work in this thesis. For more details, we point the
reader to (Zeki, 1993; Kandel et al., 1996) or the comprehensive interactive website about
the human brain and behavior (Dubuc, 2014).

2.1.1 Overview

Vision plays a primary role in human perception: the eyes process more information (109

bits/sec (Itti and Koch, 2001a)) than any other sense and about “50% of the human
neocortex responds to changes in the visual environment” (Ettinger and Klein, 2014).
An overview of the areas involved in visual processing is shown in Figure 2.1. Visual
information processing in the human brain starts already in the eye: the light falls onto
the retina, where the photoreceptors convert the light into nerve impulses. Two types of
photoreceptors exist: the rods respond only to brightness, whereas the cones are color
sensitive. Color perception is thereby performed by three types of cells: the L-cones
react mainly to red, the M-cones to green, and the S-cones to blue light.

The photoreceptors are connected via bipolar cells with the ganglion cells. These
cells are still part of the retina, and they transform the analog signal to a discrete one.
These cells will later be important for our computational systems, since they are the
first place in the human visual system to compute contrasts. This is performed by their
center-surround (On-Off or Off-On) structure: They respond excitatorily to light at the
center of their receptive field1 and inhibitorily to light at the surround or vice versa.

1The receptive field of a cell is the collection of other cells that influences the output of the cell.
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Figure 2.1: Left: The most important areas involved in visual processing in the human
brain. Right: the two streams involved in visual processing: the ventral stream, respon-
sible for object recognition, and the dorsal stream for locating objects in space. (Figures
from Dubuc (2014)).

This means, they have the strongest response if the center is bright and the surround
dark (On-Off cells) or vice versa (Off-On cells). Similar but increasingly complex cells
are found in higher brain areas: the Lateral Geniculate Nucleus (LGN), primary visual
cortex (V1), and the areas of the extrastriate cortex 2.

Ganglion cells are divided into three types, organized in three channels which are also
called “the cardinal directions of color space” (Krauskopf et al., 1982): the luminance
channel, the red-green channel, and the blue-yellow channel (Gegenfurtner, 2003). These
channels lead from the retina to higher brain areas. Cells exist with concentric receptive
fields and with elongated ones. It has been shown that the concentric fields are modeled
best with a two-dimensional Difference-of-Gaussian (DoG) function (Rodieck, 1965),
while the elongated fields are model-led best with Gabor filters (Jones and Palmer,
1987).

From the retina, most of the visual information is transmitted to the LGN, and from
there to the primary visual cortex (V1). These areas are retinotopically organized, which
means that adjacent locations contain information about adjacent locations on the retina
(and thus in the visual scene). From V1, the information travels on to higher brain areas
in the extrastriate cortex. The most important areas of the extrastriate cortex are V2,
V3, V4, V5 (or MT), the infero-temporal cortex (IT/ITC), and the posterior-parietal
cortex.

Important for our work, especially in chapter 3, is the functional separation of the
visual processing that starts already in the retina and becomes more apparent in higher
brain areas. The processing is separated into two pathways (Ungerleider and Mishkin,
1982): first, the ventral stream (or “what pathway”) which is strongly involved in color
and form processing and is responsible for object detection and recognition, and, second,

2The extrastriate cortex consists of all visual areas in the cortex, except V1 which is also called striate
cortex. Thus, extrastriate means basically “beyond the striate cortex”.



2.1. THE HUMAN VISUAL SYSTEM 21

the dorsal stream (or “where pathway”) which processes mainly motion and depth cues
and is responsible for object localization (cf. Figure 2.1). Goodale and Milner pointed out
that these streams perform “vision for perception” and “vision for action” respectively,
highlighting that it is the functional difference between the brain areas rather than their
visual input that matters most (Goodale and Milner, 1992; Milner and Goodale, 2008).

In this thesis, we are mostly interested in object detection and thus in the ventral
visual pathway (Grill-Spector, 2003). This pathway starts its processing as early as the
retina, where it derives information mainly with help of the cones, which are responsible
for color perception. Blob and edge structures are then recovered by the ganglion cells,
and later on, by the P-cells of LGN, and the simple and complex cells of the primary
visual cortex (V1). Information then travels on over the extrastriate visual areas V2 and
V4 to IT, which is responsible for object recognition.

In the following, we will cover in more detail two aspects of human perception that
are especially important for the work of this thesis: visual attention (Section 2.1.2) and
object perception (Section 2.1.3).

2.1.2 Human Visual Attention and Saliency Perception

Attention belongs to the most important capabilities of human perception since it guides
the processing capacities of the brain to the parts of the perceptual input that are of
most potential interest (Pashler, 1997). This concept of selective attention enables the
brain to deal with the huge complexity of the incoming sensory data: the information
entering the eye is estimated to be on the order of 109 bits per second (Itti and Koch,
2000) which exceeds by far the processing capabilities of the brain. Thus, attention
mechanisms prioritize the perceptual data and direct attention in a serial manner to
regions of interest. However, the purpose of attention is not limited to pure complexity
reduction: ignoring irrelevant information is essential to concentrate on what is relevant
and to enable an understanding of the perceptual input, or as Carrasco put it: “Attention
[...] is the mechanism that turns looking into seeing” (Carrasco, 2011).

Human visual attention has been investigated since a long time; already Aristotle
was fascinated by its capabilities (Aristotle, BCE). During the last decades, research on
attention has increased strongly: a PubMed3 search on visual attention retrieved 33338
articles (February 3rd, 2014), of which only 62 were published before 1970 and more
than 2000 each year between 2008 and 2013 (cf. Figure 2.2). An early finding in the
field of attention was the discovery that visual processing takes place in two steps: a
pre-attentive stage analyzes the visual field quickly in parallel and an attentive stage
processes these regions serially (Neisser, 1967). That means, complex processes such
as object recognition operate not on the whole visual input but only on the currently
attended region.

The selectivity of visual attention is deeply rooted in the physiology of the human
visual system and strongly connected to eye movements: the fovea — the center of the
retina which is responsible for sharp vision — covers only about 1◦ of the retinal size, but
accounts for 50% of the visual information that is transferred from the eye to the visual
cortex (Ettinger and Klein, 2014). Thus, by moving our eyes to a target of interest, we

3http://www.ncbi.nlm.nih.gov/pubmed
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Figure 2.2: Result of a PubMed search for “visual attention”: 33338 articles were found
between 1960 and 2013.

enable a detailed processing of this area. Humans scan their environment permanently
with such quick eye movements, also called saccades4, which are separated by fixations.
We will call this Saccade-Fixate Cycle in the following. However, attention can also be
directed to a region without moving the eyes to this place. This aspect is called covert
attention.

The mechanisms of visual attention can be separated into bottom-up and top-down
processes (Connor et al., 2004). Bottom-up attention is based purely on the sensory data
and is passive and automatic. Saliency is an important aspect of bottom-up attention.
It guides the gaze to regions that stick out of the surrounding and that automatically
attract our attention. Top-down attention on the other hand is usually volitional and
“under control of the intentions of the observer” (Theeuwes, 2010). If a person is for
example looking for a specific object (visual search), the attention is guided by knowledge
about the appearance of the object, about likely locations in a scene, and so on. Whether
aspects such as emotions, expectations, and previous experience belong to bottom-up
or top-down cues is controversial. Some people classify such aspects as top-down cues,
because they originate from the mind of the observer (Corbetta and Shulman, 2002),
while others define them as bottom-up as long as they do not correspond to the intentions
of the person (Theeuwes, 2010). While top-down attention is an important aspect in
human attention, such cues are not always available in a machine vision system and
many computational methods profit from purely determining the bottom-up saliency.

Many psychological models of visual attention have been proposed during the last
decades (see Bundesen and Habekost (2005) for a survey). The most influential for com-
putational attention systems have been the Feature Integration Theory (FIT) (Treisman

4Saccade: rapid, irregular eye movement that occurs when changing focus from one point to another
(Random House Kernerman Webster’s College Dictionary, 2010)
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and Gelade, 1980) and the Guided Search model (Wolfe, 1994). They state that early
in the visual processing stream, features are processed in parallel and compete for selec-
tive attention. Opinions differ about which basic features guide human attention, but
it is undoubted that color, orientation, motion, and size are among them (Wolfe and
Horowitz, 2004). Although neurobiological findings show that there is no such clear seg-
regation of feature computations (Gegenfurtner, 2003), there is a bias of several brain
areas for specific features, for example color processing in V4 and motion processing in
V5/MT (middle temporal area).

For each of these feature channels, pattern recognition is performed by basic blob
and edge detection cells. As mentioned in Section 2.1.1, many of these cells have a
center-surround structure and thus respond to contrasts. These contrasts can be based
on intensity, color, orientation, depth, or motion. Important is that these contrasts
measure how much a region differs from its (spatial or temporal) neighborhood, which
is the essential aspect of saliency computation.

The salient stimuli of all feature dimensions compete for attention. Therefore, Treis-
man has introduced the concept of a master map of locations, denoting a map that
“collects” saliencies from different features and indicates where salient regions in the
field of view are. Later on, this map has been called saliency map. Recent work in psy-
chology and neurobiology has indicated that in human vision, this bottom-up saliency
computation might take place in the primary visual cortex (Zhang et al., 2012).

Finally, an important aspect in attention-guided processing is inhibition of return
(IOR). This mechanism was discovered by Posner and Cohen (1984) and suppresses the
processing of locations and objects that have recently been the focus of attention. It
enables to withdraw attention from fixated regions and orient towards novelty. It has
been shown that IOR happens in spatial, not in retinotopic coordinates and that it can
be environment-based (inhibiting a spatial location) as well as object-based (inhibit an
object, even if it moves) (Tipper et al., 1994). We will come back to this aspect in
chapter 3, where we use IOR for attention-based scene exploration.

For more details on the cognitive foundations of visual attention and how they relate
to computational attention systems we point the reader to our survey in (Frintrop et al.,
2010b).

2.1.3 Human Object Perception

Object perception is deeply rooted in the human visual system and enables a fast and
effortless detection of objects. Even objects of completely unknown appearance are easily
recognized as objects. Already young infants that are only a few months old can reliably
detect objects (von Hofsten and Spelke, 1985; Spelke, 1990). It is not yet completely
understood how object perception works in the human brain, but many findings are
well known. We will concentrate here on the findings which are important for our
computational object discovery framework that will be presented in chapter 3.

Physiologically, object detection and recognition take place in the ventral visual
stream that was mentioned in Section 2.1.1. It starts as early as in the retina and
goes up to IT. The dorsal stream on the other hand is responsible for locating the ob-
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jects in space. Both of these aspects will be important in our computational model of
object perception.

Furthermore, there is evidence that the individuation of objects, which addresses the
question of what is an object, takes place before object recognition (Pylyshyn, 2001).
The decision of which parts of the visual scene belong to objects results from perceptual
organization rules, especially from segmentation processes that bundle parts of the vi-
sual input. This bundling is based on concepts such as similarity, proximity, and other
processes that have been described already early by the Gestalt principles (Wertheimer,
1922). A recent review about the history of the Gestalt laws and new findings of their
rooting in the human visual system can be found in (Wagemans et al., 2012). Such
segmentation mechanisms that individuate objects are believed to exist on all levels of
the visual system (Scholl, 2001).

The result of these segmentation processes are so called “proto-objects” (Rensink,
2000). They describe the local scene structure of a spatially limited region and often
correspond to objects, but they can be also object parts or collections of several objects.
Rensink describes them as volatile structures of limited spacial and temporal coherence,
meaning that they are regenerated constantly and not stored in visual memory. Later
on, proto-objects are combined by focused attention to form coherent objects. This is
an important step, since it enables to decide which segments an object consists of.

2.2 Computational Attention and Saliency Systems

Computational visual attention systems aim to find regions of interest in images, that
mean, regions that attract the attention of humans. In general, attention systems can
consist of a bottom-up part that is automatically guided by properties of the visual data
(usually by salient regions) and a top-down part that is guided by intentions and goals
of the observer. In this work, we focus mainly on the bottom-up part which is especially
of interest if top-down knowledge is not available. More on top-down attention can be
found in our previous work (Frintrop et al., 2005; Frintrop, 2006).

Computational attention systems usually follow a structure that is motivated from
psychological models of visual attention, such as the Feature Integration theory (Treis-
man and Gelade, 1980) or the Guided search model (Wolfe, 1994), which were mentioned
in the previous section. These models suggest an independent feature computation for
features such as color or orientation and the fusion of saliencies in a single map, which
was called “master map of locations” by Treisman, and “activation map” by Wolfe. One
of the first computational models that was constructed according to these findings was
the Koch-Ullman model from 1985 (Koch and Ullman, 1985) and later implementation
by Milanese et al. (1994) and the group around Laurent Itti (Itti et al., 1998).

An overview of the structure of such systems is shown in Figure 2.3. The basic com-
ponents are a separation of feature channels (1), a hierarchical investigation of different
scales, usually with an image pyramid (2), a center-surround method to capture feature
contrast (3), a fusion of feature conspicuities to a saliency map (often including a unique-
ness weighting of channels) (4), a method to find the most salient region (originally a
winner-take-all network) (5), and an inhibition of return mechanism that prevents the fo-
cus of attention from returning to previously visited areas (6). An additional important
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Figure 2.3: General structure of computational visual attention systems

factor is the top-down information (7) which can influence the processing in different
ways. Since in this thesis we are mainly interested in bottom-up attention and saliency,
we do not tackle this aspect here. The result of an attention system is then a trajectory
of foci of attention (FOAs), ordered by their saliency. The basic structure shown in this
figure can still be found in modified forms in most existing attention systems. Saliency
systems mostly focus on steps (1) – (4) and end with the computation of a saliency map.

The most essential element of saliency methods and bottom-up attention is most
likely the mechanism to compute the center-surround contrast between an image region
and other parts of the image (number (3) in Figure 2.3). A high contrast in some feature
dimension is an intrinsic property of a salient item (by definition it “stands out relative
to its neighbors”5) and basically all saliency methods compute such a value. Thus, one
important element when distinguishing saliency methods, maybe the most important
one, is the way this contrast is computed. The traditional method to compute the
center-surround contrast is to apply Difference-of-Gaussian (DoG) or Gabor filters (Itti
et al., 1998; Frintrop, 2006), since these are known to model best the concentric and
elongated cells of the human visual system (Rodieck, 1965; Jones and Palmer, 1987). In
Chapter 4, we will discuss other methods to compute the center-surround contrast and
introduce an alternative to the DoG approach.

In practice, another important element is the scale-space structure (number (2) in
Figure 2.3). It is commonly used in many computer vision areas and also for saliency
computation such a structure is necessary to find salient objects of different sizes. Thus,

5Wikipedia: “Salience (neuroscience)”, Jan. 2014.
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most methods operate on image pyramids or vary the size of the center-surround filter,
which has the same effect.

The separation of feature channels (1) is also essential to detect different types of
saliency. A red item among green ones can only be detected with a color channel, a ver-
tical bar among horizontal ones requires an orientation channel, and moving elements a
motion channel. Nevertheless, many recent saliency models compute saliency only based
on color features (e.g. Achanta et al. (2009)). This already leads to good performance
for specific applications and benchmarks, where images are often strongly color-based
(e.g. web images in the MSRA database (Liu et al., 2009)). However, depending on the
application, other feature channels are essential.

The fusion of channels to a single saliency map (4) is of course only necessary if
several feature channels are computed. There are however also approaches that propose
to regard the feature channels separately and not fuse them in the end (Draper and
Lionelle, 2003). The fusion of channels often includes a weighting step, which we call
uniqueness weight (Frintrop, 2006). This function gives more emphasis to outliers than to
frequently occurring elements. Such a weighting can be realized by a non-linear function
that considers the number of local peaks in a feature map (Itti et al., 1998; Frintrop,
2006) or by lateral inhibition in the map (Itti and Koch, 2001b). Additionally, such a
weighting makes only sense if there are many elements in an image, which is the case for
most real-world images, but not for many photographs and web images. For example,
benchmarks as the MSRA database (Microsoft Research Asia Salient Object Database)
(Liu et al., 2009), on which most current saliency methods are evaluated, contain often
only a single object per image.

The two final steps, i.e., selecting the most salient item (5) and inhibition of return
(6), are often ignored in recent saliency systems (Achanta et al., 2009; Liu et al., 2009;
Hou and Zhang, 2008; Marchesotti et al., 2009; Goferman et al., 2011; Zhu et al., 2013).
Instead, they end with the computation of the saliency map. This is sufficient for eval-
uating the quality of saliency maps, but if regions shall be selected from the map for
further processing and if image sequences instead of still images are considered, these
steps are important. While determining the order of regions according to their saliency
is simple, step (5) involves as well determining the size of the region. This is related
to segmentation, which is still not satisfyingly solved in the general case. IOR (6) is of
special interest in dynamic scenes in which it is necessary to remember which items have
already been focused to enable fixations on novelty. We will address (5) and (6) in more
detail in Chapter 3.

The quality of a saliency method is evaluated by comparing the saliency maps of a
collection of images to corresponding ground truth. Ground truth for an image is given
by a ground truth map G that has the same dimensions as the corresponding input
image I. The ground truth map can be either obtained from human eye movements
as in (Kootstra et al., 2008) or from user labelings of salient objects as in (Liu et al.,
2009; Achanta et al., 2009). One example of user labeled data is the MSRA database of
salient objects that was introduced by Liu et al. (2009) and is nowadays in the computer
vision community the most frequently used benchmark for evaluating saliency systems
(Achanta et al., 2009; Liu et al., 2009; Hou and Zhang, 2008; Marchesotti et al., 2009).
We will also use this database for some of our experiments in Chapter 3 and 4.
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Given a benchmark dataset, a saliency method is evaluated by computing the differ-
ence D = d(S,G) of the saliency map S with respect to the ground truth map G, where d
is a distance measure. Borji and Itti (2010) propose different ways for comparing saliency
maps with ground truth. The one which is used most frequently in the computer vision
domain (e.g. Achanta et al. (2009)), and which we also used for our experiments in (Klein
and Frintrop, 2011) and (Klein and Frintrop, 2012), is to threshold the saliency map S,
consider it as a binary classifier, and use analyzing methods from signal detection theory
(Receiver Operating Characteristics (ROC curves) or precision-recall curves and Area
Under Curve (AUC) metrics) to evaluate this classifier.

Borji and Itti (2010) have defined the goal of attention modeling as finding a saliency
function fbest that minimizes the error on eye fixation prediction, which we extend here
to general ground truth that could, e.g., also result from user labelings:

fbest = argmin
f

N
∑

j=1

d(f(Ij), Gj), (2.1)

for an image collection I = {Ij}
N
j=1 and corresponding ground truth maps G =

{Gj}
N
j=1. Since f can be in principle any possible function, this equation is in its general

form of limited use. However, for a given saliency method with k parameters, these can
be determined by minimizing the error according to this equation on a training dataset.

This brief overview of the main concepts of computational attention systems gives
the basis for the following chapters. For more details, we point the reader to our survey
in (Frintrop et al., 2010b) and to the book chapter (Frintrop, 2011a) which is written for
graduate students and contains many useful details about implementation and evaluation
of attention systems. Additional reviews of methods for salient object detection and
benchmarks can be found in (Borji and Itti, 2012b; Borji et al., 2013), and a review of
applications of attentional approaches in robotics is presented in (Frintrop, 2011b).
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Chapter 3

Object Discovery

Object discovery is the task to find all objects in a scene without knowing how they
might look like or what category they belong to. In contrast to object recognition
or classification, the types of objects are not known in advance, there is no training
phase, and the system starts without any prior knowledge. Following the phrasing of
Alexe et al. (2010), such a system addresses the question “what is an object?”. This
topic is of interest for many applications, ranging from automatically cropping the most
interesting thumbnail from your holiday pictures up to collecting a database of objects
with an autonomous service robot that explores a new environment. Some typical images
in which finding objects is of interest are shown in Figure 3.1.

In this chapter, we present our work on object discovery that follows several princi-
ples of human vision. We show that our object discovery system achieves good results
on web images, real-world video data, as well as on RGB-D data. The work was per-
formed together with Germán Mart́ın Garćıa within the DFG project “Situated Vision
to Perceive Object Shape and Affordances”, a cooperation project with the universities
in Vienna, Austria (TUW, Prof. Dr. Markus Vincze) and Aachen, Germany (RWTH,
Prof. Dr. Bastian Leibe), and the research institute IDIAP in Martigny, Switzerland
(Prof. Dr. Barbara Caputo). The aim of the project is to detect, recognize, and catego-
rize 3D objects, and the subtask of our group is to detect candidate objects and to build
a 3D map of the environment that integrates the object information over time. Both
parts are addressed in the publications that are the basis of this chapter (Garćıa and
Frintrop, 2013; Garćıa et al., 2013; Frintrop et al., 2014; Horbert et al., 2014).

The contributions presented in this chapter are first, a new method to discover objects
based on concepts of human perception that clearly outperforms other state-of-the-art
methods for object discovery (Frintrop et al., 2014; Garćıa and Frintrop, 2013), second,
an extension of attention-based scene exploration to RGB-D data which is to the best
of our knowledge the first attention method that operates directly on 3D data (Garćıa
et al., 2013; Garćıa and Frintrop, 2013), and finally, a spatial inhibition of return method
that roots the inhibition information in 3D voxels and enables thus to deal with dynamic
scenes (Garćıa et al., 2013; Garćıa and Frintrop, 2013).

29
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Figure 3.1: Some examples of different image types in which object discovery is of
interest: a typical web image (MSRA database (Liu et al., 2009)), an image obtained
with Google Glass1, and one obtained with a mobile robot (lab at KTH, Stockholm).

3.1 Object Discovery – An Overview

Before we address the problem of finding objects, let us clarify what we mean by an
“object”. Although the term is so commonly used, a clear definition is not easy. Most
definitions come from philosophy and are often not suitable for practical purposes, for
example, the definition by Charles S. Peirce who is sometimes called the father of prag-
matism: ”By an object, I mean anything that we can think, i.e., anything we can talk
about” (Peirce). This is counter-intuitive to our usual understanding of objects that
would not consider things like ’hope’ or ’mathematics’ as objects. Instead, we follow
here a definition from psychology: according to von Hofsten and Spelke (1985), objects
are “manipulable units with internal coherence and external boundaries”. This is a
practical definition that is also useful for applications in computer vision and robotics.
Similar, and also suitable, is a definition from the computer vision area: “Objects are
standalone things with a well-defined boundary and center, such as cows, cars, and tele-
phones, as opposed to amorphous background stuff, such as sky, grass, and road” (Alexe
et al., 2010).

The notation for the task to detect and localize unknown objects in a scene varies
strongly among communities. While the robotics community calls the problem object
discovery or general object detection, in computer vision the problem is rather known as
object proposal detection. Literature in cognitive science and psychology speaks usually
about object detection or object perception. In this thesis, we call the problem “object
discovery” since we think that the term best describes the fact that objects are not known
in advance. Also the items that result from the segmentation steps as well as the finally
resulting object candidates have different names in the communities. To disambiguate
the notation, we list the terminology in Table 3.1.

While objects are discovered easily and effortlessly by humans, it is a challenging
task for machine vision and belongs to the open problems in the field. The reason is the
’chicken-and-egg property’ of the problem: how to search for an object before knowing
how it looks like? To get an impression of the complexity of the task, let us regard
the problem formally. In that sense, object discovery means we are interested in an
algorithm that can decide whether a given pixel set corresponds to an object or not.

1http://www.androidmag.de/news/technik-news/neue-google-glass-parodie-google-glass-ermoglicht-
ein-schnelleres-leben/
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Community: Computer Vision Robotics Cognitive Psychology
Task: Object proposal Object discovery/ Object detection

detection General object detection Object perception
Results of Segments/ Segments Proto-objects
segmentation: Superpixels
Final results: Object proposals Object candidates Proto-objects

Object candidates Object hypotheses Object candidates
Object hypotheses Object hypotheses

Table 3.1: Disambiguation of terminology in different communities.

But even if we had a method to answer this question reliably, the problem would still
be complex: an image of w × h = n pixels consists of 2n possible subsets that could
potentially form an object (due to partial occlusions, object parts do not necessarily
have to be connected). Tsotsos has proven that the related problem of unbounded visual
search, i.e., search for an object whose features are unknown, is NP hard (Tsotsos, 1990).
And even when restricting the problem to a rectangular bounding box, the problem is
still demanding: O(n · w · h) = O(w2 · h2) = O(n2) subwindows have to be tested for
their objectness, since at each pixel, subwindows of all possible sizes have to be tested.
While a quadratic running time is per se not necessarily impractical, one has to consider
that at each of these locations, the objectness measure has to be applied, which can be
expensive. Especially, if each subwindow has to be sent to a server to be classified, as
for example necessary for mobile devices such as Google Glass, investigating thousands
of subwindows becomes quickly unfeasible.

While difficult for machines, detecting objects is effortlessly, even unconsciously, done
by humans. Already infants that are only a few months old can reliably discover objects
(von Hofsten and Spelke, 1985; Spelke, 1990). Thus, it is worth investigating how the
human visual system achieves this task and whether we can improve vision systems by
considering these concepts. While not yet completely understood, many findings from
psychology and neurobiology describe the processes involved in object perception in the
brain and we have outlined several of them in Chapter 2. A brief summary of the most
important findings which are relevant for the work of this chapter are the following
object principles:

O1 In the human brain, two different pathways process the visual data: the “what
pathway” (ventral stream) that processes color and form and is responsible for
object detection and recognition, and the “where pathway” (dorsal stream) that
processes mainly motion and is responsible for spatially localizing objects (Unger-
leider and Mishkin, 1982).

O2 Detection (discovery) of objects takes place before object recognition. This is an
important aspect of the Situated Vision Theory that states that it is important
that a visual system is able to individuate objects without previous knowledge of
them (Pylyshyn, 2001).
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O3 Segmentation processes bundle parts of the visual input based on Gestalt principles,
such as similarity or proximity (Scholl, 2001). The results of the segmentation are
called “proto-objects” (Rensink, 2000).

O4 Proto-objects are combined by focused attention to form coherent objects (Rensink,
2000).

O5 Visual attention mechanisms direct the processing to the regions of most potential
interest, resulting in a sequential investigation of a scene by fixations and saccades
(Pashler, 1997).

O6 Inhibition of return (IOR) mechanisms inhibit cells that correspond to previously
fixated locations and objects, which supports orienting towards novelty and en-
ables scene exploration (Posner and Cohen, 1984). IOR is encoded in spatial (not
retinotopical) coordinates and can be environment-based as well as object-based
(Tipper et al., 1994).

Our object discovery system utilizes these perceptual concepts in the following way:

1. Color and depth information are processed in parallel (if depth information is
available) (corresponds to object principle O1).

2. Object principle O2 is not explicitly modeled, but justifies the approach to deal
with the object discovery problem before object recognition and use it as a pre-
processing step for advanced perception modules. This is in contrast to the tradi-
tional approach in computer vision that applies classifiers to many subwindows of
an image in a sliding window approach. It is especially important in a Situated Vi-
sion Framework in which the whole visual perception is situated in its environment
(see Garćıa et al. (2013)).

3. A segmentation method clusters similar pixels to perceptually coherent regions
(proto-objects), related to the grouping mechanisms in human perception (corre-
sponds to O3).

4. An attention mechanism (saliency method) selects proto-objects to form object
hypotheses (corresponds to O4).

5. The order in which to analyze a scene is determined by visual attention mechanisms
that direct the processing to regions of most potential interest. This is done by
switching between a fixate and a saccade behavior (corresponds to O5).

6. Inhibition-of-return mechanisms enable to remember already visited locations and
facilitate the investigation of new areas. We encode the IOR data in a spatial 3D
map and implement environment-based as well as object-based IOR (corresponds
to O6).

Table 3.2 states which of the object principles has been addressed in which of our
publications. We are currently working on a unified version that integrates all aspects
in one coherent system.
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Garćıa and Garćıa et al. Frintrop et al. Horbert et al.
Frintrop (2013)[2] (2013)[3] (2014)[1] (2014)

O1 + + – –
O2 + + + +
O3 – – + +
O4 – – + +
O5 + + – –
O6 + + – –

Table 3.2: Relation of object principles O1 – O6 to our publications. ’+’ denotes a
principle that was addressed in the corresponding publication, ’–’ means it was not
addressed.

Related work on object discovery focuses on different aspects of the problem. Much
of the work in computer vision tackles, for example, the problem of automatically discov-
ering the category of a given, pre-segmented image by finding and clustering similarities
in large datasets (overview in (Tuytelaars et al., 2010)). The task is different than in our
work, since the result of the method is a separation of categories instead of the detection
and segmentation of an unknown object. More related to our understanding of object
discovery is the work of Alexe et al. (2012) and Manén et al. (2013) that captures the
objectness of regions in single static web images. In contrast to their work, our approach
does not only provide bounding boxes but pixel-precise segmented object boundaries,
and we show that our method clearly outperforms their work in terms of precision and
recall (see Section 3.2 and (Horbert et al., 2014)).

Recently, especially with the upcoming RGB-D sensors, several groups have investi-
gated object discovery in 3D data. Karpathy et al. (2013) find objects on the 3D meshes
obtained from RGB-D data. Johnson-Roberson et al. (2010) perform object segmen-
tation on full point clouds. These method exploit the fact that objects mostly show a
strong depth difference to their surrounding. Other approaches observe a scene over time
and consider regions that change as object candidates (Herbst et al., 2011). In robotics,
several approaches use interactive perception to verify their object hypotheses. That
means they manipulate (push, poke, grasp, etc.) things in the real-world to figure out if
an entity is a single object or consists of several objects (Katz et al., 2013).

Our approach differs from the above methods in that it is applicable to single static
images and, with little extensions, also to videos and RGB-D data. It is independent
of temporal and 3D data, although it can exploit the advantages of these elements if
available. Our method is directly applicable to complex real-world scenes with a high
degree of clutter, without requiring a previous training phase or any pre-knowledge about
the objects of interest.

In the following, we introduce first our method for object discovery in 2D images
(Section 3.2), which is for example useful to analyze web images (Frintrop et al., 2014),
and an extension to 2D sequences, which adds a temporal component. This is, for
example, relevant to find objects in video streams from devices such as Google Glass
(Horbert et al., 2014). In Section 3.3, we extend the method to 3D data from an RGB-
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Figure 3.2: Simplified overview of the object discovery approach for web images: saliency
(right) selects the segments (left) that compose an object hypothesis (bottom).

D sensor, treating depth and color information separately before finally fusing them to
obtain 3D object models. And finally, we show in Section 3.4 how to detect objects in 3D
sequences, which involves attentional scene exploration and spatial inhibition of return.

3.2 Computational Object Discovery in 2D images

This section describes our approach for object discovery in 2D images that was published
in (Frintrop et al., 2014; Horbert et al., 2014). This is of interest for many methods
that operate on web images or on photo collections, for example image thumbnailing
(Marchesotti et al., 2009), retargeting (Goferman et al., 2011), or object classification
(Liu et al., 2009).

Our method bases on the idea of proto-objects that originates from psychological
research where it was introduced by Rensink (2000) (cf. Section 2.1). As mentioned
there, proto-objects are object candidates, which correspond to visual structures that
result from early segmentation processes. According to Rensink, attention then “acts
as a hand to grasp proto-objects to form coherent objects” (cf. object principle O4).
Following this idea, we find objects in a two step approach: first the image is segmented
into perceptually coherent parts; second, a saliency map is computed and segments are
selected depending on their saliency. The concept is visualized in Figure 3.2.

First, the input image is segmented using the approach of Felzenszwalb and Hut-
tenlocher (2004). This is a graph-based segmentation method that is based on two
important Gestalt principles: the similarity and proximity of pixels (cf. object principle
O3). The method is a well established segmentation method in computer vision and
creates, as the authors state, “perceptually important regions”. The resulting segments,
also called superpixels, are our perceptually coherent proto-objects (cf. Figure 3.2, left).
For selecting the proto-objects that form an object hypothesis, attention comes into play.
This is done by computing a saliency map that highlights regions of potential interest.
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Figure 3.3: Several examples of our object discovery approach for web images. From
top to bottom: original images (from MSRA database (Liu et al., 2009)), saliency maps,
segmentations, salient segments, ground truth.

In principle, any saliency system can be used that produces precise saliency maps on an
object level (in contrast to systems that simulate eye movements which produce much
sparser saliency maps). We use the simple CoDi saliency system (Frintrop et al., 2014),
since it is real-time capable and has shown to outperform many other saliency methods.
Simple CoDi is an adaption of the CoDi Saliency system (Klein and Frintrop, 2012) and
will be described in more detail in Chapter 4. Here, it is sufficient to know that the
system computes saliency by measuring center-surround contrasts in different feature
dimensions and on different scale levels and fuses them into a single saliency map. An
example saliency map can be seen in Figure 3.2, right.

Selecting proto-objects based on saliency is then done by combining all segments
in which at least k% of the pixels are above a saliency threshold. These selected seg-
ments form an object hypothesis. The concept is visualized in Figure 3.2. This simple
method can directly be used to detect objects in internet images. We have evaluated
the approach on images from the MSRA database of salient objects (Liu et al., 2009;
Achanta et al., 2009) that was already introduced in Chapter 2.2. We have shown in
(Frintrop et al., 2014) that the method produces precise object candidates and clearly
outperforms the original CoDi system and 7 other saliency methods, of which some also
include segmentation steps. Some examples of discovered object candidates are shown
in Figure 3.3.

The MSRA database contains a comparably simple selection of images: each image
contains only one object that is especially salient, the objects are rather large, often
centered, and they usually do not intersect with the image borders. While this is a
simplification, these properties can actually often be found in internet images: mostly,
such images are taken by a human photographer, who has already solved part of the
object detection problem: he or she has focused on the object and zoomed in, thus,
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Figure 3.4: Object discovery in real-world images: a) original image; b) segmentation
into proto-objects (superpixels); c) specific saliency maps for octaves 2 (middle row) and
3 (bottom row); d) some exemplary salient blobs obtained by region-growing, e) object
candidates, obtained by combining proto-objects with help of the salient blobs, and e)
bounding boxes of the object candidates. (Figure adapted from (Horbert et al., 2014))

many images show close-up views of objects, which are often centered (an effect known
as the photographer bias (Tseng et al., 2009)).

In other application areas, such as interpreting data from an autonomous mobile
robot or a mobile device, e.g., Google Glass, images are much more complex in content
because they contain more objects and clutter. To enable the detection of several objects
per image, simple thresholding is not enough. Instead, we have to determine which proto-
objects belong to which object hypothesis. Therefore, we have extended our approach
for object discovery as follows (see Figure 3.4).

We start with the same saliency computation as before but treat the pyramid layers
(octaves) of the system independently, resulting in several octave-specific saliency maps,
each favoring a specific object size (Horbert et al., 2014). To detect salient blobs in the
saliency map, we first find local maxima within each octave-specific saliency map. After
ranking the maxima by their saliency, seeded region growing (Adams and Bischof, 1994)
is applied at each of the maxima, starting from the most salient one.2 We repeat this
process for different region-growing thresholds, where the threshold is set with respect
to the value of the corresponding local maximum (Horbert et al., 2014). Finally, the
overlap of each proto-object with these salient blobs is determined and all proto-objects
that are covered by at least k% of a salient blob are chosen to belong to the current
object candidate. Thus, each salient component results in an object proposal and the
precise boundaries are obtained by the segmentation process.

2We used adaptive thresholding before (Garćıa and Frintrop, 2013; Frintrop et al., 2014), but the
region growing produces less artifacts and improved our results considerably.
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Figure 3.5: Comparison of three versions of our object discovery method (red, green, pale
blue) with the objectness measure from Alexe et al. (2012), the Prime Object Proposals
(RP) of Manén et al. (2013) and the contour detector (gPb) of Arbelaez et al. (2011).
Left: the percentage of valid proposals per frame (precision); right: the percentage of
discovered objects per frame (frame-recall). Performance is plotted depending on the
number of object proposals that were considered (best N proposals per frame) (more
results in (Horbert et al., 2014)).

In (Horbert et al., 2014), we show that our approach for object discovery clearly out-
performs several recent methods that have shown good performance for object proposal
detection and for which source code is available, namely the objectness measure of Alexe
et al. (2012), the Prime Object Proposals of Manén et al. (2013) and the contour detec-
tor of Arbelaez et al. (2011). The experiments were performed on a new dataset that
we provided for sequence-level object discovery and which consists of several sequences
of indoor home environments. All sequences include a high degree of clutter and many
(30-50) objects per frame.

Figure 3.5 shows the results for the coffee machine sequence that was also used in
(Garćıa and Frintrop, 2013) and (Frintrop et al., 2014). Results for the other sequences
can be found in (Horbert et al., 2014). It can be seen that our method outperforms
the other approaches clearly in terms of precision (percentage of valid proposals) as well
as recall (percentage of discovered objects). The pale blue curve represents our object
discovery method with adaptive thresholding that was presented in (Frintrop et al.,
2014), the green curve represents the replacement of adaptive thresholding by region
growing, and the red curve treats the octave levels independently instead of computing a
single saliency map. While region growing turned out to be always superior to adaptive
thresholding, the advantage of the split octaves depends on the application. If only a few
object candidates per frame are of interest, the single saliency map version achieves a
higher precision and recall. However, it starts to saturate at about 50 proposals/frame,
and for more than 90 proposals/frame the recall is considerably higher for the split-
octave version. This is important for applications with many objects per frame in which
it is desired to detect as many of the visible objects as possible. Especially the objects
that are difficult to detect are retrieved rather with the split-octave version.

In (Horbert et al., 2014), we have extended this approach to video sequences and
track the retrieved object candidates over time. This enables to group object candidates
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Figure 3.6: Sensor data is analyzed in two streams: a color stream processes the RGB
image and generates object hypotheses and a depth stream processes the depth data of
the sensor and produces a 3D map. Object hypotheses are then projected into the 3D
map and data is incrementally improved over time when new measurements arrive.

that belong to the same object and to automatically filter out inconsistent regions. We
have shown that this results in a significant reduction of the number of object candidates,
while keeping a consistently high recall.

3.3 Object Discovery in 3D: Color and Depth Stream

While the previous sections dealt with 2D images, we extend the approach here to 3D
data obtained with an RGB-D camera. Depth information provides important infor-
mation for human perception as well as for machine vision. Especially object discovery
profits from such data since objects often stand out not only visually but also spatially
from their surrounding. Moreover, depth data facilitates to build a spatial map of the en-
vironment, which will show to be very useful in the next section. The content presented
in this section was published in (Garćıa and Frintrop, 2013; Garćıa et al., 2013).

In our system, we obtain depth as well as color information from the ASUS Xtion
PRO Live sensor RGB and Depth sensor. The sensor as well as example images are
shown in Figure 3.6. This data separation enables directly a separated processing of color
and depth data, similar as in the visual streams in the human brain (object principle
O1). The color processing stream finds object hypotheses (corresponding roughly to the
ventral pathway), while the depth processing stream builds a 3D scene map. The latter
serves to locate objects in space, similar as in the dorsal pathway of the human visual
system. Finally, both streams are fused by projecting proto-objects into the 3D map.
An overview of the two-stream approach is shown in Figure 3.6.

The color processing stream follows the strategy to detect object proposals that
was described in Section 3.2. The computations in the depth stream are based on
the KinectFusion algorithm (Newcombe et al., 2011), which builds a 3D map of the
environment by integrating multiple range scans from a moving depth sensor. The result
is a 3D scene map consisting of voxels. To fuse color and depth stream, the 2D object
hypotheses obtained from the color stream are projected into this 3D map (details in
(Garćıa and Frintrop, 2013; Garćıa et al., 2013)).
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While this approach can be used to detect objects in static 3D scenes, its real advan-
tage reveals when applying the method to temporal data. In this case, different views
of an object can be subsequently integrated into the same 3D model. Thus, the ob-
tained models improve over time and contain at each moment all the available object
information. The next section covers this extension.

3.4 Scene Exploration in 3D: The Saccade-Fixate Cycle

While we have investigated static scenes up to now, we extend the approach here to data
sequences (see Garćıa and Frintrop (2013); Garćıa et al. (2013)). Since a system that
analyzes such sequences usually should operate in real-time, it is even more important in
such a setting to prioritize the processing. As in human vision, we use an attention-guided
exploration behavior that simulates the human strategy to analyze a scene: attention
guides the processing to the region of most potential interest, this region is fixated and
analyzed, and, finally, the attended region is inhibited and the attentional beam switches
to the next region of interest (cf. object principle O5). Thus, the scene is analyzed
sequentially.

To simulate this attentional scene exploration, our system operates in two behaviors:
the saccade behavior and the fixate behavior. When the system starts, it first finds
the most salient object hypothesis, which is then attended for several frames (fixate
behavior), allowing other modules to analyze the attended region and project it to the 3D
scene. After fixating an object for a while, the saccade behavior takes over to determine
the next focus of attention.3

When exploring a scene over time with help of an attention system, one problem
occurs: how do we make sure that we do not stick to the most salient object, but switch
attention from one hypothesis to the next? In computational attention systems this
aspect is usually solved by inhibition of return (IOR) mechanisms (cf. Section 2) that
withdraw attention from fixated regions and orient towards novelty (object principle
O6).

In traditional computational attention systems (Itti et al., 1998; Frintrop, 2006), IOR
is usually realized by inhibiting values in the saliency map (practically, they are often
simply set to zero) However, this results in problems when the scene is dynamic and
camera and/or objects move. Then, suddenly, the attended object does not cover the
same region in the image anymore and the inhibited region does not correspond anymore
to the object region. Backer et al. have addressed this problem by tracking all previously
attended regions and inhibiting their new position in the saliency map (Backer et al.,
2001). However, this method relies on the quality of the tracking and adds computational
effort. Instead, we follow an idea from human perception. So, let us have a closer look
at how human vision deals with this problem.

Human vision faces exactly the same problem when maintaining coherent positions of
already attended objects over time. Most areas in the human visual system are organized
retinotopically, that means, the neighboring cells in the retina correspond to neighboring

3Note, that in our case the saccades do not correspond to real camera movements, but to virtual
shifts of the processing focus within the scene. It can however equally well be extended to active camera
movements (cf. our visual SLAM approach in Chapter 6).
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cells in other visual areas, e.g., LGN, V1, V2, etc. Since the input of retinotopically
organized maps changes with each eye movement, the inhibition of cells would result
exactly in the same problem as described above: as soon as the eyes move, the inhibited
cells do not correspond to the previous object anymore. But, Posner and Cohen (1984)
found that not the retinal location of a cue is inhibited, but the location of the cue in the
environment. This is a very interesting finding, because it indicates that IOR is encoded
in a spatial coordinate frame, not in a retinotopic one.

We follow this idea and encode inhibition information not as previous approaches
in the saliency map (image coordinates, corresponding to retinotopic coordinates), but
in the spatial map, namely our 3D map (cf. Figure 3.7). Thus, each voxel stores the
information when it was attended last and whether it should be still inhibited at the
current time. This is done with help of two variables: It[v] is a binary flag that denotes
whether voxel v should be inhibited at time t, and IWt[v] is a weight that determines the
duration of inhibition. Each time a voxel is observed, weight IWt[v] is increased and as
soon as a threshold is reached, the flag It[v] is activated. On the other hand, the weight
of not attended voxels is decreased continuously and as soon as it reaches 0, the flag
of the voxel is set inactive. As in human vision, we distinguish environment-based and
object-based IOR (Tipper et al., 1994) (cf. Section 2.1.2) which means that the spatial
region surrounding the object can be a source of the inhibition as well as the object
itself. In our system, this is implemented by inhibiting the object region stronger than
its neighborhood. More details can be found in (Garćıa and Frintrop, 2013; Garćıa et al.,
2013).

The values of the inhibition flags of each voxel can be raycasted at every time to a 2D
inhibition map (cf. middle of Figure 3.7). Note that the 3D map integrates measurements
over time, thus the 2D inhibition map contains inhibition information from frames 1
to t − 1. The inhibition map can be directly used to determine which of the salient
regions shall be fixated next. This is done by computing the overlap between all salient
components in the object candidate map and the values from the inhibition map, and
selecting the component with the highest value sal · (1 − o), where sal is the average
saliency of the component and o is the overlap.

In (Garćıa and Frintrop, 2013; Garćıa et al., 2013), we have shown that our system
is able to find many objects, even in cluttered real-world scenes, and that the detection
precision4 is mostly very high (more than 90% for 17 out of 25 objects). An example
can be seen in Figure 3.8. In this quite complex scene, 19 object proposals have been
discovered after 438 frames (13 sec.). However, it can also be seen that many objects
are still missed. More objects could be found by observing the scene longer. Note also
that since the publication of Garćıa and Frintrop (2013), we improved the 2D object
discovery considerably (Frintrop et al., 2014; Horbert et al., 2014) and we expect more
and better object candidates when integrating the improvements into the 3D framework.

To our knowledge, the here presented approach is the first computational system that
encodes IOR information in spatial coordinates and that thus enables a spatial attention-
based scene exploration for detecting unknown objects and creating 3D models of these
objects.

4Note that in contrast to Section 3.2, precision is here defined as the percentage of voxels that are
correctly assigned to their corresponding ground truth object.
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Figure 3.7: Inhibition of return in our object discovery system: the inhibition flags that
are stored in the voxels of the 3D map (right) are raycasted to a 2D inhibition map.
This map is used to inhibit values in the object candidate map and enables to fixate
candidate objects that have not recently been attended (see text for details).

2

Figure 3.8: Discovered objects in one of our sequences. Left: original scene. Right:
3D map with 19 discovered objects after 13 sec. The rectangles show the automatically
obtained 2D object candidates from the color processing stream.
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3.5 Conclusion

In this section, we have presented our work on object discovery. We have shown that
the same approach is applicable to static web images, to video sequences, and to RGB-D
data. Our method delivers pixel-precise object proposals which is an advantage over
bounding-box approaches, especially when projecting the candidate objects into a 3D
map. The 3D discovery approach that roots the inhibition data in spatial coordinates is
to our knowledge the first attention system that operates directly on 3D data.

Our object discovery method exploits concepts from human perception and combines
saliency and segmentation. In contrast to many other approaches, we are independent
of temporal data and 3D data (although both can be exploited if available). We also
do not require a database of training images with similar objects, nor any interaction
with the objects. The approach achieves good results in all settings and outperforms
state-of-the-art methods for object discovery.

The current method can be extended in many ways. We are currently working on
using Gestalt principles that can serve as further consistency checks to select the most
promising proposals (Horbert et al., 2014). Interesting is also to integrate top-down
knowledge to guide the attention to regions of current interest, for example searching
for a specific object or concentrating on regions of the environment where an object is
typically located (e.g., cups on horizontal surfaces such as tables). Finally, a natural
extension of the 3D attentional framework is to include active camera control and thus
move from a system for covert attention to one for overt attention. Actively focusing
on objects of interest enables to obtain better viewpoints of objects and to zoom in to
obtain images with higher resolution.



Chapter 4

Distribution-based Saliency

Visual saliency is the property of an image region to automatically attract human atten-
tion. That means, humans attend to such regions although their content is not necessarily
relevant for the intentions or goals of the person. Regions that attract attention differ
usually strongly from their neighborhood, for example a white toy on a red sofa, the
waving hand of a person in a crowd, or an empty chair in an otherwise filled classroom.
The ability to perceive saliency is one of the main components of the human visual at-
tention system and it is also of large interest for computer vision systems. Applications
range from analyzing web images and large photo collections (Marchesotti et al., 2009;
Grundmann et al., 2010) up to driver assistance systems (Michalke et al., 2008) and
service robotics (Schillaci et al., 2012; Frintrop, 2011b).

In this chapter, we summarize our work on saliency computation based on feature
distributions that capture the statistics of features in a center and a surround area.
Our approach combines the general structure of psychological attention models with a
sound mathematical foundation and additionally enables an efficient computational im-
plementation. We show that the system is able to outperform 8 state-of-the-art saliency
methods in terms of precision and recall. Most of the work in this chapter was performed
together with Dominik A. Klein within the DFG project “Saliency-based image match-
ing for mobile systems”. The publications that form the basis of this chapter are (Klein
and Frintrop, 2011; Frintrop et al., 2014).

The chapter is structured as follows. After introducing the topic of saliency and its
cognitive foundations in more detail (Section 4.1), we explain the concept of distribution-
based saliency in Section 4.2. Then, we introduce our saliency system BITS (Bonn
Information-Theoretic Saliency) that integrates these findings into a system structure
based on psychological attention models (Section 4.3). In Section 4.4, we present an
extension of this model from the discrete to the continuous case, the CoDi-Saliency
system, and an adaption which is faster and more precise: the “Simple CoDi” system.
At the end of this chapter, we compare the distribution-based saliency measure with the
traditional Difference of Gaussians approach (Section 4.5).

43
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Figure 4.1: Two images and the corresponding saliency maps computed with our system
BITS (Klein and Frintrop, 2011) (image sources: own image and Bruce dataset (Bruce
and Tsotsos, 2009)).

4.1 Saliency – An Overview

According to a common definition, a salient region “stand[s] out relative to its neighbors”
(cf. Wikipedia: “Salience (neuroscience)”, Jan. 2014). This means, saliency is a relative
property that relates an item to its background, not a property of an object itself. An
object is never salient per se, it is only salient in a specific context. While a traffic sign is
usually salient (it was designed to attract attention), it is not salient among other traffic
signs. Thus, a saliency method always has to relate the properties of an image region to
its surrounding. The output of a saliency method is a saliency map, which is a grayscale
image in which the brightness of a pixel indicates its saliency. Two images with salient
regions and corresponding saliency maps are shown in Figure 4.1.

During the last decade, many new saliency methods have been proposed and the
number of approaches is strongly increasing every year (see surveys (Frintrop et al.,
2010b) and (Borji and Itti, 2012b)). There are approaches that are based on the spectral
analysis of images (Hou et al., 2012; Schauerte and Stiefelhagen, 2012), models that
base on Bayesian theory (Itti and Baldi, 2009; Zhang et al., 2008), or on decision theory
(Gao and Vasconcelos, 2007; Gao et al., 2009), and those that use machine learning
techniques (Liu et al., 2009; Alexe et al., 2010). Because of the overwhelming number of
different approaches, it is hard to keep an overview and to see the differences, and, more
importantly, the similarities of the methods.

To find the roots of saliency, let us briefly review the most important findings on
saliency and attention from psychology and neuroscience that were introduced in Chapter
2. We will call them attention principles in the following:

A1 Visual attention directs the processing in the brain to the regions of most potential
interest (Pashler, 1997). This enables to deal with the large complexity of the
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sensory input and to concentrate on relevant data, which is essential for scene
understanding (Carrasco, 2011).

A2 Attentional processes consist of bottom-up (data-driven) and top-down (model-
driven) aspects (Connor et al., 2004). Saliency is part of bottom-up attention and
denotes the quality of a region to attract attention automatically.

A3 The most important element of saliency detection is the ability to detect center
surround contrast. In the brain, such contrasts are detected by cells with a receptive
field that has an excitatorily center and an inhibitorily surround (On-Off cells) or
vice versa (Off-On cells). Examples are retinal ganglion cells or simple cells in V1
(Kuffler, 1953; Hubel and Wiesel, 1959).

A4 Cells with concentric receptive fields are modeled best with a two-dimensional
Difference-of-Gaussian (DoG) function (Rodieck, 1965), while elongated fields are
modeled best with Gabor filters (Jones and Palmer, 1987).

A5 On-Off and Off-On cell types are organized into three channels: a luminance, red-
green, and blue-yellow channel (color opponency) (Gegenfurtner, 2003).

A6 Features are processed in parallel in different brain areas (Livingstone and Hubel,
1987) and compete for selective attention (Treisman and Gelade, 1980).

A7 Basic features that guide visual attention are color, orientation, motion, and size.
Other features (e.g., intensity) are discussed in the literature, but there is less
evidence for them (Wolfe and Horowitz, 2004).

A8 A master map of location or saliency map collects the conspicuities of the different
feature channels. There is evidence that such a saliency map exists in V1 (Zhang
et al., 2012).

Note that the object principle O6 from the previous chapter, which describes the
inhibition of return behavior, is also related to visual attention and could be another
attention principle. However, since we tackled this case already in chapter 3, we omit it
here.

Many psychological attention models have been created based on these findings,
such as the Feature Integration theory (Treisman and Gelade, 1980) or the Guided
search model (Wolfe, 1994). In these models, the main idea was to separate feature
computations into different feature channels, such as color or orientation, and finally
fuse the conspicuities of the channels into a single saliency map (attention principles
A6, A7, A8).

Traditional computational attention systems followed these findings closely (Milanese
et al., 1994; Itti et al., 1998; Frintrop, 2006), but also most current saliency systems
still inherit the basic structure1 which is visualized in Figure 4.2 (number (1) and (4)).
As shown in this figure, additional components of most saliency systems are a scale

1Some systems restrict processing to a single feature such as color (Achanta et al., 2009) or motion
(Vijayakumar et al., 2001), but this does not capture all types of saliencies and is only sufficient for
specific applications.
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Figure 4.2: General structure of visual saliency systems (part of Figure 2.3). Basic
elements: separation of feature channels (1), scale representation (2), center-surround
contrast (3), fusion of feature conspicuities to a saliency map (4).

representation (2) to enable the detection of differently sized saliencies (addressing the
size feature of attention principle A7) and a center-surround method (3) that captures
the difference between image regions and their neighborhood (attention principle A3).
In Table 4.1, we outline explicitly, which of the attention principles have been realized
in which of the saliency systems BITS, CoDi, and Simple CoDi that we present in this
chapter. For completeness, we include as well our previously presented attention system
VOCUS.

As we have outlined in Chapter 2, the center-surround method is probably the most
essential element of a saliency method, since a high contrast in some feature dimension
is an intrinsic property of a salient item: by definition it “stands out relative to its
neighbors”. Basically all saliency methods compute such a value (although not always
in a center-surround manner), and the most important difference between methods is
the way this contrast is computed.

Cognitive models compute the center-surround contrast usually by Difference-of-
Gaussian (DoG) or Gabor filters (Itti et al., 1998; Frintrop, 2006), since these are known
to model best the concentric and elongated cells of the human visual system (attention
principle A4). Also other approaches as the Bayesian surprise model (Itti and Baldi,
2009) or the decision-theoretic model of Gao and Vasconcelos (2007) use DoG and Ga-
bor filters to compute contrasts. Some approaches compute the contrast not based on
pixels but on patches (Sun et al., 2012; Borji and Itti, 2012a) or on previously segmented
regions, e.g., superpixels (Perazzi et al., 2012; Zhu et al., 2013). Instead of computing
local contrasts, some approaches compute global contrasts by considering the whole im-
age as surrounding region, e.g., Achanta et al. (2009) or Bruce and Tsotsos (2009). Note
however that while global contrasts are quicker to compute, they are not able to capture
local saliencies that are important in human perception (cf. example in Figure 4.3). The
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VOCUS BITS CoDi Simple CoDi
(Frintrop, 2006) (Klein and (Klein and (Frintrop et al., 2014)

Frintrop, 2011) Frintrop, 2012)

A1 + + + +
A2 bu and td bu bu bu
A3 + + + +
A4 + – – +
A5 + – + +
A6 + + + +
A7 i, c, o, m, (s) i, c, o, (s) i, c, (s) i, c,(s)
A8 + + + +

Table 4.1: Relation of the attention principles A1 – A8 to our saliency systems. For
completeness, we include also our previously published system VOCUS. ’+’ denotes a
principle that was addressed in the corresponding publication, ’–’ means it was not
addressed. ’bu’ and ’td’ stand for ’bottom-up’ and ’top-down’ part implemented. For
A7, the letters denote the features that are implemented: ’i’ = intensity, ’c’ = color, ’o’
= orientation, ’m’ = motion, ’s’ = size; the ’s’ are in parentheses since size is considered
in all systems by a scale representation, but a size–pop-out is not implemented.

Figure 4.3: Global versus local saliency on an example of an item which is only locally
salient (red item among green ones). Saliency maps from a method that computes only
global contrast (Achanta et al., 2009) and from our BITS system that computes local
contrasts (Klein and Frintrop, 2011).

contrast computation can be also extended to the spatial domain by computing depth
contrasts (Maki et al., 2000; Björkman and Eklundh, 2007) or to the temporal domain,
where it computes the change of the visual data over time (Itti and Baldi, 2009).

In this chapter, we propose a different way to compute the center-surround contrast.
The idea here is to represent center and surround regions by feature distributions and
measure the contrast by a comparison of the distributions. This captures more infor-
mation about the corresponding image regions than the typical DoG method. Similar
approaches have been presented in (Itti and Baldi, 2009) and (Bruce and Tsotsos, 2009),
but while these approaches are computationally very expensive, we present a solution
that is real-time capable and that performs very well in state-of-the-art benchmarks. We
will discuss differences to these models in more detail in Section 4.3.
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Figure 4.4: Three different types of discrete feature distributions: intensity, color, and
gradient orientations. The circles next to the color and orientation distribution shall
indicate that the feature values are obtained in a circular, 2D space, e.g., in case of color
from the HS-plane in the HSV color space.

4.2 Distribution-Based Saliency

In this section, we introduce the foundations of distribution-based saliency. We start
by describing how to represent image regions by feature distributions, before we show
how these can be used to measure information content and information-based contrast
in images.

4.2.1 Feature Distributions for Representing Image Regions

As mentioned before, the traditional way to measure saliency computes feature contrasts
by Difference-of-Gaussian or Gabor filters (attention principle A4). These compute in
principle a weighted average of the center and the surround region and subtract one from
the other. Instead, we suggest to represent these image regions by feature distributions
since these keep more information about the statistics of features than a simple average.
A distribution captures a certain property of the image, e.g., the distribution of intensity
or color values. Arbitrary properties can be regarded and represented by a distribution.
Thus, we represent an image region R by k probability distributions Rk. The distri-
butions can be based either directly on pixel values or on pre-processed features, for
example on gradient orientations. Some examples of feature distributions are shown in
Figure 4.4.

Since the distributions originate from pixel values, they are discrete. However, work-
ing directly on the original distributions with, e.g., 255 intensity values, makes a method
sensitive to noise and is computationally expensive. Therefore, distributions are usually
approximated by histograms with fewer bins. We will follow this strategy for our BITS
saliency system that will be introduced in Section 4.3. An alternative is to approxi-
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Figure 4.5: Entropy versus information gain (KLD). In the upper example, both entropy
and KLD assign the highest value to the salient ellipse. However, in the example below,
entropy assigns high values to the structured background, while the KLD captures the
saliency of the bright ellipse by considering the surround.

mate the feature distribution by normal distributions, as in the CoDi saliency system
(Section 4.4).

4.2.2 Entropy versus Information Gain

The classic way to measure information content in signals is the Shannon entropy. For
a discrete feature distribution Rk of an image region R, it is defined as:

H(Rk) = −
b

∑

i=1

Rk(i) log(Rk(i)), (4.1)

where b is the number of bins of the histogram that represents Rk. Since homogeneous
image regions have a peaked histogram they have a low entropy, whereas cluttered image
regions with an equally distributed histogram have a high entropy (cf. Figure 4.5). Some
people have suggested using entropy as saliency measure (Kadir and Brady, 2001; Kadir
et al., 2004), and it is indeed in many cases a useful measure. However, this is only the
case if the salient image region is structured, whereas the background is homogeneous, as
in the example in the top row of Figure 4.5. If on the other hand the image region itself
is homogeneous and the background cluttered, the region is salient especially because of
the absence of structure (bottom row of Figure 4.5).

Thus, we propose instead to compute saliency not directly by the entropy of the
feature distribution of a region, but by the difference of entropy of an image region
with respect to its surround. This difference can be computed by the Kullback-Leibler
Divergence (KLD), which is also called information gain or relative entropy. Given two
feature distributions Ck and Sk that represent a center and a surround region in an
image, KLD is defined as
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Figure 4.6: The advantage of distribution-based saliency: since the average intensity
of the background and the gray disk is exactly the same, the traditional Difference-of-
Gaussians approach results in a black saliency map (middle, computed with the VOCUS
system (Frintrop, 2006)). The distribution-based BITS system is able to capture the
difference (right).

DKL(Ck‖Sk) =

b
∑

i=1

Ck(i) log
Ck(i)

Sk(i)
. (4.2)

Again, each distribution is represented as a histograms with b bins. Figure 4.5, right,
visualizes the region of Ck as red and the region of Sk as blue rectangle. The figure shows
that, in contrast to entropy, KLD is able to capture saliency of both types: structured
regions on homogeneous backgrounds (top), but also the opposite case (bottom). Fig-
ure 4.6 shows the advantage of KLD-saliency over the traditional DoG approach: while
the DoG method cannot detect any saliencies, since the gray patch and the checkerboard
background have the same average intensity, the KLD captures the difference due to the
different distributions of the intensity values.

Thus, by computing the Kullback-Leibler Divergence for center and surround distri-
butions centered at each pixel, we obtain a measure for saliency. While the KLD on
distributions of image properties is the core of the information-theoretic saliency com-
putation, it has to be integrated into a structure that enables real-time computations
and competitive performance on real-world data. In the following, we will describe two
approaches for this, first a discrete approach using histograms, second a continuous ap-
proach using normal distributions.

4.3 BITS: Saliency Based on Information Gain

In (Klein and Frintrop, 2011), we have presented the BITS (Bonn Information-Theoretic
Saliency) system, an information-theoretic approach to compute saliency based on the
Kullback-Leibler divergence between histograms. This mathematically sound way to
compute the center-surround contrast is integrated into the basic structure of saliency
systems based on psychological findings. This allows a consistent computation of saliency
for different feature channels as well as a well-founded fusion of feature channels.
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Figure 4.7: Overview of our saliency system BITS (Figure from (Klein and Frintrop,
2011)).

In a saliency system with different feature channels and many scales, many histograms
of large image regions have to be computed and compared. This becomes quickly too
demanding for real-time computations. On the other hand, approximations, such as
computing global instead of local contrasts or restricting computations to one scale
(Bruce and Tsotsos, 2009), affect the precision of the system.

To obtain a real-time system while maintaining high precision computations, we
first use scalable features based on integral images (Viola and Jones, 2004), that allow
an efficient computation for arbitrarily large, rectangular image regions. Second, we
use integral histograms to represent the distributions, which is an extension of integral
images to histograms (Porikli, 2005). The idea is to represent each bin by an integral
image and to accumulate information for each bin separately. Since integral images allow
to compute the average of an image region of arbitrary size in constant time, also integral
histograms of such image regions can be computed in constant time. In our approach,
we compute integral histograms for each of the features intensity, color, and orientation.

To integrate the concept of information-theoretic saliency into a complete model of
saliency computation, the KLD measure replaces the center-surround measure that is
based on Difference-of-Gaussians in traditional models. That means, the KL differences
are computed on different scales for three different feature channels, intensity, color,
and orientation (attention principles A6 and A7), and, finally, the scales and feature
channels are fused to a saliency map (attention principle A8). An overview of the BITS
system is shown in Figure 4.7.

Related to our work is the model of surprise of Itti and Baldi (2009) that measures
temporal and spatial surprise in a Bayesian probability framework. In contrast to our
work, they first compute feature maps with the traditional saliency model approach
by computing the center-surround contrast with across-scale differences (which approx-
imates DoG filters) and then base the surprise measure on these values. Instead, we
compute the feature maps directly in an information-theoretic way.

Bruce and Tsotsos (2009) have computed saliency by the self-information of image
regions with respect to their surround. In contrast to our work, they base their feature
detection on ICA coefficients that are learned from a large collection of images. Due to



52 CHAPTER 4. DISTRIBUTION-BASED SALIENCY

Figure 4.8: Results of the BITS saliency system on images from the MSRA dataset (Liu
et al., 2009). Left: precision-recall curves for the methods iNVT (Itti et al., 1998), ST
(Walther and Koch, 2006), HZ07 (Hou and Zhang, 2007), HZ08 (Hou and Zhang, 2008),
AIM (Bruce and Tsotsos, 2009), MZ (Ma and Zhang, 2003), AC09 (Achanta et al., 2009)
and AC10 (Achanta and Süsstrunk, 2010). Right: some example images (top) and the
corresponding saliency maps (bottom) (Figures from (Klein and Frintrop, 2011)).

the computational complexity, they use a global surround from the whole image and only
a single scale. Instead, our scalable feature detectors and the use of integral histograms
enables us to compute features on several scales in a computationally feasible way, to
use local instead of global surrounds, and makes us independent of a training set.

The performance of the BITS saliency system is shown in Figure 4.8. A comparison
with 8 state-of-the-art saliency methods showed that the BITS system outperformed
all other methods in terms of precision and recall (left). Some example images with
corresponding saliency maps computed by BITS are shown in Figure 4.8, right. The
performance of our BITS system is close to real-time (about 0.5 sec on a 320× 240 pixel
image, on a 2.66 GHz quad-core PC with double precision computation) and could be
easily sped-up by code optimizations and implementation on a GPU.

4.4 Extensions: CoDi and Simple CoDi

In follow-up work, we have extended the idea of computing saliency based on probability
distributions to the continuous case, resulting in the CoDi-Saliency system (Continuous
Distributions) (Klein and Frintrop, 2012). While the CoDi paper itself is not part of
this cumulative habilitation thesis, we briefly explain the key ideas here for completeness
and for comprehensibility of the Simple CoDi saliency system (Frintrop et al., 2014) that
contains extensions of CoDi and will be described at the end of this section.

Instead of using histograms, in CoDi the feature distributions are approximated by
normal distributions (cf. Figure 4.9). These distributions are computed by maximum-
likelihood estimates of the center or the surround region, weighted by a Gaussian in-
tegration window. The normal distributions of center and surround can be compared
with the Kullback-Leibler divergence, as in the BITS system, or with other methods, for
example the W2-distance (Wasserstein metric based on the Euclidean norm) as in (Klein
and Frintrop, 2012). The W2-metric has the advantage that it treats the problem as a
transportation of mass problem which considers the distance of feature values in feature
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Figure 4.9: Difference between the BITS and CoDi saliency systems shown exemplarily
for intensity distributions: while the BITS system represents the real feature distribu-
tion (bottom) by a histogram (middle), CoDi approximates it by a normal distribution
(top). In CoDi, the intensity values are additionally weighted by values from a Gaussian
integration window (top left).

space. This is relevant for saliency computation since here, the similarity of features
plays an important role, and in our experiments we obtained better performance with
the W2 metric than with KLD.

Similar as in BITS and other saliency systems, this center-surround concept is em-
bedded into a scale-space structure to enable the detection of objects of different sizes.
The computations are performed for intensity and color features. The color distributions
are computed in an opponent-color space with one red-green and one blue-yellow axis,
corresponding to the color cells in the human visual systems (attention principle A5).

In (Klein and Frintrop, 2012), it was shown that the CoDi saliency was able to
outperform all nine competitors on the MSRA database (including BITS and the methods
used in (Klein and Frintrop, 2011)). Furthermore, with 82 ms per image (400 × 300
pixels, Intel Core i7-2600), it is real-time capable and, since it does not use priors such
as “objects are central and do not intersect with the image borders”, it is applicable not
only to web images but also to data from a moving camera.

In (Frintrop et al., 2014), we have presented some improvements of the CoDi system.
Since the new version is faster and easier to implement, we call this version “Simple
CoDi”. The improvements are, first, an adaption of the center-surround filter sizes
to a ratio that corresponds better to human perception, and, second, an exchange of
the Difference-of-Gaussians pyramid to a Gaussian pyramid (details in (Frintrop et al.,
2014)). Additionally, we have changed the distance measure from W2 to the simpler
Manhattan distance. While W2 measures the distance of two distributions based on
their means µ and standard deviations σ, the Manhattan distance uses only the mean
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values µ. Although this computation uses less information about the image regions, it
achieves the same performance in terms of precision and recall with less computational
effort (Frintrop et al., 2014). Apparently, the variance of the distributions does not have
a large effect in practice. Interestingly, this change transformed the system back to a
Difference-of-Gaussians approach as in the traditional saliency systems (more details in
next section). Since this similarity allows an interesting direct comparison of distribution-
based and traditional, biologically inspired saliency, we will explain this aspect in more
detail in the following section.

4.5 Distribution-based versus DoG-based Saliency: A Com-

parison

In this section, we will address some of the similarities and differences of the distribution-
based saliency computation to the traditional, biologically-inspired saliency based on
Difference-of-Gaussians. Generally, comparing different saliency methods is difficult,
because each group proposes a complex saliency system that is composed of many mod-
ules and parameters and is usually highly optimized for a specific task or benchmark.
Methods use different color spaces, different numbers of features, and different filter
sizes. Comparing whole saliency systems generally says little about a specific method.
However, as mentioned in the previous section, the CoDi-Saliency system enables a di-
rect comparison of distribution-based saliency to the biologically-inspired DoG approach
within the same framework. The reason is the following:

A Difference-of-Gaussian filter D is simply a digital filter, obtained by subtracting
two Gaussian filters G1 and G2 with different variances: D = G1 − G2. Because of the
linearity of convolution, convolving an image with a DoG filter is the same as applying
two Gaussian filters with different variance to the image separately and subtracting the
resulting images:

O = F ∗D = F ∗ [G1 −G2] = F ∗G1 − F ∗G2, (4.3)

for output image O and input image F (in our case a feature map). In other words,
each pixel in a DoG filtered image results from subtracting two weighted mean values
obtained from windows of different sizes:

O(x, y) =

[

k1
∑

i=−k1

k1
∑

j=−k1

w1(x− i, y − j)F (x− i, y − j)

]

−

[

k2
∑

i=−k2

k2
∑

j=−k2

w2(x− i, y − j)F (x− i, y − j)

]

,

(4.4)

where w1 and w2 are the weights of the Gaussians G1 and G2 with Gaussian inte-
gration windows of size k1 × k1 and k2 × k2 respectively.

In CoDi, the center-surround difference is computed as the W2 distance between a
center distribution C and a surround distribution S. Both distributions are given as
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Figure 4.10: Computation of feature distributions in the CoDi saliency system and
correspondence to Difference-of-Gaussians contrast. Left bottom: a feature map with
center (blue) and surround (red) area, and above the corresponding Gaussian integration
windows. Right: corresponding intensity distributions as computed by CoDi. Mean
values correspond to the weighted means of the values in the corresponding feature map
region. Thus, the difference of mean values corresponds to a Difference-of-Gaussians
contrast.

normal distributions that are one dimensional for intensity, N(µ, σ2), and two dimen-
sional for the color channel, based on a red-green and a blue-yellow axis, N(µ,Σ). In the
following, we concentrate for simplicity on the one dimensional case. It is not important
here how the W2 distance is computed, just that it is based on the two parameters µ

and σ. In CoDi, these values are obtained by weighting the feature values by a Gaussian
integration window that is centered at the current center or surround region (cf. Fig-
ure 4.9 and 4.10). Thus, the mean of a normal distribution of a region in feature map F

centered at pixel position (x,y), is estimated as

µ̂(x, y) =
k

∑

i=−k

k
∑

j=−k

w(x− i, y − j)F (x− i, y − j), (4.5)

for a Gaussian integration window w of size k × k, centered at (x,y). Now, it can
be easily seen that subtracting the two estimated mean values of the center and the
surround distribution µ̂c(x, y) − µ̂s(x, y), using Gaussian integration windows wc and
ws, results directly in the DoG equation 4.4. This idea is visualized in Figure 4.10.
While the contrast computation is straight forward for the intensity channel, we have
two dimensional distributions with two dimensional mean vectors for the color feature
channel. In this case, we can either compute the Euclidean distance of mean values, or the
simpler Manhattan distance. In the first case, the dimensions of the color distribution are
treated jointly, in the second case independently. In this case, the contrast computation
based on the Manhattan distance corresponds to computing the Difference-of-Gaussian
contrast independently on two feature maps for the two color dimensions and adding the
resulting contrast maps.
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Figure 4.11: Saliency maps for different distance measures of center and surround distri-
butions. From left to right: Original image, W2-distance, Euclidean distance, Manhattan
distance (DoG contrast).
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Figure 4.12: Evaluation of saliency computation with different distance measures (W2-
distance, Euclidean distance, Manhattan distance (DoG contrast)) for computing the
center-surround contrast. The numbers in parentheses denote the AUC values. The
simple Manhattan distance, that corresponds to DoG computation in traditional saliency
systems, achieves the same performance as the distribution-based W2 metric.

Of course, computing DoG contrast within the CoDi system is unnecessarily com-
plicated compared to the direct way to compute it. However, it enables us to compare
the DoG and the distribution-based contrast measures in exactly the same framework
so that we can make sure that a change in performance really results from the distance
measure and not from other design issues.

We have compared the saliency computation for three different center-surround mea-
sures: (i) the W2-distance as in the original CoDi paper (Klein and Frintrop, 2012), (ii)
the Euclidean distance of mean values, and (iii) the Manhattan distance of mean values,
which corresponds to the DoG contrast. Some example images of saliency maps com-
puted with the different distance measures are shown in Figure 4.11. It can be seen that
the maps that compute the contrast only based on the µ values (Euclidean and Man-
hattan distance) are cleaner and less blurry. A quantitative evaluation on the MSRA
dataset (Liu et al., 2009) is shown in Figure 4.12.

Interestingly, W2, Euclidean, and Manhattan distance achieved almost the same re-
sults. Thus, although the distribution-based saliency operates on a richer feature rep-
resentation based on mean and variance of feature distributions, the additional vari-
ance information seems to have little effect in practice. This shows that the traditional
Difference-of-Gaussians method can, with well-chosen filter sizes, still achieve state-of-the
art performance when computing saliency.
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4.6 Conclusion

In this chapter, we have introduced our work on distribution-based saliency, implemented
in the saliency systems BITS and CoDi. We have shown that the systems obtain state-of-
the-art performance on the commonMSRA dataset in a real-time capable framework. We
have also shown exemplarily in Figure 4.6 that using distributions instead of traditional
Difference-of-Gaussian filters captures certain saliencies that can not be detected with
traditional saliency systems.

However, in our final experiments it has turned out that in practice, the variance
of the feature distribution has little effect: the distribution-based CoDi and the DoG
approach in Simple CoDi (implemented as Manhattan distance) achieve about the same
values in terms of precision and recall. Of course, the implementation within CoDi is
only reasonable for comparison purposes, otherwise it can be directly implemented in
the traditional way as described in (Itti et al., 1998) and Frintrop (2011a).

In my opinion, the most interesting outcome of these experiments is that the tra-
ditional saliency model that was originally proposed by Itti and colleagues more than
15 years ago (Itti et al., 1998) can, if it is cleanly implemented and the parameters are
optimized for the task, still achieve state-of-the art performance on current benchmarks.
Because of its applicability for saliency detection as well as for simulating eye movements,
and because of its clean and comprehensive structure that can easily be implemented in
a real-time framework, it might be still favorable in practice over many newer methods.

On the other hand, the probability distributions that were computed in the saliency
systems BITS and CoDi can be exploited also in other settings, e.g., for representing
and comparing superpixels, as we proposed in a superpixel-based saliency approach in
(Zhu et al., 2013), or for finding and matching keypoints as in (Klein and Cremers,
2013). In the latter approach, the normal distributions of CoDi were used both to detect
keypoints and to build a feature descriptor. This work enables an interesting extension
that we consider for future work: if saliency operator, detector, and descriptor base on
the same concepts of normal distributions, it is possible to discover, describe, and re-
detect objects within the same framework, based on the same feature computations and
difference measures.
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Chapter 5

Attentive Visual Tracking

Visual tracking is the task to estimate the state of an object in an image sequence, where
the state can include position, extent, velocities, or other properties of the target. During
tracking, either the object or the camera (or both) move, resulting in location changes of
the target object in the image plane. While the tracking task is usually effortlessly solved
by humans, the task can become very challenging for machines. Reasons include noise
in the data, partial or full occlusions of the target, abrupt motion of object or camera,
and strong variations in object appearance for example due to illumination changes,
viewpoint changes, or deformations of the target.

Many good tracking approaches have been proposed in the past. However, the ap-
plicability depends strongly on the task and the setting. In our work, we are interested
in an approach that is able to operate on a mobile vision system, e.g., a robot or a
head-mounted camera, such as Google Glass. Thus, the system shall be able to run in
real-time and to deal with background changes, varying illuminations, etc. Furthermore,
we are interested in tracking arbitrary, previously unknown objects. That means, the
appearance of the object has to be learned online from one or a few frames.

Among the most crucial parts of a visual tracker is the representation of the target
object. If the target of interest is known in advance and a model can be learned, tracking
can even be performed by recognizing the desired target in each frame. If the target is not
known in advance, feature-based approaches are often used that represent target objects
by features such as color or gradient distributions. For feature-based approaches, it
is favorable to detect discriminative features that distinguish the target well from the
background.

An ideal candidate to determine discriminative features is a saliency system. It can
determine the most salient parts of an object that best distinguish it from its surrounding.
Focusing tracking on these parts facilitates the task and results in more stable position
estimates. We have developed two tracking approaches. First, we present in Section
5.1 the most salient region tracking which is based on the idea of visual search: target
features, obtained from a visual attention system, are boosted in a top-down way to find
the target. Second, we present in Section 5.2 a new component-based tracking approach.
The method determines for each target object a flexible number of salient components,
each representing a discriminative part of the object with respect to a certain feature
channel. The resulting components form a template that is utilized for the observation

59
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model of a particle-filter-based tracking scheme. In Section 5.3 we use the component-
based tracker for person tracking on a mobile robot.

Both tracking approaches assume that we have an initial estimate of the target, given
by a bounding box. In our experiments, we initialized the system manually in the first
frame, but the region can as well be provided by a module of a larger system, e.g., by
an object detection module as the one presented in Chapter 3.

The observation models of the trackers in this chapter are based on the visual atten-
tion system VOCUS (Frintrop, 2006). In principle, any attention system can be used.
However, for the work in Section 5.1, a top-down component is required that is able to
extract a feature descriptor from the feature maps and use it in a top-down manner to
excite target-relevant features. For the work in Section 5.2, any bottom-up attention
or saliency method can be used that computes several feature maps, which highlight
different visual aspects of the target.

Finally, it should be said that the here presented work concentrates on the represen-
tation of the target and the observation model of the tracker. It does not address the
problem of adapting the target representation if the target appearance or the background
appearance change over time. This has been addressed in our subsequent work on adap-
tive object tracking (Klein et al., 2010) that uses a Boosting approach to learn and adapt
target appearance over time and the extensions of this work (Klein and Cremers, 2011;
Garćıa et al., 2012). These ideas could also be used to adapt the cognitive target model
that is presented here.

5.1 Most Salient Region Tracking

Although the most salient region tracker (MSR tracker) and its related paper (Frintrop
and Kessel, 2009) is not part of this habilitation thesis, it will be briefly described here
since it was the predecessor of the component-based tracker and some ideas base on this
work.

The idea of the MSR tracker is simple and builds on a visual attention system with a
top-down mode for visual search. The appearance of the target is learned quickly from
the initialization frame, according to the learning mode described in (Frintrop, 2006).
Then, the resulting target descriptor is used to perform visual target search by exciting
target-relevant features and inhibiting target-irrelevant features according to the visual
search strategy proposed in (Frintrop, 2006). The concept is visualized in Figure 5.1,
details of the method can be found in (Frintrop and Kessel, 2009).

Advantages of the method over other appearance-based tracking methods are that it
first concentrates on especially discriminative regions. Second, it combines the output
of several feature channels, so that the system can use the features that fit best for a
specific target. And finally, feature contrasts rather than absolute feature values are
considered, resulting in a higher invariance to illumination changes. We have shown in
(Frintrop and Kessel, 2009), that the method outperforms other feature-based tracking
approaches, such as the Camshift tracker based on color histograms (Bradski, 1998).

The MSR tracker focuses tracking always on the most salient region of an object. In
the following section, we extend this idea to detect and track multiple salient regions per
object.
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Figure 5.1: Visual search component of the MSR tracker: the feature maps for intensity,
color and orientation are weighted to obtain an excitation map from target-relevant
features and an inhibition map from target-irrelevant ones. Target-specific weights are
obtained from the feature vector ~w0 that has been learned in advance. A top-down
saliency map Std is computed which highlights the target-specific regions of interest and
the most salient region Mt determines the position of the object (Figure from (Frintrop
and Kessel, 2009)).

5.2 Multi-Component Tracking

While the tracking approach of the previous section focuses on the most salient part of
the target, the work in (Frintrop, 2010) extends this idea to represent a target by multiple
salient components. This is especially favorable for complex objects that consist of several
parts that are visually distinctive. The component-based template that represents the
target is flexible in the sense that the number and position of components per target is not
fixed but depends on the target and is determined automatically during runtime. This
distinguishes our approach from previous work (Pérez et al., 2002, 2004; Adam et al.,
2006; Beuter et al., 2009) that also represented targets by different parts, however, with
rigid layouts. To the best of our knowledge, our work was the first to represent target
objects for tracking by automatically determining discriminative parts of a target in a
flexible and object-dependent way.

The multi-component tracking learns the target appearance from an initialization
frame. The target appearance is represented by a template that consists of several
components. Each component corresponds to a peak within the target region in one of
the feature maps from a visual attention or saliency system. The six feature maps Fi that
we obtain from the attention system VOCUS are two intensity maps for bright-dark and
dark-bright contrasts, as well as four color maps for red-green, green-red, blue-yellow,
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Figure 5.2: An example of a target object and the corresponding parts in the feature maps
Fi. From left to right: original image, intensity bright-dark map, intensity dark-bright
map, red-green contrast map, green-red contrast map, blue-yellow contrast map, yellow-
blue contrast map. Each local maximum in these maps corresponds to one component
in the template.

and yellow-blue contrasts (cf. Figure 5.2) and the components are obtained by detecting
local maxima in these maps and segmenting a region surrounding each maximum. Each
component is then approximated by the smallest surrounding rectangle. We call the
resulting components mi,j , where i denotes the feature and j the number of the peak.

The positions of the regions mi,j are stored relative to the center of the target region
~R∗ and represent a template ~MR∗ = {mi,j |i ∈ {1, .., 6}, j ∈ {1, .., li}}, where li is the
number of components detected in feature map Fi (cf. Figure 5.3, left). Next, we derive a
descriptor vector from the components mi,j by computing the ratio of the mean saliency
value withinmi,j and the mean value of the background. The saliency values are obtained
from the corresponding feature maps of the attention system. Thus, the target descriptor
that we obtain is ~d∗ = {ρi,j |i ∈ {1, .., 6}, j ∈ {1, .., li}}.

In order to match the target descriptor ~d∗ to an image region ~R′ of arbitrary size and
dimensions, the template is first adapted in size to the estimated size of the target in the
current frame. In our setup, the size estimation is obtained from the particle estimates of
the visual tracker. The adapted template is then used to compute a descriptor vector ~d′

for the current image region and the two descriptors ~d∗ and ~d′ are matched by computing
the similarity of the vectors with the Tanimoto coefficient (cf. Figure 5.3).

The component-based template is integrated into the observation model of a particle-
filter-based tracker (Isard and Blake, 1998). The approach maintains a set of weighted
samples (particles) over time using a recursive procedure based on the following three
steps: first, the system draws particles randomly from the particle set of the previous
time step, where each particle is drawn with a probability proportional to the associated
weight of the particle. Second, the particles are transformed (predicted) according to a
motion model. Finally, all particles are assigned new weights according to an observation
model and the object state is estimated.

The most crucial step of a visual tracker is the observation model since it is responsible
for which particles will survive. It therefore has the strongest influence on the estimated
position of the target. In our approach, the set of particles is defined as Φt = {φ1

t , ...φ
J
t }

with
φ
j
t = (~sjt , π

j
t ,
~d
j
t ), j ∈ {1, ..., J}. (5.1)

Here, ~sjt = (x, y, vx, vy, w, h) is the state vector that specifies the particle’s region with
center (x, y), width w, and height h; vx and vy specify the current velocity of the particle;

π
j
t is a weight that determines the relevance of the particle with respect to the target,
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Figure 5.3: Multi-component tracking: in the first frame (left), a template is computed
that represents the target in region R∗; it consists of several components, visualized here
by the colored rectangles (the color indicates the corresponding feature map). The com-
ponents are stored relatively to the center of the region and a descriptor ~d∗ is computed
for the target. In subsequent frames t (right), the template is matched to each particle
region (dashed rectangles). It is first adapted in size, then, a descriptor ~d′ is computed,
and finally, ~d′ is matched to the target descriptor ~d∗ by the Tanimoto coefficient T . The
similarity determines the weight of the particle.

and the component-based descriptor ~d
j
t describes the appearance of the particle region.

The weight π
j
t is set according to the similarity of the current particle region to the

target vector and is computed by

π
j
t = c · eλ·T (~d∗,~djt ), (5.2)

where T is the Tanimoto coefficient, λ = 14 prioritizes particles very similar to the
target and c is a normalization factor.

Finally, the current state of the object can be estimated as a weighted average of the
particles by

~xt =

J
∑

j=1

π
j
t · ~s

j
t . (5.3)

We have evaluated the multi-component tracking on several video sequences in real-
world indoor and outdoor settings. Some examples of these sequences are shown in
Figure 5.4. The method was compared to other feature-based tracking methods, such
as the probabilistic tracking based on color histograms from Pérez et al. (2002), and
different challenges were tested, such as illumination changes, scale changes, fast object
motion, or temporal object occlusion. It has shown that the component-based tracker
outperformed the other methods considerably, with a detection rate of 81% and an
average error of the target position of 22 pixels, compared to a detection rate of 56% and
a target position error of 41 pixels for the histogram tracking. The computation time
was 80 ms per frame on a 2.5 GHz dual core PC with non-optimized code.
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Figure 5.4: Some example frames from our tracking experiments. The yellow rect-
angle denotes the target object. See also the video on http://ivs.informatik.uni-
bonn.de/research/tracking/

5.3 Person Tracking on a Mobile Robot

Visual tracking plays an important role in many areas, for example in service robotics.
Here, especially the tracking of individual humans is of interest to distinguish the client
from other people. While model-based vision approaches, trained to detect the shape of
people, are well suited to detect people in general, an approach that is able to distinguish
individuals has to capture the individual properties of humans, such as clothing, hair, or
skin color.

In cooperation with the group of Dr. Dirk Schulz from the Fraunhofer institute FKIE,
we have proposed such an individual person tracker (Frintrop et al., 2010a, 2009), based
on the multi-component tracker from (Frintrop, 2010). Depending on the appearance of
the person (clothing, hair color, skin color, hat, backpack, etc.), the system determines
a flexible number of components, each representing a discriminative part with respect to
a certain feature channel from a saliency system. Since the system is feature-based and
learns the appearance of the person online, it is also able to cope with people wearing
backpacks or carrying large objects.

We ran several experiments on the RWI B21 robot Blücher, equipped with a USB
web camera mounted on a pan-tilt unit (Figure 5.5, left). Our component-based tracker
was integrated into the tracking module of the robot. The module uses the position
estimate of the tracker to compute a heading direction relative to the robot and steers
the pan-tilt unit in order to center the person and commands the robot to follow the
person. Experiments were carried out within the robot experimentation hall and the
hallways at the Fraunhofer institute FKIE during normal working hours, with people
walking around.

We have compared the component-based tracking method with three other color-
based trackers and shown that the component-based tracker performed best, with an av-
erage detection rate of 90%, whereas the other methods ranged between 33% (CamShift)
and 77% (simplified version of our method without components). In Figure 5.5 we display
some of the tracking results.
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Figure 5.5: Left: the RWI B21 robot Blücher. The images were taken using the small
pan-tilt mounted webcam on top of the robot. Middle and right: tracking results. points:
particles. The rectangles show the estimated target state.

5.4 Conclusion

In this chapter, we have summarized our work on visual object and person tracking. We
have introduced a new approach for tracking based on a component-based descriptor.
The method grabs the appearance of an object or a person together with a rough spatial
layout which is quickly learned from a single training image. It can deal with different
objects and settings, works in real-time, and is applicable on a moving platform. We
have shown that, on average, it clearly outperforms other methods.

Interesting for future work is to adapt the target descriptor automatically to new
backgrounds and new object appearances. We have introduced in (Klein et al., 2010)
an adaptive method for tracking objects in video data. It is based on a classifier-based
approach that trains weak classifiers on features which are boosted to select and combine
the most discriminative ones into a strong classifier. In (Garćıa et al., 2012), this method
was extended to color and depth data from an RGB-D sensor. While this work operated
on simple Gradient features, it would be an interesting extension to use instead the
saliency-based components which were presented in this chapter as a basis for boosting.
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Chapter 6

Attentive Robot Localization and
Mapping

A common and widely investigated problem in robotics is SLAM, which stands for Si-
multaneous Localization And Mapping. SLAM is the task of an autonomous system to
automatically build a map of an unknown environment based on sensor data, while local-
izing itself within it. This is of interest not only for mobile robots, but also for systems
that do not navigate autonomously such as cars or hand-held cameras.

The SLAM problem is a “chicken-and-egg problem”: the robot needs a map to
localize itself while on the other hand it requires an accurate pose estimate to build this
map. The solution is to successively build the map while permanently using new sensor
data to update the map. The process can be compared with a human that explores
an unknown area, for example a new city. While walking through the streets, she/he
obtains successively a clearer picture of the city, especially of the arrangement of streets
and their connections. Especially when the streets are narrow and winding this can be
difficult, and one might be surprised when coming to a previously seen location, not
to be where one expected. Based on this new information, the internal picture of the
world is updated and corrected. The same is done on a robot. The key idea for this
update is that the information about the robot pose and the information about all sensor
observations (e.g., landmarks) are correlated. If the position of a single observation is
corrected due to better measurements, this can influence the complete map data, that
means all other observations as well as the robot position itself.

During the SLAM process, the computations take place in two steps: first, the robot
moves, which increases the pose uncertainty of robot and landmarks. Then, the robot
processes its new sensor data, which decreases the uncertainty. The largest correction of
uncertainty, and therefore the most useful one, takes place during so called loop closing
situations. When the robot comes back to a region that it had already visited previ-
ously, it sees the same observations again and can correct its estimates accordingly. A
precondition is that the robot recognizes the position and that the measurements belong
to the same observations as previously seen ones. This step is not trivial and belongs to
the biggest challenges in (visual) SLAM.

Traditionally, robots use range sensors such as laser range finders to create a map,
and SLAM based on such sensors has reached a rather mature level. Range sensors are
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especially well suited for map building and localization, since they offer exact information
about the distance of obstacles and the layout of buildings. On the other hand, laser
scanners are expensive, heavy, and require much energy. Therefore, other approaches
aim to solve the SLAM problem with cameras as sensors. This is especially of interest
for small robots that cannot carry heavy laser scanners. Camera-based SLAM is usually
called visual SLAM. The main difference in visual SLAM is that first, images contain a
huge amount of data, which poses a challenge for real-time processing, and second, the
3D position of image regions is not available instantaneously, but has to be estimated
from stereo data or by structure-from-motion. Therefore, the standard approach in visual
SLAM is to extract 2D features from the images (e.g., corners or blob-like regions) and
to estimate their 3D position, resulting in so called landmarks. Recently, several groups
have investigated SLAM based on data from RGB-D cameras (e.g. Engelhard et al.
(2011)). This facilitates the 3D localization of landmarks, but the challenges of feature
and landmark detection remain mostly the same.

A key competence in visual SLAM is to select landmarks of high quality to enable
stable tracking and loop closing. These two tasks rely on different properties of land-
marks. For tracking, it is especially important to reliably redetect features in subsequent
frames. Matching of features between subsequent frames is usually easy since frames do
not differ strongly. The computation should be fast but the descriptor matching does not
have to be very powerful. The recently introduced ORB (Rublee et al., 2011) features
are perfect candidates for such tasks. They are fast to compute and sufficient in their
quality for tracking situations. Loop closing on the other hand requires more sophis-
ticated matching capabilities. Landmarks on images viewed from different viewpoints
and captured several minutes, hours, or even days later than the reference view, are
much harder to match than landmarks between subsequent frames. In these cases, we
are looking for landmarks that are easily redetected and that have a high discriminabil-
ity. Perfect candidates for such landmarks are salient regions that stick out of their
surrounding. By definition, they have a high saliency, resulting in a high repeatability
(Frintrop and Cremers, 2010; Frintrop, 2008) and making them easy to distinguish from
their environment.

In this chapter, we summarize our work on “attentive visual SLAM”. Our visual
SLAM system is based on salient landmarks, obtained from the visual attention system
VOCUS. These landmarks are especially distinctive, which enables a stable loop-closing
even with a sparse set of landmarks. Thus, although the computation of the salient
features is slower than computation of features such as ORB, the system is efficient since
dealing with a sparse set of landmarks pays off by strongly reduced matching and tracking
efforts. Figure 6.1 gives an overview over the system. Most of the work in this chapter
was performed together with Patric Jensfelt within the EU project NEUROBOTICS
at KTH, Stockholm, in the group of Henrik Christensen. Some work has been done
later in the group of Armin B. Cremers. The basis of this chapter are the publications
(Frintrop and Cremers, 2010; Frintrop and Jensfelt, 2008b; Frintrop and Cremers, 2007);
also related are (Frintrop et al., 2006b,a, 2007; Frintrop and Jensfelt, 2008a).

The contributions summarized in this chapter are first, a landmark selection scheme
which allows a reliable pose estimation with a sparse set of especially discriminative
landmarks, second, a precision-based loop-closing procedure based on SIFT descriptors,
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Figure 6.1: Attentive Visual SLAM: robot Dumbo builds a map of the environment and
corrects its position estimates by detecting and tracking salient landmarks. Landmark
detection is done with the attention system VOCUS. Left: overview of the architecture.
Right: example view of the robot during operation (yellow rectangle); it shows an im-
age with a landmark and the corresponding saliency map (Figures from (Frintrop and
Jensfelt, 2008b) and http://www.iai.uni-bonn.de/∼frintrop/research.html)

and, finally, an active gaze control strategy to obtain a better baseline for landmark
estimations, a faster loop closing, and a more uniform distribution of landmarks in
the environment. In the following, we briefly sketch the ideas of the attentive SLAM
approach.

6.1 Salient Feature Detection and Landmark Selection

An ideal candidate for selecting a few, discriminative regions in an image is a visual
attention system. In our attentive visual SLAM system, we detect salient landmarks
with the visual attention system VOCUS that was presented in (Frintrop, 2006). VOCUS
determines feature contrasts for intensity, orientation, and color features on 3 different
scales with image pyramids. The peaks from the saliency map are extracted as regions
of interest (ROIs). We have shown that salient ROIs have a higher repeatability than
standard detectors (Frintrop and Jensfelt, 2008b; Frintrop and Cremers, 2010; Frintrop,
2008), which makes them especially suited as landmark candidates. When using features
with high repeatability, it is possible to reduce the overall number of features and deal
with a sparse landmark set. This speeds up the tracking and matching procedures
significantly.

In (Frintrop and Cremers, 2010), we have shown that it is even possible to create
landmarks and to redetect them when re-visiting the same scene by considering only one
(the most salient) feature per frame. This is in strong contrast to traditional approaches
that consider hundreds or even thousands of features per frame. While this does not
mean that using one feature is the optimal solution (it certainly is not, since it reduces
the ability of a system to cope with occlusions), it shows nicely how focusing on salient
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landmarks can reduce the processing time and memory requirements while keeping a
high quality of landmark detection and matching.

While the extracted ROIs are regions in a 2D image, landmarks are parts of the 3D
world. To obtain landmarks from ROIs, these are tracked over several frames to remove
unstable observations and to obtain different viewpoints of a landmark. For tracking
ROIs, a simple descriptor is sufficient since consecutive frames usually do not differ
strongly. Instead of using standard descriptors that have to be computed additionally, we
suggest a simple and effective solution that comes almost without cost: An attentional
descriptor v can be obtained directly from the feature and conspicuity maps of the
attention system. In other words, an entry vi of the descriptor denotes the feature
saliency of the ROI with respect to feature channel i (details in (Frintrop and Jensfelt,
2008b)). We matched two attentional descriptors ~v and ~w by calculating the similarity
d(~v, ~w) according to a distance measure that we introduced in (Frintrop et al., 2007).

After the ROI was successfully tracked over several frames, its observations are tri-
angulated and the obtained 3D position is integrated as new landmark observation into
the 3D map.

6.2 Landmark Redetection / Loop Closing

Loop Closing belongs to the essential capabilities of a SLAM system, because it enables
the reduction of large position errors. In loop closing situations, a scene is re-visited
from a different viewpoint. Thus, landmarks appear under strong transformations. Ad-
ditionally the scene might have changed since visiting it the last time, the illumination
can be different, and objects might have appeared or disappeared. To cope with such
challenges, a powerful landmark matching is required.

The loop closing scheme that we proposed in (Frintrop and Jensfelt, 2008b) is es-
pecially suited for this purpose. It is based on the salient landmarks presented in the
previous section, which enables to obtain a sparse, but discriminative landmark repre-
sentation. For matching an observed salient region to a previously seen landmark, we
use the SIFT descriptor (Lowe, 2004) that belongs to the most powerful and most fre-
quently used image descriptors. Figure 6.2 shows some examples of correctly matched
landmarks.

For matching landmarks, we introduced in (Frintrop and Jensfelt, 2008b) a new
precision-based matching strategy that learns the dependence of ROI distances and
matching precision from training data and enables to directly set a threshold for the
desired matching precision. This is in contrast to the standard threshold-based match-
ing that thresholds directly on the feature distances.1 The precision-based matching has
several advantages over the usual thresholding. First, it is possible to choose an intuitive
threshold like “98% matching precision”. Second, linear changes on the threshold result
in linear changes on the matching precision which is not the case for thresholding dis-
tances. Finally, for every match a precision value is obtained. This value can be directly

1Alternative matching strategies are nearest neighbor and nearest neighbor distance ratio matching.
Mikolajczyk and Schmid show that these strategies are more powerful than threshold-based matching,
but also point out that they are difficult to apply when searching in large databases (Mikolajczyk and
Schmid, 2005).



6.3. ACTIVE GAZE CONTROL 71

Figure 6.2: Some examples of correctly matched landmarks, displayed as rectangles.
Top: current frame. Bottom: frame from the database.

used by other components of the system to treat a match according to the likelihood
that it is correct. For example, a SLAM subsystem able to deal with more uncertain
associations could use these values.

When a match is detected, the coordinates of the matched ROI in the current frame
are provided to the SLAM system and used to update the coordinates of the correspond-
ing landmark. We performed several experiments to validate the attentive visual SLAM
system. One example can be seen in Figure 6.3, where the robot drove three loops in
an office environment. This setting allows to investigate the loop closing behavior well
since the same areas are re-visited several times. While the robot gets lost when rely-
ing only on its odometry (left), the SLAM system allows it to correct its errors (right).
Note the sparse landmark representation on the right. While standard approaches for
visual SLAM obtain hundreds or even thousands of features per frame, resulting in huge
amounts of landmarks, we are able to maintain a correct robot position with very few
landmarks. After three runs, the robot generated 17 landmarks, 10 of them were rede-
tected when returning to the same area. Most of them were redetected several times,
resulting in 21 matches over the whole sequence. More experiments and an extensive
evaluation can be found in (Frintrop and Jensfelt, 2008b).

6.3 Active Gaze Control

Landmarks can only be detected and redetected if they are in the field of view of the
robot’s sensor. By actively controlling the viewing direction of the sensors it is possible to
strongly improve the performance of a SLAM system. In (Frintrop and Jensfelt, 2008b)
we presented a new approach for active gaze control of our attentive SLAM system that
makes it possible first, to see landmarks for a longer time resulting in better landmark
representations, second, to actively redetect landmarks to enable more frequent loop
closings, and finally, to achieve a more uniform distribution of landmarks.
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Figure 6.3: Attentive visual SLAM in an office environment: the robot trajectory was
estimated once only from odometry (left) and once from the SLAM system (right). The
walls (green lines) are only overlaid for visualization purposes and are not known by the
robot. Right: Green dots are landmarks, red dots are landmarks which were redetected
in loop-closing situations. While errors accumulate in odometry mode, resulting in a
wrong pose estimate (left), the SLAM approach on the right allows the robot to correct
these errors, based on a very sparse set of landmarks.

The active gaze control module controls the camera according to three behaviors:

• Redetection of landmarks to close loops

• Tracking of landmarks

• Exploration of unknown areas

The redetection mode uses information about the position of the landmarks and the
robot to determine landmarks that are likely to be visible and directs the camera into
their direction. This facilitates the detection of loop closure. The tracking behavior
follows landmarks with the camera so that they stay longer within the field of view. The
exploration behavior directs the camera to unseen areas to obtain a more uniform land-
mark distribution. Details about the behaviors can be found in (Frintrop and Jensfelt,
2008b).

The strategy to decide which behavior to choose is as follows: Redetection has the
highest priority, but it is only chosen if there is an expected landmark in the possible
field of view. If there is no expected landmark for redetection, the tracking behavior
is activated. Tracking should only be performed if more landmarks are desired in this
area. As soon as a certain amount of landmarks is obtained in the field of view, the
exploration behavior is activated. In this behavior, the camera is moved to an area
without landmarks. Most times, the system alternates between tracking and exploration;
the redetection behavior is only activated every once in a while. Figure 6.4 shows two
example runs of the robot, one obtained in passive, one in active camera mode. It is
clearly visible that in this case, only the active mode allows loop closing and thus the
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Figure 6.4: Atrium environment: the estimated robot trajectory in passive (left) and
active (right) camera mode. The walls are only overlaid for visualization purposes and
not known by the robot. Landmarks are displayed as green dots. In passive mode, the
robot is not able to close the loop. In active mode, loop closing is clearly visible in the
trajectory and results in an accurate pose estimation.

correct estimation of the robot position. More experiments can be found in (Frintrop
and Jensfelt, 2008b).

6.4 Conclusion

In this chapter, we have summarized our work on attentive visual SLAM. The system
includes feature detection, tracking, loop closing, and active camera control. Landmarks
are selected based on biological mechanisms which favor salient regions, an approach
which enables focusing on a sparse landmark representation. We have shown that the
repeatability of salient regions is considerably higher than the one of regions from stan-
dard detectors.

The active gaze control module presented here enabled to obtain a better distribution
of landmarks in the map and to redetect considerably more landmarks in loop closing
situations than in passive camera mode. In some cases, loop closing is actually only
possible by actively controlling the camera.

While we obtain a good pose estimation and a high matching rate, further improve-
ments are always possible and planned for future work. For example, determining the
salience of a landmark not only in the image but in the whole environment would help to
focus on even more discriminative landmarks. While the SIFT descriptor is very powerful
and achieves good results, it works best on textured regions while the salient region de-
tector favors homogeneous blobs. The same is true for most existing detector-descriptor
pairs, for example the most common combination of SIFT with a Difference-of-Gaussian
detector (Lowe, 2004). Using a detector-descriptor pair that works on the same basic
features will most likely result in an increase of speed and accuracy. In the future, we
plan to use the recently developed detector-descriptor pair (Klein and Cremers, 2013)
that is based on ideas of the CoDi saliency system to solve the visual SLAM problem.
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Adapting the system to deal with really large environments could be achieved by re-
moving landmarks which are not redetected to keep the number of landmarks low, by
database management based on search trees, indexing (Sivic and Zisserman, 2003; Nister
and Stewenius, 2006), and by using hierarchical maps as in (Clemente et al., 2007).



Chapter 7

Conclusion

In this summary, we have presented an overview of our research in the field of Cognitive
Computer Vision. We have outlined the different directions that exist in this broad field,
ranging from psychological and neurobiological work up to engineering approaches in
robotics and computer vision. Our own approach to Cognitive Vision Systems is to seek
for inspiration from findings about human vision and to build vision systems that profit
from these findings. We believe that there are great opportunities in understanding the
human visual system and in exploiting these ideas to improve machine vision systems.
This will be especially important in the future, when cognitive systems become more
and more advanced, and mobile vision devices will pervade our life even more than it
is the case already now. Regardless if we consider cameras in smartphones and tablets,
wearable devices such as Google Glass, driver assistance systems, or autonomous mobile
robots that help us in our household, it is important that such devices are robust,
efficient, and flexible, that they quickly adapt themselves to new situations by learning,
and that humans can interact intuitively with them. All these properties are inherent
in human perception and technical systems can learn from nature how to achieve them.
Especially concepts of the human brain such as parallelization, hierarchical organization,
and prioritization are equally important for machine vision and enable dealing with large
amounts of data that have to be processed in real-time.

In this work, we have concentrated on four topics: object discovery, saliency detec-
tion, visual tracking, and visual SLAM. While we investigated these topics separately
up to now and some of them make sense on their own for specific applications, they can
also be part of a larger cognitive system that integrates these and other modules. We
have outlined some of the possible connections between these modules already in the
introduction, but there is still much more to a cognitive vision system. Some examples
are the ability to recognize and categorize objects and scenes, to learn and integrate
new knowledge continuously over time, and to deal with short and long term memory,
including the important aspect of what to store and what to ’forget’. When leaving the
subspace of Cognitive Vision Systems and regarding the much broader area of Cognitive
Systems, the systems become even more complex. They include navigation behavior,
planning and reasoning, speech recognition and production, manipulation of objects,
and many more. One of the biggest challenges is to integrate all these modules to a
robust, adaptive, and flexible system.
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Frintrop, S., Garćıa, G. M., and Cremers, A. B. (2014). A cognitive approach for object
discovery. In International Conference on Pattern Recognition (ICPR).

Frintrop, S. and Jensfelt, P. (2008a). Active gaze control for attentional visual SLAM.
In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA).

Frintrop, S. and Jensfelt, P. (2008b). Attentional landmarks and active gaze control for
visual SLAM. IEEE Transactions on Robotics, Special Issue on Visual SLAM, 24(5).



80 BIBLIOGRAPHY

Frintrop, S., Jensfelt, P., and Christensen, H. I. (2006a). Attentional Landmark Selection
for Visual SLAM. In Proceedings of the International Conference on Intelligent Robots
and Systems (IROS).

Frintrop, S., Jensfelt, P., and Christensen, H. I. (2006b). Pay attention when select-
ing features. In Proceedings of the International Conference on Pattern Recognition
(ICPR).

Frintrop, S., Jensfelt, P., and Christensen, H. I. (2007). Simultaneous robot localization
and mapping based on a visual attention system. In Paletta, L. and Rome, E., editors,
Attention in Cognitive Systems, volume 4840 of Lecture Notes on Artificial Intelligence
(LNAI). Springer-Verlag.

Frintrop, S. and Kessel, M. (2008). Cognitive data association for visual person tracking.
In Proceedings of the IEEE Workshop on Human Detection from Mobile Platforms
(HDMP) at the International Conference on Robotics and Automation (ICRA).

Frintrop, S. and Kessel, M. (2009). Most salient region tracking. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA).

Frintrop, S., Königs, A., Hoeller, F., and Schulz, D. (2009). Visual person tracking using
a cognitive observation model. In Proceedings of Workshop on People Detection and
Tracking at the IEEE International Conference Robotics and Automation (ICRA).

Frintrop, S., Königs, A., Hoeller, F., and Schulz, D. (2010a). A component-based ap-
proach to visual person tracking from a mobile platform. International Journal of
Social Robotics, 2(1):53–62.

Frintrop, S., Rome, E., and Christensen, H. I. (2010b). Computational visual attention
systems and their cognitive foundations: A survey. ACM Transactions on Applied
Perception, 7(1).

Friston, K. (2012). The history of the future of the Bayesian brain. Neuroimage.

Gao, D., Han, S., and Vasconcelos, N. (2009). Discriminant saliency, the detection of
suspicious coincidences, and applications to visual recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 31(6).

Gao, D. and Vasconcelos, N. (2007). Bottom-up saliency is a discriminant process. In
Proceedings of the International Conference on Computer Vision (ICCV).
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Abstract—Object discovery is the task of detecting unknown
objects in images. The task is of large interest in many fields
of machine vision, ranging from the automatic analysis of web
images to interpreting data of a mobile robot or a driver assistant
system. Here, we present a new approach for object discovery,
based on findings of the human visual system. Proto-objects are
detected with a segmentation module, generating perceptually
coherent image regions. In parallel, a saliency system detects
regions of interest in images and serves to select segments,
depending on their saliency. We obtain very good results on a
database of salient objects and on real-world office scenes.

I. INTRODUCTION

One essential task in many machine vision applications is
to automatically and quickly detect objects in the environment.
This topic is of interest for many applications, for example
automatically processing web images (thumbnailing, resizing,
etc.), analyzing video data from devices such as Google Glass,
or finding and manipulating objects with an autonomous robot.
In contrast to object recognition or classification, the types of
objects are not known in advance, there is no training phase,
and the system starts without any pre-knowledge. Thus, the
system addresses the question “what is an object?”.1 Object
discovery is a challenging task for machine vision and belongs
to the open problems in the field. The reason is the ’chicken-
and-egg property’ of the problem: how to search for an object
before knowing how it looks like?

While difficult for machines, detecting objects is effort-
lessly, even unconsciously, done by humans. Thus, it is worth
investigating how the human visual system achieves this task.
We investigated the findings of psychology and neurobiology
on object perception (cf. Sec. III) and developed a biologically
inspired strategy that finds objects in a two step approach
(cf. Fig. 1): first the image is segmented into perceptually
coherent parts, called proto-objects; second, a saliency map
is computed and proto-objects are selected depending on their
saliency. The result are object hypotheses or object proposals.

Our contributions in this paper are twofold. First, we
propose an improved saliency system that outperforms 7 state-
of-the-art saliency models. Second, we propose a new approach
for object discovery that is based on concepts from human
perception and is applicable to web images as well as to real-
world video data.

II. RELATED WORK

While object recognition is a well established field, ob-
ject discovery still involves many challenges. Especially the

1When referring to objects, we follow a definition from psychology: Objects
are “manipulable units with internal coherence and external boundaries” [31].
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Fig. 1. Simplified overview of our object discovery approach for web images:
Saliency selects the relevant proto-objects to form object hypotheses.

discovery of objects in 2D images or videos, in which no
depth information is available, is difficult. However, several
people have investigated this problem and suggested promising
approaches; a survey can be found in [30]. Many methods
base on the fact that objects are consistent over several images
while background is not, and identify regions across images
that are visually similar [4], [22]. A related idea is to regard a
sequence over time and detect changes, since it is likely that
these changes correspond to objects [14]. In the approach of
Manén et al. [21], the image is segmented into superpixels
[9] and then, connected superpixels are grouped randomly by
sampling partial spanning trees that have high sums of edge
weights. Other approaches apply machine-learning techniques
to learn which aspects of an image might correspond to an
object [3]. This idea bases on the fusion of several feature
channels, similar as in the field of salient object detection
[5]. These approaches are often designed for web images and
use often assumptions such as objects are large and central
in an image (photographer bias). Instead, we propose here a
generally applicable approach that works for single 2D images
as well as for real-world image sequences.

Recently, especially with the upcoming RGB-D sensors,
several groups have investigated object discovery in 3D data.
Karpathy et al. find objects on the 3D meshes obtained
from RGB-D data [19]. Johnson-Roberson et al. do object
segmentation on full point clouds [17]. The segmentation is
seeded at salient points in the image that are mapped to
the full point cloud. In [26], 3D object models are built by
matching scans from partial views from which they subtract



points that correspond to planar surfaces: floor, walls, etc. In
[10], objects were detected in RGB-D data by observing a
scene over time and incrementally updating 3D object models.
Generally, such 3D approaches have the advantage that they
can exploit depth information which is a very helpful feature
for object discovery. In this paper, we focus instead on 2D
approaches for object discovery in which no depth information
is available.

III. HUMAN OBJECT PERCEPTION

Object perception is deeply rooted in the human visual
system which enables a fast and effortless detection of objects.
Even objects of completely unknown appearance are easily
recognized as objects, even by young infants [28]. It is not
yet completely understood how object perception works in
the human brain, but many findings are well known. We will
concentrate here on the findings which are important for our
framework of computational object discovery.

Physiologically, object detection and recognition take place
in the ventral stream of the human visual system. This stream
is also called what pathway since it is strongly involved in
color and form processing and is responsible for deciding
what is visible in a scene. This is opposed to the dorsal or
where pathway that processes mainly motion and depth cues
and is responsible for object localization [13]. The ventral
visual pathway starts its processing as early as the retina, goes
on through the LGN, V1, V2, and V4, until it ends in the
inferotemporal cortex (IT), responsible for object recognition.

Many cells in these visual areas have a center-surround
structure: they respond excitatorily to light at the center of
their receptive field2 and inhibitorily to light at the surround
or vice versa. This means, they have the strongest response if
the center is bright and the surround dark (ON-OFF cells)
or vice versa (OFF-ON cells). Cells are divided into three
types, organized in three channels: the luminance channel, the
red-green channel, and the blue-yellow channel [12]. These
channels lead from the retina to higher brain areas.

Cells exist with concentric receptive fields and with elon-
gated ones. It has been shown that the concentric fields are
modeled best with a two-dimensional Difference-of-Gaussian
(DoG) function [25], while the elongated fields are modeled
best with Gabor filters [18]. Both types of filters are frequently
used in computer vision, because the blob and edge detection
that they perform is equally important there as in human vision.

Coming back to object detection, there is evidence that
the individuation of objects, which addresses the question of
what is an object, takes place before object recognition [23].
The decision of which parts of the visual scene belong to
objects results from perceptual organization rules, especially
from segmentation processes that bundle parts of the visual
input. Such segmentation mechanisms are believed to exist on
all levels of the visual system [27] and the bundling is based
on concepts such as similarity, proximity, and other processes
described already early by the Gestalt principles. A recent
review about the history of the Gestalt laws as well as new
findings can be found in [32].

2The receptive field of a cell is the collection of other cells that influences
the output of the cell.

The result of these segmentation processes are so called
“proto-objects” [24]. They describe the local scene structure
of a spatially limited region and might correspond to objects,
but they might also be object parts or collections of several
objects. Rensink [24] describes them as “volatile structures of
limited spatial and temporal coherence”, meaning that they are
regenerated constantly and not stored in visual memory. Later
on, proto-objects are combined by focused attention to form
coherent objects. This is an important step, since it enables to
decide which segments an object consists of.

IV. COMPUTATIONAL OBJECT DISCOVERY

Formally, object discovery means we are interested in an
algorithm that can answer the question of whether a given
pixel set corresponds to an object or not. But even if we had
a method to answer this question reliably, the problem would
be complex: an image of w × h = n pixels consists of 2n

possible subsets that could potentially form an object (due
to partial occlusions, object parts do not necessarily have to
be connected). Tsotsos has proven that the related problem
of unbounded visual search, that means search for an object
whose features are unknown, is NP-hard [29]. And even when
restricting the problem to a rectangular bounding box, the
problem is still demanding: O(n · w · h) subwindows have to
be tested for their objectness, since at each pixel, subwindows
of all possible sizes have to be tested. Depending on how
computationally expensive the objectness measure itself is, this
can easily take several seconds or even minutes which makes
the approach inapplicable for real-time applications.

To deal with the complexity of the object discovery prob-
lem, we follow the strategy that nature developed and find
objects in a two step approach: first the image is segmented
into perceptually coherent parts (proto-objects [24]); second, a
saliency map is computed and segments are selected depending
on their saliency. Thus, the saliency system is responsible
for prioritizing the data processing by providing reasonable
regions of interest.

For generating proto-objects, we use the segmentation
approach of Felzenzwalb and Huttenlocher [9] (cf. Fig. 1, left).
This is a graph-based segmentation method that is based on
two important Gestalt principles: the similarity and proximity
of pixels. The method creates, as the authors state, “per-
ceptually important regions”. The second step addresses the
question of which segments belong together to form objects.
According to Rensink [24], we let attention select the relevant
proto-objects. This is done by computing a saliency map that
highlights regions of potential interest: the brighter a pixel in
the saliency map, the more salient this region is and the larger
the probability to contain perceptually relevant data. While
in human vision, bottom-up as well as top-down cues play
an important role for attention, top-down knowledge is not
always available, and in absence of a task, bottom-up saliency
is often the best that can be used. Therefore, we use here a pure
bottom-up saliency map to select proto-objects, but if top-down
information is available, a top-down map can equally well be
used.

To compute the saliency map, we use the CoDi saliency
system [20] since it is real-time capable, computes precise
saliency maps, and works for web images as well as real-
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Fig. 2. Visualization of the center-surround computations in the original CoDi
saliency system [20] and in our adapted version. Center and surround regions
in the image (red and blue ellipses) are weighted with Gaussian windows
(left) and feature distributions are determined (right: intensity distribution).
The contrast was originally computed with the W2 metric; here we use the
Manhattan distance on the mean values of the distributions (right). The figure
shows how this approach corresponds to a Difference of Gaussian approach
since each mean value corresponds to the weighted mean of values in the
corresponding ellipse.

world images3. The CoDi system has shown to outperform
many other saliency methods in [20] and source code is openly
available4. The idea of the CoDi-Saliency is to compute center-
surround contrast by comparing normal distributions that rep-
resent the feature statistics in the corresponding image regions.
Distributions are compared with the W2-distance (Wasserstein
metric based on the Euclidean norm). This concept is visual-
ized in Fig. 2, left. This center-surround measure is embedded
into a scale-space structure to enable the detection of objects of
different sizes. The computations are performed for intensity
and color features, where the latter operates on an opponent-
color space with one red-green and one blue-yellow axis. These
dimensions correspond to the opponent color channels of the
human visual system (cf. Sec. III).

We made several changes on the CoDi system to improve
performance. The effect of each of the changes is visualized in
Fig. 3 and Fig. 4. First, we adapted the size of the integration
window for the center and the surround distribution from
σc = 1 versus σs = 10 to σc = 1 versus σs = 5. The
latter fits better to human perception [7] and it achieved better
performance also in our experiments. We call CoDi with this
improvement variant 1. Second, we changed the Difference of
Gaussian pyramid to a Gaussian pyramid (variant 2, includes
improvements of variant 1). This makes sense because the DoG
operation computes contrasts, which is anyway done by the
center-surround operation that is applied to each layer later
on. So, it is reasonable to restrict the contrast computation to
one place and operate directly on the Gaussian pyramid. This
change had the largest visible effect from our improvements
since it produces much preciser saliency maps (cf. Fig. 4).

The third change (variant 3, includes improvements of
variants 1 and 2) affects the computation of the center-surround
difference itself. The original CoDi system computes the W2-
distance of normal distributions. However, we found that using

3Many other recent approaches for saliency computation are only suitable
for web images, since they make several assumptions on images, such as
objects are large and central in an image and do not intersect with the image
borders

4http://www.iai.uni-bonn.de/∼kleind/

Fig. 3. Comparison of the original version of the CoDi-Saliency system [20]
with 3 improvements that we suggested (see text for details). AUC values in
parentheses. Evaluation done as described in Sec. V-A.

instead the much simpler Manhattan distance achieves basi-
cally the same results with less computational effort and results
in cleaner saliency maps. Interestingly, the Manhattan distance
which compares only the mean values of the normal distribu-
tions and ignores the variance, corresponds to a Difference of
Gaussian approach which is the traditional way to simulate
human ganglion and simple cells which are responsible for
contrast detection in the human visual system [7]. The reason
is the following: the normal distributions computed in CoDi are
maximum-likelihood estimates of the center or the surround
region, weighted by a Gaussian integration window. Thus, the
mean of the normal distribution of a center region centered at
pixel position (x,y), is defined as

µ̂c(x, y) =

k∑

i=−k

k∑

j=−k

w(x− i, y − j)F (x− i, y − j), (1)

for a k×k Gaussian window centered at (x,y) with variance
σc

2 and resulting weights w; F contains the values of the
corresponding feature channel, e.g., intensity or 2D color
values. The mean of the surround region µ̂s is obtained in the
same way with a σs that is larger than σc (as mentioned above,
we used σc = 1 versus σs = 5). µ̂c and µ̂s are either single
values (intensity), or two-dimensional vectors (color). Thus,
by simply subtracting µ̂c from µ̂s or vice versa, we obtain the
traditional Difference-of-Gaussian method. Since this can be
done exactly in the same framework as the distribution-based
version, it enables a direct comparison of the methods. This
idea is visualized in Fig. 2.

While the AUC value did not change when switching
from W2 to Manhattan distance (cf. Fig. 3), the system is
faster and obtained cleaner saliency maps (there are less bright
borders around objects, cf. Fig. 4, right). The latter aspect
resulted in considerably better performance when combining
the saliency maps with segmentation. We call this variant 3 of
CoDi “Simple CoDi”, since it is simpler and faster to compute
while producing cleaner saliency maps than the original CoDi
system.

Selecting proto-objects based on saliency is then done by
combining all segments in which at least k% of the pixels are



Fig. 4. From left to right: Original image, saliency maps of the original version of the CoDi-Saliency system [20], of CoDi variant 1, of CoDi variant 2, and
of CoDi variant 3 (“Simple CoDi”) (see text for details). We used “Simple CoDi” in this work.

Fig. 5. Object discovery in real-world images.

above a saliency threshold t (we used k = 25 and t = 112).
From these selected segments, all connected components form
an object hypothesis (see Fig. 1).

While the described approach works very well on many
web images, even without using assumptions about the location
of objects (e.g. center-bias), real-world applications are more
challenging in many aspects. When interpreting data from
an autonomous mobile robot or a mobile device like Google
Glass, images are, on the one hand, usually of lower quality
due to illumination changes, motion blur, and cheaper cameras,
but on the other hand much more complex in content because
they contain more objects and clutter. To deal with several
objects, we have to determine which proto-objects belong to
which object hypothesis. Therefore, we have extended our
approach for object discovery as follows. Here again, the
saliency map is computed with our “Simple CoDi” system.
Then, adaptive thresholding5 (OpenCV method) thresholds the
saliency map with help of a local Gaussian kernel, and con-
nected components are found in the resulting map and ranked
by average saliency. Finally, the overlap of each proto-object
with these salient components is determined and all proto-
objects that are covered by at least k% of a salient component
are chosen to belong to the current object candidate. Thus,
each salient component results in an object hypothesis and the
precise boundaries are obtained by the segmentation process.
Fig. 5 visualizes the process.

V. EXPERIMENTS AND RESULTS

Our experiments are divided into three parts: first, we eval-
uate the improvements on the CoDi-saliency system. Second,
we show the performance of the proposed object discovery
approach on a database of salient objects. Finally, we show

5In most recent work, we obtained even better results with region growing
instead of adaptive thresholding. Please check our newest publications at
http://www.iai.uni-bonn.de/∼frintrop

that the approach is also applicable to challenging real-world
settings with many objects and clutter.

A. Saliency evaluation

We have compared our new adaption of the CoDi-saliency
system with 6 other saliency systems: HSaliency [34], Yang
2013 [35], AC 2010 [2], HZ [15], AIM [6], and the Salien-
cyToolbox (ST) [33] which is a reimplementation of the Itti-
system [16]. They have been chosen due to their popularity
and frequency of citations [6], [15] or due to their recency
and very good results on similar tasks [2], [34], [35], and due
to the availability of source code.

We have evaluated the results on images from the coffee
machine sequence which was also used in [11]. The sequence
has 600 frames and shows a complex office scene. Each frame
contains between 20 and 50 objects. Object ground truth was
annotated on every 30-th frame. We chose this setting for
evaluation instead of the commonly used benchmark datasets
with web images, because we want to test the ability of the
systems to deal with challenging real-world scenes that contain
many objects. The images were evaluated according to the
procedure proposed in [1]: thresholding the saliency maps
with an increasing k ∈ [0, 255] results in binarized maps.
Then, each of these maps is matched against the ground truth
to obtain precision and recall.

The results of the comparison are displayed in Fig. 6, some
of the saliency maps are displayed in Fig. 7. It can be seen
that the “simple CoDi” saliency system clearly outperforms all
other systems in terms of precision and recall. Furthermore, the
system is with 0.098 sec. on an 320× 240 image (Intel Core
i3-2330M, 4 x 2,2 GHz, 32bit, 4GB RAM) close to real-time
on non-optimized code. Parallelization could further improve
the speed of the system.

B. Object discovery on web images

In this section, we evaluate our object discovery approach
on the MSRA-1000 database of salient objects [1]. The images
contain objects that were marked as salient by 2 out of 3 users.
Fig. 8 shows several examples from our approach for object
discovery, and Fig. 9 shows how the new approach outperforms
the CoDi-saliency method without segmentation. It can be seen
that the curve drops considerably later when the recall values
grow.
C. Object discovery on real-world scenes

Finally, we have applied the object discovery approach
to real-world images obtained from the office sequence men-
tioned before. Some example images are shown in Fig. 11: on
the left, a simple table-top scene to illustrate the idea (not used



Fig. 7. Saliency maps from AC [2], AIM [6], SaliencyToolbox [33], HZ [15], HSaliency [34], Yang [35], and our “Simple CoDi” saliency system

Fig. 6. Comparing our “Simple CoDi” saliency system to 7 state-of-the-art
methods: CoDi orig [20], HSaliency [34], Yang [35], AC [2], HZ [15], AIM
[6], and the SaliencyToolbox [33]. AUC values in parentheses.

Fig. 8. Several examples of our object discovery. From top to bottom: original
images, saliency maps, segmentations, object hypotheses, ground truth.

for the quantitative analysis), in the middle and on the right
two examples for the office database (used for quantitative
analysis).

We compute the recall, i.e., the percentage of objects which
are found by our approach, and the precision, i.e., the percent-
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Fig. 9. Object discovery on the MSRA database. Blue curve (Sal.): CoDi-
Saliency [20]; red curve (Sal. + Seg.): new combination of saliency and
segmentation. AUC values in parentheses.

age of valid object hypotheses that really represent an object6.
For this, we consider a match as valid if the Pascal measure is
satisfied (intersection-over-union > 0.5) [8]. We compare our
method with two other approaches: the “objectness” measure
of Alexe et al. [3], and the object discovery method of Manén
and colleagues [21]. Since our approach assigns a saliency
value to each detected proposal and the two other methods have
a ranking for their proposals, we have a fair way of comparing
the best N object candidates of all three approaches. This is
often of advantage for real-time systems that have to prioritize
processing capacities. Therefore, we sort the detected objects
by their quality and evaluate the performance of the systems
depending of the number of object hypotheses per image that
are considered. Since the objectness measure returns bounding
boxes instead of precise regions, we represent the ground truth
also by boxes for their approach and evaluate our measure once
with pixel-precise regions (green curve) and once with boxes
(red curve) to enable a fair comparison.

The results of the quantitative evaluation are shown in
Fig. 10. It shows that our method outperforms the objectness
measure clearly. Although it is also visible that the approach
still misses many objects (there is no current method that
can detect all objects in such challenging scenes), it can
also be seen that the detected object hypotheses have a good
quality and are good candidates as input for object recognition
modules or for manipulation by a mobile robot. In the future,
we plan to track proposals over time to improve the quality of
the approach.

6Note that recall and precision measure different qualities here than in
Sec. V-A
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Fig. 10. Comparison of our object discovery method (once with pixel-
precise regions and ground truth (green curve), once with bounding boxes
(red curve) with the objectness measure from [3] (blue curve). Left: the
percentage of discovered objects per frame (recall), right: the percentage of
valid proposals (precision). Performance is plotted depending on the number
of object proposals that were considered (best N proposals per frame).

Fig. 11. Top: some examples of our object discovery method on real-world
office scenes. Each colored contour shows one detected object hypothesis.
Bottom: separately displayed object hypotheses of the above images.

VI. CONCLUSION

We have presented a cognitive approach for object dis-
covery that is based on several findings from human object
perception. Perceptually coherent regions are detected with a
segmentation method and saliency serves to select and combine
segments to form object hypotheses. We have shown that
the approach is able to detect objects in web images, which
is useful for applications such as thumbnailing or automatic
resizing, as well as to operate on real-world data as a mobile
robot or a head-mounted camera would obtain. In future work,
we will add Gestalt principles such as symmetry or convexity
to evaluate whether the obtained object hypotheses are valid.
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Abstract

We present a computational framework for the detection of un-
known objects in a 3D environment. It is based on a visual
attention system that detects proto-objects which are improved
by iterative segmentation steps. At the same time a 3D scene
model is built from measurements of a depth camera. The de-
tected proto-objects are projected into the 3D scene, resulting
in 3D object models which are incrementally updated. Finally,
environment- and object-based inhibition of return enables to
withdraw the attention from one object and switch to the next.
We show that the system works well in cluttered natural scenes
and can find and segment objects without prior knowledge.

INTRODUCTION

Object detection is one of the tasks which are easy to solve for

humans but hard for machines. Especially unsupervised ob-

ject detection, i.e., finding all objects in a scene without pre-

vious learning, is largely unsolved in machine vision.1 How-

ever, a system that is able to localize unknown objects in un-

known environments is tremendously useful for robotics. For

example, a future robot that shall assist in a household must

be able to operate autonomously in a new house and is per-

manently faced with new, unknown objects. Since humans

are able to solve such tasks easily, a promising approach for

technical systems is to mimic the human visual system.2

In humans as in machines, one of the challenges is to

deal with the huge amount of perceptual input. Despite the

parallelity of the brain, its capacity is not sufficient to deal

with all sensory data in detail and a selection has to take

place. Neisser (1967) was the first who proposed a two-

stage processing of perception that solves this task: first,

a pre-attentive process selects regions of interest in paral-

lel, and, second, an attentive process investigates these re-

gions sequentially in more detail. This view has since then

widely spread and many psychological theories and models

build upon this dichotomy (e.g. Treisman & Gelade, 1980;

Wolfe, 1994). Rensink (2000) has further developed this

idea with his coherence theory of attention. It states that the

pre-attentive processing determines structures, which he calls

proto-objects, that describe the local scene structure of a spa-

tially limited region. After that, focused attention selects a

small number of proto-objects which form a coherence field

representing a specific object.

Here, we present a computational framework that follows

Rensink’s idea of proto-objects as pre-processing step for ob-

ject detection. Our approach generates proto-objects with a

1The winner of the latest Semantic Robot Vision Challenge
(http://www.semantic-robot-vision-challenge.org) was only able to
detect 13 out of 20 objects (Meger et al., 2010), although in this
challenge, the target objects were known in advance.

2However, note that our intention is to obtain an improved tech-
nical system rather than to mimic the HVS as closely as possible.

bottom-up visual attention system (Klein & Frintrop, 2012)

and improves their shape by iterative segmentation steps. In

contrast to other attention models, we operate on 3D data

from a depth camera and are thus able to obtain 3D object

models in space, which are incrementally updated by inte-

grating new perceptual data.

In computational systems based on bottom-up visual at-

tention, the focus of attention is directed to the most salient

region in the scene. In order to scan the whole scene, this

requires a way to withdraw attention from that region and

switch to the next. In human vision, this is performed by in-

hibition of return mechanisms (IOR) that inhibit the currently

attended region (Tipper et al., 1994).

In most computational systems, IOR is implemented by ze-

roing values in the saliency map (Itti et al., 1998). This is

sufficient in static images, but when acting in a 3D world, the

correspondence between spatial locations and image regions

is required. This affects also the IOR mechanism, since when

the perspective of the observer changes or objects are mov-

ing, inhibition has to move with them, preventing attention

to re-visit the objects directly. This motivates the use of a

3D map that grounds the perceptions in space and enables to

maintain a coherent IOR representation over space and time.

Corresponding to human vision (Tipper et al., 1994), our IOR

mechanism is both object- and environment-based.

The contributions of this paper are threefold. First, instead

of operating on 2D images, we perform attention-based ob-

ject detection on 3D data; this enables us to situate the at-

tention system in a 3D environment, resulting in a coherent

representation of objects over time. Secondly, it allows for

performing not only an environment-based but also an object-

based inhibition of return mechanism that operates in space

and time. Finally, the use of salient blobs instead of only fix-

ation points for initializing the segmentation process lets us

bound the amount of perceptual data to be processed.

Related Work

Many computational attention systems have been built dur-

ing the last two decades, first for the purpose of mimicking

and understanding the human visual system (survey in Heinke

& Humphreys, 2004), and second to improve technical sys-

tems in terms of speed and quality (survey in Frintrop et al.,

2010). The general structure of attention systems is based on

psychological models such as the Feature Integration Theory

(Treisman & Gelade, 1980) and states that features are com-

puted in parallel before they are fused to a saliency map.

One component of attention systems is the inhibition of re-

turn mechanism. While IOR is simple on static images, image

sequences introduce the challenge of establishing correspon-



Figure 1: System Overview. The RGB-D camera provides color and depth streams that are processed to obtain proto-objects

and a 3D representation of the scene. Here, one proto-object is fixated (1), segmented (2), and projected to the 3D scene (3).

The inhibition (5) did not yet take place.

dences between objects over time. In this context, Backer

et al. (2001) perform object-centered IOR. However, their

approach operates on simple artificially rendered scenes in-

stead of real world data and on 2D images instead of 3D

data as we do. Additionally, we combine object-centered and

environment-centered IOR to enable both types of inhibition.

Walther and Koch (2006) use an attention system to obtain

saliency maps and generate proto-objects inside this map by

thresholding. Unsupervised object detection was also tackled

by Kootstra and Kragic (2011) who produce saliency maps

with a symmetry-based attention system. They use the most

salient points as hypothetical centers of objects; these are then

provided as seeds to the segmentation process. The figural

goodness of the segmentations is evaluated by Gestalt prin-

ciples. In a robotics context, Meger et al. (2010) search for

objects with the mobile robot “Curious George”. The robot

used a peripheral vision system to identify object candidates

with help of a visual attention module. Then, close-up views

of these candidates were recorded with a foveal vision sys-

tem and investigated by a recognition module to identify the

object.

General Structure

A general overview of the system is depicted in Figure 1. We

acquire data with a depth camera that provides color as well

as depth information, and is moved around the scene to obtain

different viewpoints. The color and the depth information are

investigated in two separate processing streams. The color

stream determines proto-objects with help of a bottom-up vi-

sual attention system (Fig. 1, top), while the depth stream

generates a 3D map of the scene (Fig. 1, bottom). The two

streams are combined by projecting the proto-objects into the

3D scene. This results in 3D object models that are incremen-

tally updated when new camera frames are available.

The system operates in two behaviors: the saccade behav-

ior and the fixate behavior. When the system starts, it first

finds the most salient proto-object (1. in Fig. 1), which is then

attended for several frames (fixate behavior), allowing other

modules to improve the shape of the attended proto-object by

segmentation (2.) and project it to the 3D scene (3.). Af-

ter fixating an object for a while, the saccade behavior takes

over to determine the next focus of attention. This is enabled

by object-based and environment-based inhibition of return

mechanisms (4.), that inhibit the region of the segmented ob-

ject O and the surrounding region A. To maintain a coher-

ent inhibition of return representation, even when moving the

camera, the inhibition values are stored within the 3D map

data. From its 3D representation, the data can be projected to

produce a 2D IOR map (5.), that is used for inhibiting proto-

objects in the saliency map. When the attended object is in-

hibited, a saccade to the next salient proto-object is generated.

Proto-Object Detection

We perform object detection in two steps: first, we detect

proto-objects in each frame with a visual attention system

and second, the extend of the proto-objects is improved by

a segmentation step.

Attention System: Generation of Proto-Objects

The first step of object detection is the generation of proto-

objects with a visual attention system that mimics the pre-

attentive processing stage of the human visual system. Such

systems usually investigate several feature channels such as

color and orientation in parallel and finally fuse the result-

ing conspicuities in a single saliency map (Frintrop et al.,

2010). The peaks in the saliency map can be interpreted as

proto-objects (e.g. Walther & Koch, 2006). While in human

attention, top-down factors also play an important role, such

information is not always available in robotics. Therefore, we

compute here only the bottom-up attention.



Figure 2: Top left to bottom right: original RGB image; its

corresponding saliency map SM; saliency map after adaptive

thresholding SM′; the SM′′ map after the final thresholding.

In this work, we use the CoDi system to compute saliency

maps (Klein & Frintrop, 2012). The structure follows the

standard architecture of Itti et al. (1998), consisting of in-

tensity, color, and orientation feature channels which belong

to the most important features in the human visual system

(Wolfe & Horowitz, 2004). In contrast to other saliency sys-

tems, the center-surround contrast is computed with respect to

feature distributions; these are approximated by Normal dis-

tributions and their distance is quickly computed by the W2-

distance (Wasserstein metric based on the Euclidean norm).

To allow the detection of arbitrarily sized salient regions,

we perform the computations on 8 different scales. The color

channel consists of a red-green and a blue-yellow channel,

following the opponent-process theory of human color vision

(Hurvich & Jameson, 1957). The orientation channel com-

putes center surround differences of Gabor filters of four dif-

ferent orientations: 0◦, 45◦, 90◦, 135◦. The saliency map SM

is the result of fusing the color and orientation channels.

To generate the image blobs that correspond to proto-

objects, two thresholding operations are performed: first an

adaptive thresholding using a Gaussian kernel3

SM′(x,y) =

{

SM(x,y) : SM(x,y)> T (x,y)
0 : otherwise

(1)

where T (x,y) is the weighted mean of the neighborhood of

(x,y). Finally, a binary thresholding is performed on SM′ at a

percentage of the global maximum saliency value MAX :

SM′′(x,y) =

{

SM′(x,y) : SM′(x,y)> 0.3×MAX

0 : otherwise
(2)

Fig. 2 shows the saliency map SM and the thresholded maps

SM′ and SM′′ for an example image. On SM′′ we find the con-

nected components (proto-objects) and compute their average

saliency sal. This method provides us with salient blobs in-

stead of only fixation points which determines the center of

3We use the adaptiveThreshold function of the OpenCV library:
http://opencv.org/

fixation as well as the size of the region to use for further

investigation. Too small or too big blobs are discarded. If in-

formation for the inhibition of objects is already available in

terms of a 2D IOR map I (see below), it is used to inhibit al-

ready visited regions. This is done by computing the overlap

o between each blob and I. Finally, the proto-object with the

highest value sal ∗ (1−o) is attended.

Thus, the computational attention system fulfills its two

main purposes: first, it directs attention to a region of interest

and, second, it bounds the amount of perceptual data to be

processed afterwards while ignoring the rest.

Improving Proto-Objects by Segmentation

After finding proto-objects, we improve their shape by a seg-

mentation step that bundles parts of the image data. This has

a similar effect as grouping mechanisms in human percep-

tion that facilitate figure-ground segregation (Wagemans et

al., 2012). Such segmentation steps are likely to exist at all

levels of human visual processing (Scholl, 2001).

Here, we use the approved GrabCut segmentation (Rother

et al., 2004) that was originally proposed for segmenting

objects in images with help of user interaction. It takes a

rectangle as input, as well as an initialization of pixels with

their likelihoods of being object or background. Segmenta-

tion is based on the color similarity of neighboring pixels,

thus regarding two of the most important factors of percep-

tual grouping (similarity and proximity). GrabCut performs

foreground/background segmentation by iteratively minimiz-

ing an energy function. The energy function measures how

different each pixel is from the foreground/background model

to which it is assigned, as well as from its direct neighbors.

It penalizes pixels different from the foreground model to be

labeled as foreground as well as labeling pixels as foreground

when all its neighbors are background.

The rectangle required for initialization is determined au-

tomatically with help of the proto-objects and the information

about already detected objects. The pixels of the currently at-

tended proto-object are merged with the information of this

object from previous frames (if available). This information

can be gathered from the 3D scene representation raycasted

to a 2D object map that will be explained later on (cf. Fig. 1).

Now, the smallest rectangle r containing all merged pixels is

determined (cf. Fig. 4, top), as well as a rectangle r′, obtained

by expanding r’s dimensions by 10%.

For initializing segmentation, GrabCut requires four pos-

sible pixel likelihood values: FG (foreground), BG (back-

ground), PR FG (probably foreground) and PR BG (proba-

bly background). These are obtained by defining three inter-

vals between 0 and the saliency maximum max in R:

L(x,y) =















FG : SM′′(x,y) ∈ [v3,max],(x,y) ∈ R

PR FG : SM′′(x,y) ∈ [v1,v3],(x,y) ∈ R

PR BG : SM′′(x,y) ∈ [0,v1],(x,y) ∈ R

BG : (x,y) ∈ R′ \R,
(3)

where R and R′ are the sets of pixels contained in rectangles r



Figure 3: Top: a book as example object. Middle: initializa-

tion of GrabCut, the grayscale values correspond to the four

possible likelihoods FG (white), PR FG (light gray), PR BG

(dark gray), and BG (black). Bottom: the segmentation result.

and r′ respectively, and vi = i · max
4

defines each of the interval

limits. The likelihoods are corrected by incorporating the in-

formation about the current and all other objects. This is done

by setting the pixels that correspond to the current object in

the 2D object map as PR FG, and the ones corresponding to

other objects as BG. An example of the initialization values

is displayed in Fig. 3. Five iterations of GrabCut produce a

binary object mask O for the attended blob.

Creating a 3D Scene Map

While the color image was used to detect proto-objects, the

depth data is used to build a 3D map of the scene. This is

done with the KinectFusion algorithm4 (Newcombe et al.,

2011), which builds a 3D map of the environment by integrat-

ing multiple range scans from a moving depth camera such as

Kinect. It performs two processes in parallel, namely, track-

ing of the pose of the camera, and registration of the depth

scans into a complete scene representation. The result is a 3D

scene map consisting of voxels (cf. Fig. 5, right).

To represent the scene at time k, a global truncated signed

distance function (TSDF) Sk(p) → [Fk(p),Wk(p)] is com-

puted by integrating the depth measurements, where p ∈ R
3

is a point in space, Fk(p) the TSDF value and Wk(p) a weight.

The function is discretized in a voxel grid; its zero crossings

are points that lie on surfaces. Thus, from the voxel grid, a

point cloud can be rendered by choosing the voxels contain-

ing zero TSDF values.

Extended 3D Scene Map

Our system stores all object information in a 3D structure. It

is an extended version of the voxel grid defined in the previ-

ous section. For convenience, we will refer to the new voxel

grid as Sk[c], where voxel c= (x,y,z), x,y,z∈ [1..Vol] and Vol

is the number of cells into which the grid is discretized. We

extend the Sk function to

Sk[c]→{Fk[c],Wk[c],Lk[c],LWk[c], Ik[c], IWk[c]}, (4)

where Fk[c] and Wk[c] are the values defined before,

Lk[c],LWk[c] are variables that contain object label informa-

tion, and Ik[c], IWk[c] are IOR related and will be explained

4We use the open source implementation available in the Point
Cloud Library (http://pointclouds.org/)

later on. The 3D information from the voxel grid can at any

time be projected to produce a 2D image containing IOR or

object label information (details follow).5

Generating 3D Object Models

Now, the 3D object models are created and updated using the

binary object mask O from the segmentation stage. Let us

denote the function that maps pixels in the image to voxels in

the grid as map : p ∈ Z
2,T ∈ R

4,D ∈ Z
m×n → c ∈ Z

3, where

p is a pixel, T the camera pose, and D a depth image with

dimensions m×n. The pixels in the object mask are mapped

to their corresponding voxels in the grid:

map(O,Tg,k,Dk)→ O′ = {c : c ∈ Z
3}, (5)

where g is the global frame of reference.

Now it has to be decided which label to assign to the vox-

els in O′. There are two mechanisms corresponding to the

fixate and saccade behaviors of the system. During the fixate

behavior, the label of the currently attended object is used.

When the saccade behavior selects a new focus of attention,

it performs as follows. On the set of voxels O′ correspond-

ing to the new proto-object, we extract the current labels > 0:

Lab = {Lk[c] : Lk[c]> 0,c ∈ O′}. We find the most frequently

occurring label l in Lab. If less than 5% of the voxels are

labeled, we assign l a new value corresponding to a newly

detected object. The value of l is now used to update the

voxels contained in O′. This simple scheme lets us integrate

the overlapping segmentations of different views of the same

objects in the 3D map.

To be flexible against wrong segmentations or overlapping

objects, weights are assigned to the labels. Every time the

same label is assigned to a voxel, its label weight LWk is in-

cremented. If a voxel is updated with a different label, the

weight is decremented. Eventually it could reach 0, result-

ing in an unlabeled voxel. This mechanism lets us incremen-

tally build the object representations with a certain tolerance

to failure; furthermore, by thresholding the label weight we

can specify the degree of confidence in our object represen-

tations that we want for rendering the labeled point cloud. In

our experiments, we used LWk = 5, meaning that a voxel has

to be assigned to a specific object at least 5 times to be con-

sidered for this object.

3D IOR Map

After fixating an object for several frames, the object must

be inhibited to enable the next saccade. To allow a coherent

IOR over time, we store the inhibition values within the 3D

voxel grid: Ik[c] is a binary flag denoting whether that voxel

shall be inhibited and IWk[c] is a weight that determines how

long the effect shall take place. Having IOR information in

3D coordinates lets us generate 2D IOR maps Ik from the

required camera poses throughout the sequence.

5In (Newcombe et al., 2011), the T SDF function is raycasted,
given a camera pose, to generate a depth map prediction. Using this
method in our extended T SDF function means we can generate 2D
IOR or object label maps for every new pose of the camera.



Figure 4: Table Top sequence at different points in time (columns). From top to bottom: (i) image of the scene with currently

attended object (blue rectangle); (ii) the saliency map and the segmented part from the currently attended object; (iii) inhibition

of return maps; white: object-based IOR, gray: environment-based IOR; (iv) the 3D scene map including detected objects

According to human vision, we use two types of IOR

mechanisms: environment-based and object-based IOR

(Tipper et al., 1994). The latter comes intuitively from the

segmented object mask O. The environment-based IOR is

initialized by the regions close to the object but not on the ob-

ject, i.e., from a so called attended mask A = R′ \O. The two

masks are mapped as in the previous section to obtain their re-

spective voxel sets O′ and A′. For every voxel c in O′ and A′,

its weight IWk[c] is incremented. When it reaches a certain

threshold, the IOR flag Ik[c] is activated. The weight of all

not considered voxels is decremented. If a weight eventually

reaches 0, the IOR flag is reset to 0 as well.

Evaluation

To evaluate our system we recorded two video sequences in

an office environment with an RGB-D camera that provides

depth as well as color information. The first sequence shows a

setting of objects on a table top (cf. Fig. 4). The complexity of

this setting corresponds to the complexity of scenes in current

state of the art benchmarks and papers on unsupervised object

detection in machine vision (cf. Meger et al., 2010; Kootstra

& Kragic, 2011). However, the real world can be much more

complex. Therefore, we recorded a second sequence, that

shows a very cluttered setting (Fig. 5). Both settings were

recorded turning the camera so that the scene was observed

from different viewpoints (cf. Fig. 1).6

Fig. 4 illustrates several steps of our approach at different

time points. First, the book was attended (fixate behavior).

6Videos of the complete sequences as well as the resulting 3D
representations can be found at http://vimeo.com/cogbonn/

After fixating it for several frames, the region is inhibited (3rd

row) and the attention switches to the next proto-object (sac-

cade behavior). This proto-object consists of two real objects

(cup and tea box) since these objects are overlapping from

this point of view and have similar saliency. The procedure

continues, until all objects on the table have been detected.

For the second sequence, we present for space reasons only

the resulting 3D map with detected objects (Fig. 5, right).

Here, the approach finds 19 objects after 438 frames (∼13

sec). More objects could be found by longer observing the

sequence, but some would be missed, e.g., due to high simi-

larity to the background, and no current computer vision sys-

tem would be able to find all objects without pre-knowledge

in such a complex setting. Note that several of the “objects”

still have proto-object characteristics, meaning that they show

parts of objects (handle of dishwashing brush (6), bottom of

coffee machine (18)) or clusters of objects (tea boxes (11)).

Such semantic ambiguities could only be resolved by a recog-

nition system that investigates the attended regions in more

detail, or by a robot that interacts with objects and decides on

objectness depending on the connectivity of object parts.

To evaluate our system quantitatively, we measure how

precisely the detected objects were segmented. For this, the

points in the 3D map corresponding to objects were manu-

ally labeled to serve as ground truth. We generally denote the

ground truth of each object as G, and the 3D points of the

object detected by our system as S. We measure the preci-

sion p and recall r of the detected objects with respect to the

ground truth as p = (S ∩ G)/S, and r = (S ∩ G)/G. The

values are shown in Tab. 1 and Fig. 5. It can be seen that the



object 1 2 3 4 5 6 7 8 9 10

precision 93 69 92 99 62 52 90 60 100 99

recall 40 43 28 40 61 28 36 36 21 37

object 11 12 13 14 15 16 17 18 19

precision 23 90 83 98 91 99 100 89 100

recall 47 40 35 39 31 30 8 1 3

Figure 5: Coffee Machine sequence. Left: color image.

Right: 3D scene map with detected objects (numbers denote

labels). Bottom: precision/recall values in %

object Book Cup Cereals Box Car Sponge Pot

precision 99 55 98 99 97 94

recall 64 62 53 54 56 9

Table 1: Table Top sequence: precision/recall values in %

(cf. Fig. 4).

precision values are mostly very good (more than 90% for 17

out of 25 objects), that means that only few voxels were acci-

dentally assigned to an object. A bad value usually indicates

that a cluster of objects was detected and compared with sep-

arate objects in the ground truth (e.g. objects 5 and 11). The

recall values are lower, meaning that often not all of the vox-

els that belong to an object were detected. In the future, this

can be improved by additional post-processing steps based on

grouping mechanisms for figure-ground segregation.

Conclusion

We have presented a flexible framework for the detection of

unknown objects in a 3D scene. Unlike other approaches, the

system uses depth values additionally to a color image of a

scene and is thus able to generate 3D object models that are

incrementally updated when new information is available. All

perceptual data is spatially grounded and thus consistent over

different viewpoints. The results show that the algorithm is

able to detect many objects in scenes with high clutter, with-

out using any prior knowledge about the type of objects.

Applying attention mechanisms in space and time intro-

duces new challenges, for example the question of how and

when to switch attention between salient regions. We intro-

duced an environment- and object-based inhibition of return

mechanism that addresses this problem by using the informa-

tion from the 3D environment and object models for inhibi-

tion.
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Abstract We present an attention-based approach for

the detection of unknown objects in a 3D environment.
The ability of addressing individual objects in the en-
vironment without having previous knowledge about
their properties or their identity is one important re-

quirement of the Situated Vision theory. Based on saliency

maps, our attention system determines the regions where
objects are likely to be found; these are the proto-
objects whose extent is refined by a 2D segmentation

step. At the same time a 3D scene model is built from
measurements of a depth camera. The detected objects

are projected into the 3D scene, resulting in 3D ob-

ject models which are incrementally updated. We show

the validity of our approach in an RGB-D sequence
recorded in an office environment.

Keywords object detection · computational attention

systems · bottom-up

1 Introduction

Object detection belongs to the key competences of an

autonomous agent that acts in an unknown environ-

ment and is supposed to fulfill service tasks for humans.
Grasping, manipulating, or using objects in any way in-

volves the ability to first detect and localize the objects
in the scene. In order to be flexible and independent

of human supervision, it is important that the agent is
able to detect objects without previously knowing what
types of objects might occur or how they might look

like. This is a chicken and egg problem. How to detect

Germán Mart́ın Garćıa (Γ) · Simone Frintrop ·

Armin B. Cremers
Institute of Computer Science III, Universität Bonn, 53117
Bonn, Germany
E-mail: martin@iai.uni-bonn.de

objects without knowing how they look like? To tackle

this task, we use the Situated Vision theory in its dif-

ferent senses from different disciplines as a theoretical

background.

In the artificial intelligence and robotics community,
a situated agent is an agent that is embedded in its envi-
ronment and aware of the situation that it is acting in.

Especially in dynamic and changing environment, this

awareness is essential to cope with the complexity of

the world and to adapt to new challenges. Thus, an in-
dustrial robotic arm performing the task of assembling

cars would not be situated, whereas a service robot at a

home environment expected to complete domestic tasks
would. In this context, Schlemmer [11] gives his view of
the Situated Vision theory: vision should be treated as

a function that is situated not only in the environment,
but also in a broader cognitive architecture, to which it

serves for a specific task.

In the area of psychology, Pylyshyn postulates that
a theory of Situated Vision needs to establish direct
connections between elements in the visual field and

visual representations in the brain [8]. This requires a
mechanism that visually individuates the elements in

the environment before their properties or categories
are known. Furthermore, Pylyshyn assumes that vi-

sual representations of objects are constructed incre-

mentally by continuously adding new information to
the current representation.

In the present work, we attempt to bring together

both views of the Situated Vision paradigm. We devel-
oped a visual system that is able to identify individual

objects in the environment regardless of their properties

and without previous knowledge of them; furthermore,
it is situated in its environment and uses all informa-

tion available up to that moment. The system creates
3D object representations that could be used by other



2 Germán Mart́ın Garćıa et al.

Fig. 1: System Overview. The RGB-D camera provides color and depth streams
that are processed to obtain proto-objects and a 3D representation of the scene.
Here, one proto-object is fixated (1), segmented (2), and projected to the 3D scene
(3). The inhibition (5) did not yet take place.

Fig. 2: Top left: original RGB image.
Top right: its corresponding saliency
map SM . Bottom left: saliency map
after adaptive thresholding SM ′. Bot-
tom right: map SM ′′ after the final
thresholding operation.

cognitive mechanisms to inspect their properties and
categories, such as object classifiers1.

2 System Description

A general overview of the system is depicted in Figure
1. We acquire data with a depth camera that provides
color as well as depth information, and is moved around
the scene to obtain different viewpoints. The color and
the depth information are investigated in two separate
processing streams. The color stream determines proto-

objects with help of a bottom-up visual attention sys-

tem (Fig. 1, top), while the depth stream generates a 3D
map of the scene (Fig. 1, bottom). The two streams are

combined by projecting the proto-objects into the 3D

scene. This results in 3D object models that are incre-

mentally updated when new camera frames are avail-
able.

The system operates in two behaviors: the saccade

behavior and the fixate behavior. When the system
starts, it first finds the most salient proto-object (1. in

Fig. 1), which is then attended for several frames (fixate

behavior), allowing other modules to improve the shape
of the attended proto-object by segmentation (2.) and
project it to the 3D scene (3.). After fixating an object

for a while, the saccade behavior takes over to deter-
mine the next focus of attention. This is enabled by

object-based and environment-based inhibition of re-

turn mechanisms (4.), that inhibit the region of the

segmented object O and the surrounding region A. To
maintain a coherent inhibition of return representation,

1 This work is part of DFG DACH project FR 2598/5-1
called Situated Vision to Perceive Object Shape and Affor-

dances, in cooperation with TU Wien, RTWH Aachen and
IDIAP

even when moving the camera, the inhibition values are
stored within the 3D map data. From its 3D represen-
tation, the data can be projected to produce a 2D IOR

map (5.), that is used for inhibiting proto-objects in the
saliency map. When the attended object is inhibited, a
saccade to the next salient proto-object is generated.

3 Attention Mechanism

The entry point of our system is the attention module.
It follows the idea of Rensink [9] that a pre-attentive

processing stage determines structures, which he calls
proto-objects, that describe the local scene structure of
a spatially limited region. Focused attention selects a
small number of proto-objects which form a coherence
field representing a specific object. In a similar way to

[14], our implementation determines proto-objects by
thresholding a saliency map and selecting the surviv-

ing structures, or blobs. Using blobs as the focus of
attention, as opposed to focal points, has the benefit
that the image region to be further processed —e.g. for

segmentation— is bounded. Thus, the computational
attention system fulfills its two main purposes: first, it

directs attention to a region of interest and, second, it
bounds the amount of perceptual data to be processed

afterwards while ignoring the rest.

We perform object detection in two steps: first, we
detect proto-objects in each frame with a visual atten-

tion system and second, the extend of the proto-objects

is improved by a segmentation step.
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3.1 Attention System: Generation of Proto-Objects

The first step of object detection is the generation of
proto-objects with a visual attention system. Such sys-
tems usually investigate several feature channels such
as color and orientation in parallel and finally fuse the

resulting conspicuities in a single saliency map [2]. The
peaks in the saliency map can be interpreted as proto-

objects [14].
We make use of the approach of Klein and Frintrop

[4] to compute saliency maps. The main idea is to rep-

resent the distribution of feature statistics in a center
and in a surround area around a pixel by Gaussians and
compare them by the W2-distance (Wasserstein metric

based on the Euclidean norm). This method allows a
quick computation of saliency maps also for large sizes
of the center-surround filter which enables the detection
of large proto-objects in a scene. To allow the detection
of arbitrarily sized salient regions, we perform the com-
putations on 8 different scales. The feature channels we
use to determine the distributions are intensity, color

and orientation which belong to the most important

feature channels in the human visual system [15]. The
saliency map SM is the result of fusing the three chan-
nels.

To generate the image blobs that correspond to proto-
objects, two thresholding operations are performed: first
an adaptive thresholding using a Gaussian kernel2

SM ′(x, y) =

{

SM(x, y) : SM(x, y) > T (x, y)
0 : otherwise

(1)

where T (x, y) is the weighted mean of the neighborhood

of (x, y). Finally, a binary thresholding is performed on
SM ′ at a percentage of the global maximum saliency
value MAX:

SM ′′(x, y) =

{

SM ′(x, y) : SM ′(x, y) > 0.3×MAX

0 : otherwise

(2)

Fig. 2 shows the saliency map SM and the thresh-
olded maps SM ′ and SM ′′ for an example image. On
SM ′′ we find the connected components (proto-objects)

and compute their average saliency sal. Too small or
too big blobs are discarded. If information for the inhi-
bition of objects is already available in terms of a 2D

IOR map I (see below), it is used to inhibit already vis-
ited regions. This is done by computing the overlap o

between each blob and I. Finally, the proto-object with

the highest value sal ∗ (1− o) is attended.
Thus, the computational attention system fulfills its

two main purposes: first, it directs attention to a region

2 We use the adaptiveThreshold function of the OpenCV
library: http://opencv.org/

of interest and, second, it bounds the amount of per-
ceptual data to be processed afterwards while ignoring

the rest.

3.2 Improving Proto-Objects by Segmentation

After finding proto-objects, we improve their shape by

a segmentation step with the well-known GrabCut al-

gorithm [10] that was originally proposed for segment-
ing objects in images with help of user interaction. It
takes a rectangle as input, as well as an initialization

of pixels with their likelihoods of being object or back-
ground, and iteratively minimizes an energy functional
that evaluates how well the labeled pixels fit to the

foreground/background models, as well as how smooth
transitions are from similar neighboring pixels.

The rectangle required for initialization is deter-

mined automatically with help of the proto-objects and

the information about already detected objects. The
pixels of the currently attended proto-object are merged

with the information of this object from previous frames
(if available). This information can be gathered from

the 3D scene representation raycasted to a 2D object
map that will be explained later on (cf. Fig. 1). Now,
the smallest rectangle r containing all merged pixels is

determined (cf. Fig. 4, top), as well as a rectangle r′,
obtained by expanding r’s dimensions by 10%.

The rectangles r and r′ are used to determine pixel
likelihoods that GrabCut requires for initializing the

segmentation. There are four possible initialization val-
ues: FG (foreground), BG (background), PR FG (prob-
ably foreground) and PR BG (probably background).

These are obtained by defining three intervals between
0 and the saliency maximum max in R:

L(x, y) =















FG : SM ′′(x, y) ∈ [v3,max], (x, y) ∈ R

PR FG : SM ′′(x, y) ∈ [v1, v3], (x, y) ∈ R

PR BG : SM ′′(x, y) ∈ [0, v1], (x, y) ∈ R

BG : (x, y) ∈ R′ \R,

(3)

where R and R′ are the sets of pixels contained in rect-

angles r and r′ respectively, and vi = i·max
4 defines each

of the interval limits. The likelihoods are corrected by

incorporating the information about the current and
all other objects. This is done by setting the pixels that

correspond to the current object in the 2D object map

as PR FG, and the ones corresponding to other objects
as BG. An example of the initialization values is dis-
played in Fig. 3. Five iterations of GrabCut produce a

binary object mask O for the attended blob.
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Fig. 3: Top: a book as example object. Middle: initialization of
GrabCut, the grayscale values correspond to the four possible
likelihoods FG (white), PR FG (light gray), PR BG (dark
gray), and BG (black). Bottom: the segmentation result.

4 Creating a 3D Scene Map

While the color image was used to detect proto-objects,

the depth data is used to build a 3D map of the scene.
This is done with the KinectFusion algorithm3 [7], which

builds a 3D map of the environment by integrating mul-
tiple range scans from a moving depth camera such as
Kinect. It performs two processes in parallel, namely,

tracking of the pose of the camera, and registration of
the depth scans into a complete scene representation.
The result is a 3D scene map consisting of voxels.

To represent the scene at time k, a global truncated

signed distance function (TSDF) Sk(p) → [Fk(p),Wk(p)]
is computed by integrating the depth measurements,
where p ∈ R

3 is a point in space, Fk(p) the TSDF value

and Wk(p) a weight. The function is discretized in a
voxel grid; its zero crossings are points that lie on sur-
faces. Thus, from the voxel grid, a point cloud can be

rendered by choosing the voxels containing zero TSDF

values.

5 Extended 3D Scene Map

Our system stores all object information in a 3D struc-

ture. It is an extended version of the voxel grid defined
in the previous section. For convenience, we will refer

to the new voxel grid as Sk[c], where voxel c = (x, y, z),
x, y, z ∈ [1..V ol] and V ol is the number of cells into
which the grid is discretized. We extend the Sk func-

tion to

Sk[c] → {Fk[c],Wk[c], Lk[c], LWk[c], Ik[c], IWk[c]}, (4)

where Fk[c] and Wk[c] are the values defined before,

Lk[c], LWk[c] are variables that contain object label in-
formation, and Ik[c], IWk[c] are IOR related and will

be explained later on. The 3D information from the
voxel grid can at any time be raycasted to produce a
2D image containing IOR or object label information.4

3 We use the open source implementation available in the
Point Cloud Library (http://pointclouds.org/)
4 In [7], the TSDF function is raycasted, given a camera

pose, to generate a depth map prediction. Using this method

5.1 Generating 3D Object Models

Now, the 3D object models are created and updated
using the binary object mask O from the segmentation

stage. Let us denote the function that maps pixels in
the image to voxels in the grid as map : p ∈ Z

2, T ∈
R

4, D ∈ Z
m×n → c ∈ Z

3, where p is a pixel, T the
camera pose, and D a depth image with dimensions

m × n. The pixels in the object mask are mapped to
their corresponding voxels in the grid:

map(O, Tg,k, Dk) → O′ = {c : c ∈ Z
3}, (5)

where g is the global frame of reference.

Now it has to be decided which label to assign to

the voxels in O′. There are two mechanisms correspond-
ing to the fixate and saccade behaviors of the system.
During the fixate behavior, the label of the currently

attended object is used. When the saccade behavior
selects a new focus of attention, it performs as follows.

On the set of voxels O′ corresponding to the new proto-
object, we extract the current labels > 0: Lab = {Lk[c] :

Lk[c] > 0, c ∈ O′}. We find the most frequently occur-
ring label l in Lab. If less than 5% of the voxels are
labeled, we assign l a new value corresponding to a

newly detected object. The value of l is now used to
update the voxels contained in O′. This simple scheme
lets us integrate the overlapping segmentations of dif-

ferent views of the same objects in the 3D map.

To be flexible against wrong segmentations or over-
lapping objects, weights are assigned to the labels. Ev-

ery time the same label is assigned to a voxel, its label
weight LWk is incremented. If a voxel is updated with

a different label, the weight is decremented. Eventually
it could reach 0, resulting in an unlabeled voxel. This
mechanism lets us incrementally build the object rep-

resentations with a certain tolerance to failure; further-
more, by thresholding the label weight we can specify
the degree of confidence in our object representations

that we want for rendering the labeled point cloud.

5.2 3D IOR Map

After fixating an object for several frames, the object
must be inhibited to enable the next saccade. To allow
a coherent IOR over time, we store the inhibition values

within the 3D voxel grid: Ik[c] is a binary flag denoting
whether that voxel shall be inhibited and IWk[c] is a
weight that determines how long the effect shall take

place. Having IOR information in 3D coordinates lets

in our extended TSDF function means we can generate 2D
IOR or object label maps for every new pose of the camera.
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Fig. 4: Table Top sequence at different points in time (columns). From top to bottom: (i) image of the scene with currently
attended object (blue rectangle); (ii) the candidate proto-objects and, in the top left corner, the segmentation of the currently
attended object; (iii) inhibition of return maps; white: object-based IOR, gray: environment-based IOR; (iv) the 3D scene map
including detected objects.

us generate 2D IOR maps Ik from the required camera
poses throughout the sequence.

According to human vision, we use two types of IOR
mechanisms: environment-based and object-based IOR.

The latter comes intuitively from the segmented object
mask O. The environment-based IOR is initialized by
the regions close to the object but not on the object,

i.e., from a so called attended mask A = R′ \ O. The
two masks are mapped as in the previous section to
obtain their respective voxel sets O′ and A′. For every
voxel c in O′ and A′, its weight IWk[c] is incremented.
When it reaches a certain threshold, the IOR flag Ik[c]

is activated. The weight of all not considered voxels is
decremented. If a weight eventually reaches 0, the IOR

flag is reset to 0 as well.

6 Evaluation

To evaluate the performance of our system we recorded

a video sequence in an office environment with an RGB-
D camera that provides depth as well as color informa-

tion. The sequence shows a setting of objects on a ta-

ble top (cf. Fig. 4). The complexity of this setting cor-
responds to the complexity of scenes in current state

of the art benchmarks and papers on unsupervised ob-
ject detection in machine vision [6,5]. We have recorded

scenes with clutter, however, due to space limitations
we can not show the results here.

Fig. 4 illustrates, in each column, several steps of
our approach at different time points in time. The first
object to be fixated is the orange juice pack. When
the attention system goes to pick the next salient blob
(displayed in row two), the apple is selected; the blobs
that correspond to the previously fixated object are now
inhibited. In the last row, the evolution of the object

representations can be seen: each detected object has a
different color in the map. The same procedure goes on
until the end of the sequence where all the objects have

been successfully detected.

To evaluate our system quantitatively, we measure
how precisely the detected objects were segmented. For

this, objects were manually labeled in the final 3D map
to serve as ground truth. Now, for each detected ob-
ject, we measure precision and recall of the points of

the detected object with respect to the ground truth.

The values are shown in Tab. 1. It can be seen that

all the precision values are above 90%, that means that
only few voxels were accidentally assigned to an ob-

ject. The recall values are lower, meaning that often

not all of the voxels that belong to an object were de-
tected. In the future, this can be improved by additional
post-processing steps based on grouping mechanisms

for figure-ground segregation.
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object Juice Apple Coff.1 Coff.2 Bowl Box

prec. 97 99 93 97 95 98

recall 30 40 47 48 53 61

Table 1: Table Top sequence results: precision/recall values in % in
the same order of appearance of Fig.4.

7 Conclusion

We have presented a flexible framework for the detec-
tion of unknown objects in a 3D scene. Unlike other

approaches, the system uses depth values additionally
to a color image of a scene and is thus able to generate

3D object models that are incrementally updated when

new information is available. The results show that the
algorithm is able to detect many objects in scenes with

high clutter, without using any prior knowledge about

the type of objects.
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Abstract This paper introduces Attentive Robots: robots that attend to the parts
of their sensory input that are currently of most potential interest. The concept
of selecting the most promising parts is adopted from human perception where
selective attention allocates the brain resources to the most interesting parts of
the sensory input. We give an overview of current approaches to integrate compu-
tational attention into robotic systems, with a focus on biologically-inspired visual
attention methods. Example applications range from localization with salient land-
marks over object manipulation to the design of social robots. A brief outlook gives
an impression of how future ways to obtain attentive robots might look like.

Keywords

1 Introduction

Imagine you bought a new home robot, Dobby, at some point in the future. Dobby
is supposed to do most of the housework while you are at work or are meeting with
friends. It shall receive and unpack the groceries that come from the supermarket,
do the laundry, and tidy up the mess that the kids made when playing in the living
room. At every moment, Dobby has to process a large amount of sensory input and
the possibilities of what to do first easily become overwhelming. Since robots have
limited processing power as well as physical limitations such as a limited number
of sensors, arms, etc., a selection mechanism that determines where to concentrate
the resources is of high interest. In humans, the mechanism that determines which
part of the sensory input is currently most promising is called selective attention
[Pashler, 1997]. Accordingly, we call robots that attend to the most promising part
of their sensor data “Attentive Robots” (cf. Fig. 1).

The term “attention” is used in many contexts and many definitions exist. It is
a term of common language (William James: “Everyone knows what attention is...”

S. Frintrop
Institute of Computer Science III, Rheinische Friedrich-Wilhelms-Universität,
53117 Bonn, Germany.
E-mail: frintrop@iai.uni-bonn.de
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Fig. 1 The scene visualizes the concept of an attentive robot: to tidy up the room, the robot
has to investigate the scene and therefore attend to the objects on the floor, one object at a
time. An attention module endows it with the capability to focus on regions of most potential
interest. This enables efficient processing and prioritizes the robot’s actions.

[James, 1890]), it is an active research area in psychophysics since many decades,
and it is frequently used in machine vision and robotics to refer to mechanisms that
focus further processing on regions of interest. The latter perspective of attention is
very broad, in principle, any pre-processing method of sensor data could be called
attentional since it focuses further processing on parts of the data. We believe that
closely mimicking the human system has the advantage that it results in human-
like behavior, which is beneficial for systems that should interact with humans in
a natural and intuitive manner. Therefore, in this article, we focus on methods
that are based on concepts of human perception. Following this direction, one of
the best fitting definitions of attention comes from Wikipedia: “Attention is the
cognitive process of selectively concentrating on one aspect of the environment
while ignoring other things” [1].

While the concept of attention exists for all senses, most research focuses on
the visual part of attention. This is true both for human visual attention, due to
the fact that vision is the most important sense in humans, and for computational
attention system. Thus, with a few exceptions the approaches mentioned in this
article focus on analyzing visual data.

During the last decade, attentional modules for autonomous robots have sig-
nificantly gained in popularity. The reasons are two-fold. First, adequate compu-
tational resources are now available to compute the focus of attention in real-time
[Frintrop et al., 2007, Xu et al., 2009] and the methods are robust enough to deal
with real-world conditions. Second, basic techniques such as localization and col-
lision avoidance have reached a quite mature level and interest has moved on to
higher level tasks and challenges. The more complex a system becomes, the more
urgent is the need for optimizing the visual processing. The high level of interest
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(a) (b)

Fig. 2 (a) General structure of most visual attention systems. (b) Example of saliency com-
putation with the attention system VOCUS: bottom-up exploration (top-right) and top-down
search for the target “key fob” (bottom).

in such capabilities has led to a large number of EU projects on Cognitive Sys-
tems during the last decade. Many of the robots developed in these projects have
an attentional module, e.g., in the projects MACS, PACO-PLUS, RobotCub, and
GRASP.

In this paper, we will give an overview of the current state of the art in com-
putational attention systems for autonomous robots. While being far from an
exhaustive overview, we aim to give the reader an impression of what attention
systems can do for cognitive robots and which directions already exist. Finally,
we briefly discuss possible future ways to lead us closer to the dream of attentive
robots.

2 The Basic Structure of Computational Attention Systems

Most biologically inspired attention systems have a similar structure, which is
depicted in Fig. 2 (a). This structure is originally adapted from psychological
theories like the Feature Integration Theory [Treisman and Gelade, 1980] and the
Guided Search model [Wolfe, 1994]. The main idea is to compute several feature
channels such as intensity, color, orientation or motion, in parallel and to fuse
their conspicuities in a saliency map. This map is a gray-level image with pixel
brightness proportional to the saliency (cf. Fig. 2 (b), top right). This approach is
adopted from the parallel processing of different features in the human brain; some
brain areas are mainly involved in processing color while others concentrate on
motion processing and so on [Palmer, 1999]. If top-down information is available,
e.g., prior knowledge on the context, the task, the searched object, etc., it can be
used to influence the processing. An example of top-down attention is shown in
Fig. 2 (b), bottom row. Here, knowledge about the target object “key fob” is fed
into the attention system as a feature descriptor, resulting in a top-down saliency
map (details in [Frintrop, 2006]).

The feature computations are usually based on contrast computations with
center-surround filters. Such filters are inspired by cells in the human visual sys-
tem (e.g. ganglion cells in the retina) that compute the contrast of a center and
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a surround region [Palmer, 1999]. Computationally, they are usually modeled by
Difference-of-Gaussian or Gabor filters. The feature channels most frequently im-
plemented in computational attention systems are intensity, color, orientation, and
motion.

One of the most important capabilities of attention systems is their ability to
detect regions that differ from the rest of the image, a property that makes an
object “salient”. That means, the saliency of an object depends on the context. A
red ball on grass is salient, while it is not salient among other red balls. Therefore,
attention systems usually weight the feature maps according to the uniqueness of
the feature. Feature maps with much activation obtain a low weight while those
with few strong activation peaks obtain a high weight (details in [Frintrop, 2006]).

After obtaining a saliency map, the maxima in this map denote the regions
that are investigated by the focus of attention (FOA) in the order of decreasing
saliency. This trajectory of FOAs imitates human eye movements. Output of a
computational attention system is either the saliency map itself or a trajectory of
focused regions.

While most attention systems share this general structure, there are different
ways of implementing the details. One of the best known computational models
is the iNVT from the group around Itti [Itti et al., 1998]. In our group, we have
developed the VOCUS model [Frintrop, 2006, 2011], that has adopted and ex-
tended several ideas from the iNVT. It is real-time capable and has a top-down
mode to search for objects. Tsotsos and his group have developed the selective
tuning model. A full description of the model and an overview of attention theo-
ries are available in his recent book [Tsotsos, 2011]. During the last years, some
approaches came up that use information-theoretic concepts to determine visual
saliency [Bruce and Tsotsos, 2009, Gao et al., 2009]. A survey on the cognitive
foundations and state of the art of computational attention systems can be found
in [Frintrop et al., 2010], an introduction to the topic for students and people new
to the field is available in [Frintrop, 2011].

As mentioned in the introduction, this paper focuses on approaches that are
based on concepts of human perception and share the above structure. However,
it is worth noting that numerous approaches exist that compute saliency in ways
that are less or not at all biologically-motivated. For example, Hou and Zhang
[2007] compute the spectral residual of an image in the frequency domain and
Gould et al. [2007] and Liu et al. [2009] learn an optimal feature combination with
machine learning techniques.

3 Attentive Robots: The State of the Art

A future attentive robot is supposed to use attention for many tasks, on different
levels of abstraction. If Dobby shall tidy up the room, it must focus on objects
at unusual places and has to know where each object belongs. If it shall bring
you the salt shaker, it should focus on the cupboard where the shaker is usually
stored and should concentrate on features fitting to the appearance of the shaker.
If you give Dobby an order, it has to interpret your gestures, facial expressions,
and voice, e.g., it should follow your gaze and your pointing finger.

The tasks of the robot that involve visual attention might be classified roughly
into three categories. The first, most low-level category, uses attention to detect
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salient landmarks that can be used for localization and scene recognition (sec. 3.1).
The second, mid-level category considers attention as a front-end for object recog-
nition (sec. 3.2). In the third, highest-level category, attention is used in a human-
like way to guide the actions of an autonomous system like a robot, i.e., to guide
object manipulation or human-robot interaction (sec. 3.3).

3.1 Salient Landmarks

A basic capability of autonomous mobile robots is to localize themselves in their
environment. Based on a known map of the surrounding, the robot has to de-
termine its position in this map by interpreting its sensor data. When based on
visual data, this is done by detecting visual landmarks with a known position.
A visual landmark can be anything that the robot can see: a blob on the wall,
a corner of an object, the edge of a door, or the door itself. One of the primary
requirements of a visual landmark is that it should be redetectable under chang-
ing illumination conditions and from new viewpoints. It should also be possible to
compute it quickly and to store it without much effort. Therefore complex object
descriptions are seldom used. Salient landmarks are excellent candidates for local-
ization since they have a high uniqueness. This makes them easy to redetect and
diminishes the risk of confusing them with other landmarks. This also enables a
landmark detection algorithm to concentrate on a sparse set of landmarks which
reduces computation complexity. We have shown that the repeatability of salient
regions in different scenes is significantly higher than the repeatability of standard
detectors [Frintrop, 2008].

An early project that used salient landmarks for localization was the ARK
project [Nickerson et al., 1998]. It relied on hand-coded maps, including the loca-
tions of known static obstacles as well as the locations of natural visual landmarks.
Siagian and Itti [2009] presented an approach for scene classification and global
localization based on salient landmarks. Additionally to the landmarks, the au-
thors use the “gist” of the scene, a feature vector which captures the appearance
of the scene, to obtain a coarse localization hypothesis.

In the above examples, a map of the environment is initially known. A more
difficult task is simultaneous localization and mapping (SLAM) in which a
robot has to build a map and localize itself inside it at the same time. We inves-
tigated the combination of visual attention and SLAM in [Frintrop and Jensfelt,
2008]. Salient regions are detected with the attention system VOCUS, tracked over
several frames to obtain a 3D position of the landmarks, and matched to database
entries of all previously seen landmarks. This enables the robot to detect if it
closed a loop (see Fig. 3 (a)). Active camera control facilitated the redetection of
landmarks.

3.2 Supporting Object Detection and Recognition

In addition to navigation, object detection and recognition are important tasks for
autonomous robots, especially for manipulating objects. The terms object detec-
tion, object localization, object recognition, and classification are closely related
and often used interchangeably. Let us therefore clarify our understanding of the
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(a) Dumbo: Attentive visual
SLAM

(b) Curious George: Attentive
object detection

(c) Kismet: An Attentive,
Social Robot

Fig. 3 Three application scenarios for visual attention systems: (a) Simultaneous localization
and mapping (SLAM): robot Dumbo corrects its position estimate by redetecting a landmark
which it has seen before. Landmark detection is done with the attention system VOCUS. The
yellow rectangle shows the view of the robot: an image with a landmark and the correspond-
ing saliency map (Fig. from http://www.iai.uni-bonn.de/∼frintrop/research.html) (b) Curious
George: attention regions are detected in a peripheral camera image and investigated in detail
by a foveal camera (Fig. from Forssén et al. [2008]). (c) Kismet is a social robot that interacts
with people. Its gaze is controlled by a visual attention system (Fig. from [Breazeal, 2000] c©
Sam Ogden).

terms. Object detection or localization tackles the problem of localizing objects in
images, e.g., by providing a bounding box around the object. Usually, the object
is comparably small in the scene which makes the task challenging. The object to
find might be a specific object (my favorite cup) or, as in the PASCAL VOC object
detection challenge [Everingham et al., 2010], any instance of a certain class (any
cup). In psychological literature on visual perception, the task to find an object
is usually called visual search. A candidate to solve the visual search problem is
top-down tuned visual attention [Frintrop, 2006]. Localizing an object often in-
volves recognizing it, but may also be restricted to providing location candidates
that are classified in a second step. The detection of any instance of an object
class in cluttered images is still largely unsolved. In the latest PASCAL VOC 2010
challenge [Everingham et al., 2010], the best methods for object detection achieved
only an average precision between 13% (potted plants) and 58.4% (aeroplanes).
Sometimes, object detection refers also to the task to find anything in the scene
that is an object (also called general object detection). Bottom-up attention is a
perfect candidate for this kind of task since it does not require any prior knowledge
on the objects.

Object classification deals with finding all instances of a certain class in a scene,
e.g. faces. It is usually applied to pre-segmented objects or it uses a sliding windows
approach, in which subregions of the images are successively investigated by the
classifier. The term recognition is mostly used for the recognition of instances but
is sometimes also used as synonym for classification.

Visual attention methods are of special interest for all tasks in which the ob-
ject is comparably small in the image, as in object detection and localization or in
classification on non pre-segmented images. These tasks become considerably eas-
ier if an attentional mechanism first focuses the processing on regions of potential
interest. Thus is because of two reasons. First, this reduces the search space and
results in reduction in computational complexity. Second, most recognition and
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classification methods work best if the object occupies a dominant portion of the
image.

Several approaches have been proposed to use visual attention as preprocess-
ing step for classification or object detection. Miau et al. [2001] present a
biologically motivated approach that combines an attentional front-end with the
biologically motivated object recognition system HMAX. The experiments are re-
stricted to recognize simple artificial objects like circles or rectangles. Alternatively,
the authors have used a support vector machine to detect pedestrians in natural
images. Walther [2006] combine their Saliency Toolbox, a Matlab implementation
of the iNVT, with an object recognizer based on SIFT features and show that the
recognition results are improved by the attentional front-end. Vogel and de Freitas
[2008] combine the iNVT with a classifier to perform gaze planning in complex
scenes. In the above mentioned approaches, the attentional part is separated from
the object recognition; both systems work independently. In human perception,
these processes are strongly intertwined. Accordingly, Walther and Koch [2007]
suggest a unifying framework for object recognition and attention. It is based on
the HMAX model and modulates the activity by spatial and feature modulation
functions which suppress or enhance locations or features due to spatial attention.

While the above approaches are not applied in a robotics context, some groups
have recently integrated attentive object detection on real robots. Two approaches
that determine regions of interest with visual attention in a peripheral vision
system, focus on these regions with a foveal vision system, and investigates these
high-resolution images with an object recognition method are presented in [Gould
et al., 2007] and [Meger et al., 2008]. The robot in the latter approach, curious
George, placed first in the robot league of the Semantic Robot Vision Challenge
(SRVC)1 both in 2007 and 2008, and first in the software league for 2009 (see also
Fig. 3 (b)).

All of these systems rely only on bottom-up information and therefore on
the assumption that the objects of interest are sufficiently salient by themselves.
For some object classes like traffic signs or toys, which are intentionally designed
salient, this works quite well; for other applications, top-down information is
needed to enable the system to focus on the desired objects. A combination of
a top-down modulated computational attention system with a classifier is pre-
sented by Mitri et al. [2005]. Here, the attention system VOCUS generates object
hypotheses which are verified or falsified by a classifier. For the application of ball
detection in the robot soccer scenario RoboCup, the amount of false detections is
reduced significantly. Recently, Xu et al. [2010] have used visual bottom-up and
top-down attention to detect objects with the Autonomous City Explorer (ACE)
robot.

Some groups have used attentive object detection to support object manip-
ulation on robots or robot arms. One of the earliest works on this topic was
presented by Bollmann et al. [1999]: a Pioneer1 robot used the active vision sys-
tem NAVIS to play at dominoes. The group around Tsotsos is working on a smart
wheelchair to support disabled children [Tsotsos et al., 1998, Rotenstein et al.,
2007]. The wheelchair has a display as easily accessible user interface which shows
pictures of places and toys. Once a task like “go to table, point to toy” is selected,
the system drives to the selected location and searches for the specified toy, us-

1 http://www.semantic-robot-vision-challenge.org/
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ing mechanisms based on a visual attention system. Rasolzadeh et al. [2010] use
bottom-up and top-down attention to control a KUKA arm for detecting, rec-
ognizing, and grasping objects on a table. In [Björkman and Kragic, 2010] and
[Johnson-Roberson et al., 2010] the FOAs from the same attention system were
used as seeds for 3D segmentation of objects from stereo data.

3.3 Guiding Robot Action

A robot which has to act in a complex world faces the same problems as a human:
it has to decide what to do next. Such decisions include where to go (drive), what
to look at, what to grasp, and who to interact with. Thus, even if computational
power would allow it to find all correspondences, to recognize all objects in an
image, and process everything of interest, it would still be necessary to filter out
the relevant information to determine the next action [Mehta et al., 2000, Loach
et al., 2008]. This decision is based first, on the current sensor input and second,
on the internal state, for example the current tasks and goals.

A field in which the decision about the next action is intrinsically based on
visual data is active vision, i.e., the problem of where to look next [Bajcsy,
1985]. It deals with controlling “the geometric parameters of the sensory apparatus
... in order to improve the quality of the perceptual results” [Aloimonos et al.,
1988]. Thus, it directs the camera to regions of potential interest as the human
visual system directs the gaze, the head, and even the body of a person. Since
visual attention triggers this control in humans, it is also an intuitive candidate
for the active vision problem on machines. In Sec. 4, we discuss the relation of
visual attention and the active vision problem in more detail, let us here focus on
approaches that have used visual attention to perform active vision control.

One of the first active vision systems that integrated visual attention was
presented by Clark and Ferrier [1988]. They describe how to steer a binocular
robotic head with visual attention and perform simple experiments to fixate and
track the most salient region in artificial scenes composed of geometric shapes.
Vijayakumar et al. [2001] present an attention system which is used to guide the
gaze of a humanoid robot. The authors consider only one feature, visual flow,
which enables the system to attend to moving objects. To simulate the different
resolutions of the human eye, two cameras per eye are used: one wide-angle camera
for peripheral vision and one narrow-angle camera for foveal vision. In more recent
work, the humanoid robot iCub bases its decisions to move eyes and neck on
visual and acoustic saliency maps [Ruesch et al., 2008]. Additionally, all the object
manipulation approaches of the previous section include active vision to focus on
the detected objects.

In the future, we want to interact with robots as naturally and intuitively
as possible. Studies in the field of human-robot interaction have shown that
humans treat robots like people [Nass and Moon, 2000, Fong et al., 2003]. The
more human-like the robot acts, the easier the communication with a human. An
essential part for purposefully interacting with humans is to generate a joint focus
of attention. A computational attention system similar to the human one can help
a robot to focus on the same region as a human. According to this, Breazeal [1999]
introduced the social robot Kismet that interacts with humans in a natural and
intuitive way. Its gaze is controlled by a visual attention system (see Fig. 3 (c)).
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For humans, following pointing gestures of other humans is an important abil-
ity to jointly focus their attention on objects of interest. Approaches to endow
robots with a similar capability were proposed by Heidemann et al. [2004] and
by Schauerte et al. [2010]. They analyze the direction of a pointing finger and
fuse this top-down information with the bottom-up saliency of objects. A robot
that learns visual scene exploration by imitating human gaze shifts is presented
by Belardinelli [2008]. Nagai [2009] developed an action learning model based on
spatial and temporal continuity of bottom-up features.

Finally, Muhl et al. [2007] presented an interesting sociological study in which
the interaction of a human with a robot simulation is investigated. A robot face
on a screen attends to objects, shown by a human, with help of a visual attention
system. If the robot was artificially diverted and directed its gaze away from the
object, humans tried to reobtain the robots attention by waving hands, making
noise, or approaching to the robot. This shows that people established a commu-
nicative space with the robot and accepted it as a social partner.

4 Discussion and Outlook

This paper gives an overview of the state of the art in the field of computational
visual attention for mobile robots. Several fields are related to the computation
of attention and we will briefly discuss the similarities and differences to some of
them. First, the computation of visual saliency clearly has some similarities to
the computation of interest points or regions. Both approaches compute a local
contrast within some feature dimension, some use even the same methods, e.g.,
Difference of Gaussians [Lowe, 2004]. The main difference is that standard interest
points are local methods that are only influenced by a small local neighborhood,
while salient regions are defined by the context. They “stick out of the scene” and
thus, the whole scene or at least a large neighborhood influences the saliency of a
region. Both methods are usually computed on several scales, but interest points
use smaller scales than visual saliency, leading to smaller regions that influence
the point and usually to a large amount of points per image (usually several hun-
dreds or even thousands). This is reasonable and useful for tasks such as object
recognition or image registration but less so for controlling the camera. Salient
regions on the other hand are usually computed on larger scales to consider con-
text information. Additionally, the uniqueness of features is computed that takes
into consideration the global (or large local) surround of the region and is usually
implemented as a non-linear weighting on top of the center-surround feature com-
putations [Itti et al., 1998, Frintrop, 2006]. This method favors regions that occur
seldom in the scene, an essential aspect of visual saliency. Additionally, classical
interest points are usually restricted to one feature dimension (e.g. intensity or
color contrast), while visual attention systems integrate the results from several
feature channels. Finally, a strength of visual attention systems is that top-down
information can be integrated easily into the system.

As mentioned in Sec. 3, there is also a strong relation of visual attention to
the active vision problem. To distinguish the two, it is worth clarifying that visual
attention is a method that can be applied to different problems while the active
vision problem is a problem that looks for a method to solve it. Visual attention
claims to focus the processing resources to regions of most potential interest. That
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makes it a perfect candidate to solve the active vision problem. It is however nei-
ther the only method that can be used to solve this problem, nor is the active
vision problem the only problem that can be solved with visual attention. While
the first point is obvious – there are dozens of methods that tackle the active
vision problem which are not related to visual attention – the second point is less
clear. What can be done with attention except directing the camera? Well, human
selective attention is well known to be separated into covert and overt attention.
Overt attention corresponds to controlling eye movements and is therefore directly
related to the active vision problem. Covert attention stands for processing parts
of the sensory input without looking at them with the fovea. While covert atten-
tion usually precedes eye movements, this is not always the case. For example,
Johansson et al. [2001] show that simple manipulation tasks can be done without
overt attention. Equally, it makes perfect sense for a robot to process some parts of
the sensory input directly without steering the camera explicitly into this direction
or zooming in. Here, one can also take advantage of the fact that robot sensory
input is different from the human one: while the human eye produces data that
has high resolution in the center and low resolution in the periphery, most cam-
eras can capture high resolution images in the entire field of view. These images
are often artificially sub-sampled to reduce the amount of data that needs to be
processed. This makes it possible to perform object recognition and many other
tasks directly on the input data, without controlling the camera. Active vision can
be left to occasions in which this data is not sufficient, e.g. if new viewpoints of
an object have to be gathered.

Let us now discuss how far we are from attentive robots such as Dobby and
which parts are still missing. In the field of attention systems themselves there are
still several open issues. Among these are questions like “which are the optimal
features for a robot?”, “how are these features integrated best?”, and “how do
bottom-up and top-down cues interact?”. While the bottom-up part is already
quite well investigated and many good solutions exist, less is known about top-
down attention and existing approaches are limited to some aspects. Up to now,
the prior knowledge that has been used as top-down information has mainly con-
centrated on two aspects of this area. First, people have used object information
to search for simple objects, e.g., highlighting red regions to find fire extinguishers,
[Frintrop, 2006, Navalpakkam and Itti, 2006]. Second, context information about
the scene has been investigated to guide the gaze, e.g., people are likely to be on
the street level of an image rather than on the sky area [Torralba et al., 2006].
However, many other cues and memories influence human perception and should
also be used for attentive robots. Thus, more sophisticated knowledge about ob-
jects, people, and the situation, knowledge about typical locations of objects, as
well as action cues from human interactors will strongly support the selection of
regions of most potential interest.

Additionally, while this review and most existing research focuses on visual
attention, other sensors can be an important source of useful information that
should be exploited. Some work in this direction is our previous work on saliency
detection in laser data [Frintrop et al., 2005] and the combination of visual and
acoustic saliency cues for the humanoid robot iCub [Ruesch et al., 2008]. It is
also important to consider that robots and humans differ considerably and that
concepts that are optimized for the human brain are not necessarily optimal for a
machine. While most current approaches directly transfer concepts, an important
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direction of future research is to investigate how systems have to be adapted to
best fit the robots’ embodiment and environment.

Finally, it should be mentioned that current systems use attention mechanisms
for clearly specified tasks such as landmark detection or object manipulation.
While good results have been obtained in these areas, it is still a long way to
obtain an attentive robot such as Dobby. Among the parts that are still missing
is certainly a close interaction between different modules. In computer vision,
recent work has shown that tasks such as object detection, segmentation, tracking,
and categorization profit strongly from each other if the modules collaborate and
share information [Leibe et al., 2008, Ess et al., 2010]. Similarly, future attentive
robots will strongly profit from interacting modules. Context information and prior
knowledge from other modules can enable an attentive robot to obtain better, more
useful regions of interest. On the other hand, the computation of attention regions
will also improve the performance of other modules since more processing resources
can be provided to essential parts of the sensory input.
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Abstract

In this paper, we introduce a new method to detect salient

objects in images. The approach is based on the standard

structure of cognitive visual attention models, but realizes

the computation of saliency in each feature dimension in

an information-theoretic way. The method allows a consis-

tent computation of all feature channels and a well-founded

fusion of these channels to a saliency map. Our frame-

work enables the computation of arbitrarily scaled features

and local center-surround pairs in an efficient manner. We

show that our approach outperforms eight state-of-the-art

saliency detectors in terms of precision and recall.

1. Introduction

Salient objects have the quality to visually stand out from

their surroundings and are likely to attract human attention.

A key property that makes an object salient is the visual

difference to the background. A polar bear is salient on

dark rocks, but almost invisible in snow. The detection of

visual saliency is of high interest in many computer vision

applications, ranging from general object detection in web

images [3], over image thumbnailing [17], to computing a

joint focus of attention in human robot interaction [20].

Visual saliency and, more general, visual attention

have been widely investigated in neurobiology and psy-

chophysics [18] and many computational models have been

built based on such findings [22, 12, 6]. A survey on

biologically-inspired attention systems can be found in [7].

Recently, several saliency approaches came up that are

based on computational and mathematical ideas and usu-

ally less biologically motivated. These approaches range

from the computation of entropy [13, 10], over determining

features that best discriminate between a target and a null

hypothesis [8], to learning the optimal feature combination

with machine learning techniques [15, 3].

In this work, we present a new approach to compute vi-

sual saliency that combines the general structure of psycho-

logical attention models [21, 25] with a sound mathemati-

cal foundation, and additionally enables an efficient com-

putational implementation. We define the saliency of an

image region in an information-theoretic way by means of

the Kullback-Leibler-Divergence (KLD). For a center and

a surround region, we estimate the distributions of visual

feature occurrences. Then, the KLD between these dis-

tributions expresses how much more capacity one can ex-

pect to require when events following the center distribu-

tion are coded according to the surround distribution. In

other words, KLD measures how much the feature statistics

in the center diverge from those in the surround.

This formulation of saliency has two advantages. First,

it allows a consistent computation for all feature channels,

in contrast to approaches that apply different feature extrac-

tion methods for each channel [15, 3]. Second and more

important, it allows a well-founded fusion of feature chan-

nels. While absolute values of such channels quantify mis-

cellaneous properties that are not necessarily unifiable in a

straight-forward way, KLD abstracts them to a common en-

tity. Additionally, we incorporate an efficient scale-space

computation of center-surround pairs of arbitrary sizes.

We evaluate our approach on a standard benchmark

database of salient objects [1] and compare the results with

eight state of the art saliency detectors. It shows that our ap-

proach outperforms all other methods in terms of precision

and recall. Our method shows its strength especially for

small objects, for which good precision values are usually

more difficult to obtain.

2. State of the Art

The concept of visual saliency comes from human per-

ception and correlates with the ability of a region to attract

attention [18]. While human attention can be attracted by

bottom-up, data-driven as well as by top-down, knowledge-

driven factors, saliency is associated with bottom-up atten-

tion that automatically attracts the human gaze.

Bottom-up attention has been widely studied in cognitive

fields. A basis for many computational attention models are

the Feature Integration Theory (FIT) [21] and the Guided

Search model [25]. The FIT has introduced the structure
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that still serves as basis for many computational attention

systems: several feature channels (e.g. color or orientation),

each divided into several feature types (e.g. red, yellow, hor-

izontal, vertical), are investigated in parallel. Finally, the

conspicuities are collected in a master map of attention. In

later works, this map has been called saliency map.

Many computational models have been built according

to this structure [12, 6, 24], among them one of the most

popular systems, the iNVT of Itti et al. [12]. While these

systems have obtained good results in simulating human eye

movements and in applications ranging from object recog-

nition to robotics [7], one problem is that the fusion of fea-

ture channels with per se not comparable properties is usu-

ally somewhat arbitrary.

During the last decade, several approaches came up to

model saliency with computational and mathematical meth-

ods that are mostly less biologically motivated. Kadir and

Brady have introduced entropy-based saliency [13]. More

recently, Hou and Zhang have computed the incremental

coding length to measure the perspective entropy gain [10].

Entropy-based methods generally capture image regions

with a lot of structure, which corresponds often but not al-

ways to salient regions. A problem occurs if the absence of

structure makes an item salient, such as a person wearing

white clothes in the jungle (cf. last row of Fig. 4).

Ma and Zhang have proposed a contrast-based method

that uses fuzzy growing to extract regions from their

saliency map [16]. Achanta et al. have introduced a sim-

ple approach that determines the difference of pixels to the

average color and intensity value of the image [1, 2]. While

their system has problems to detect saliencies for several

classical pop-out experiments (cf. Sec. 4.1), it is fast and

simple to implement.

Some groups have investigated alternative ways to com-

pute saliency by applying different computer vision meth-

ods to obtain feature channels, which are finally fused

by machine learning techniques. Liu et al. combined

multi-scale contrast, center-surround histograms, and color

spatial-distributions with conditional random fields [15].

Alexe et al. combined multi-scale saliency, color contrast,

edge density, and superpixels in a Bayesian framework [3].

Information theory also has entered the field of saliency

detection. Itti and Baldi have computed temporal saliency

based on a Baysian notion of surprise [11]. Gao et al. have

presented a decision-theoretic approach based on mutual in-

formation [8] and Chen has computed the co-saliency of

two objects in different images with the KLD [5].

Bruce and Tsotsos have presented an interesting ap-

proach that computes the self-information of image regions

with respect to their surround [4]. There are some parallels

of this work to our approach. The differences are that while

they base their feature detection on ICA coefficients that are

learned from a large variety of images, we have specifically
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Figure 1. Center-surround filter based on the Kullback-Leibler Di-

vergence (KLD).

designed scalable feature detectors to represent the distribu-

tions in different feature channels. This enables us to com-

pute features on any scale in a computationally feasible way

and disengages us from the need of a training set. Further-

more, we compute the KLD instead of the self-information,

apply local instead of global surround regions, and compute

the saliencies on several scales.

3. The Saliency Model

The main structure of our saliency system, called BITS

(Bonn Information-Theoretic Saliency model), is based on

the general layout of psychological attention models like the

ones in [21, 25]: several feature channels are investigated in

parallel and the conspicuities are fused to a single saliency

map. The feature channels intensity, color, and orientation

have been chosen since they belong to the basic features of

the human attention system [26].1

The saliency computation itself is rather computation-

ally than biologically motivated and consists of two steps.

First, basic features analyze the occurrence of certain in-

tensities, colors, and orientations on different scales. In a

second step, the center-surround contrast is determined in

an information-theoretic way. Two distributions of visual

feature occurrences are determined for a center and a sur-

round region and the Kullback-Leibler Divergence deter-

mines the difference between these distributions (cf. Fig. 1).

An overview of the system is depicted in Fig. 2.

3.1. Basic Feature Cues

For our visual saliency system, we model the basic fea-

tures of color, orientation, and intensity. From an input im-

age in the HSL color space, integral layers are built in or-

der to quickly compute pyramid representations from our

scalable basic features. These integral layers enable the cal-

culation of summed and averaged values of arbitrary sized

rectangular regions in constant time [23].

The intensity feature is the average of the lightness layer

within a rectangle of a certain scale. The color feature is

also the average of a rectangular region, but a little trickier

to compute in order to account for the saturation of the oc-

curring colors. Hue and saturation that represent polar co-

1Another important feature is motion, but because here we concentrate

on saliency detection in web images, motion is not required.



Figure 2. Schematic overview of our saliency system BITS.

ordinates in the HSL color space are converted into Carte-

sian coordinates, referred to as hue(x)- and hue(y)-layers

(cf. Fig. 2). From those, average colors can be computed

via integral layers, before the representation is transformed

back into hue/saturation. The orientation feature computes

partial derivatives from region-wise averages to determine

the gradient direction on a given scale as in [14]. We apply

the orientation feature separately for lightness-, hue(x)- and

hue(y)-layer, because orientation should be observable from

intensity as well as color contrasts. We compute pyramids

of eight different feature scales in steps of factor
√
2. For

this, we do not need to scale the image data, but the feature

size, which is an advantage in terms of speed. The feature

sampling rate depends on their scales, larger features are

more coarsely sampled than smaller ones.

3.2. Center-Surround Distribution Feature based
on Information Theory

Information theory is an area of statistics that is used to

analyze signals and their transmission over channels. One

of the main concepts is the notion of entropy, which quan-

tifies the expected value of information that a signal of a

given coding scheme contains. A coding scheme equates

to a probability distribution over the occurrence of certain

messages. The less predictable the occurrence of a message

is, the higher the entropy. For instance the entropy of a uni-

form distribution is highest, while if one can predict the next

message for sure, the entropy is zero.

As mentioned above, the difference of a region to its sur-

roundings is essential to obtain visual saliency. One can

convey this principle of difference to information theory by

using the Kullback-Leibler Divergence,

DKL(P‖Q) =

∫
∞

−∞

p(x) log
p(x)

q(x)
dx. (1)

KLD is a measure between two probability distributions

P and Q, that meters the expected value how much longer a

message must be to express events from P based on Q. The

more P differs from Q, the higher the KLD.

For each pyramid layer of basic feature results, our con-

trast feature is computed. This feature is based on KLD

and integrates a local center-surround mechanism to rate the

conspicuity of a region (cf. Fig. 1). Here, the information-

theoretic notion of a message is the parameter value of a

visual feature. Therefore, we need to estimate local distri-

butions of basic feature results: we split every basic feature

layer into an integral histogram [19]. An integral histogram

consists of layers that count the summed number of values

top and left from a pixel that fall into a certain histogram

bin. Here, sums of relative distances of the values on the

corresponding basic feature map to centered values of the

neighboring bins are counted. Thus, one can obtain bilin-

early interpolated histograms for rectangular regions. For

the periodic color and orientation feature, we build radial

histograms with an additional center bin. In case of color,

the saturation determines how much a feature sample counts

for the center or a radial bin. For orientation and gradi-

ent magnitude we proceed correspondingly. This allows to

contrast the absence or occurrence of orientation and color

in the center with the surround distribution. Utilizing these

integral histograms, we calculate the discrete KLD feature

DKL(C‖S) =
b∑

i=1

C(i) log
C(i)

S(i)
, (2)

in constant time, where b denotes the number of bins

(here: 13), and C and S are distributions of center and sur-

round regions with size ratios of 0.2 and 0.3. Increasing the

number of bins did not substantially increase the quality of

the system. The KLD feature maps are scale normalized

corresponding to the ratio of the feature’s surround region

to the image size. Then they are rescaled and added per

pixel on highest resolution to form one conspicuity map per

channel. Fusion of conspicuity maps into a single saliency

map is done by per element multiplication. This results in a

fusion exponential proportional to geometric mean, but we

omit calculation of the nth root.



4. Experiments and Results

We evaluated our saliency method on two kinds of data:

psychological patterns (Sec. 4.1) and a database of salient

objects [1] (Sec. 4.2). On both data sets, we compared our

approach with eight state-of-the-art saliency models: the

iNVT by Itti et al. [12], the Saliency Toolbox (ST) [24],

two systems of Hou and Zhang (HZ07,HZ08) [9, 10], the

AIM model of Bruce and Tsotsos [4], the system of Ma

and Zhang (MZ) [16], and two versions of Achanta et al.

(AC09,AC10) [1, 2]. For iNVT, ST, HZ08, AIM, AC09 and

AC10 we used the code from the authors’ web pages. For

HZ07 and MZ we used the saliency maps provided online2.

4.1. Psychological Patterns

Detecting outliers in “pop-out” images is an essential

step for a saliency model, since the results clearly show the

strengths and limitations of an approach. We designed in-

tensity and color patterns with a gray background and items

with the same intensity contrasts to the background. This al-

lows to make sure that saliency really results from an item-

item contrast and not from an item-background contrast.

Fig. 4 shows the results on these patterns for all saliency

methods with available source code. Saliency maps that

have their most salient region on the outlier are marked with

a green bounding box, others with a red one. Except for

our model, none of the models was able to detect all out-

liers. Some results can be explained by the system design:

Achanta cannot detect orientation pop-outs, since it is a

purely color/intensity based approach. AIM and AC09 can-

not detect local pop-outs (row 4), since they use a global in-

stead of local surround. The result of Hou (last row) shows

that purely using entropy to compute saliency is not always

sufficient: the uniform square on a textured background is

not considered salient, since it shows low entropy compared

to the high entropy of the background. On the other hand,

the non-salient region in the result of AIM is due to the filter

size and could be avoided by a scale-space extension.

4.2. Salient Object Database

Additionally, we performed quantitative experiments on

the image set that was used in [1, 2]. It is a database of

1000 images, which is a subset of the MSRA salient object

database [15]. The latter contains objects that were marked

as salient by 2 out of 3 users. For the 1000 image subset, bi-

nary maps are available that show accurate contours of the

salient objects. Fig. 5 shows some images of this database

and the corresponding saliency maps for the saliency meth-

ods with available source code.

The saliency maps were evaluated according to [1]. A

binary map was obtained from the saliency map by vary-

2http://ivrg.epfl.ch/supplementary\_material/

RK\_CVPR09

Figure 3. Precision-recall curves for the saliency maps of our sys-

tem BITS and 8 other saliency detectors on the dataset of 1000

images from [1] (top) and of a subset of small objects (max. 20%

of image) (bottom). See text for details.

ing a threshold on the intensity values [0, 255]. Each of

these 256 maps was compared to the ground truth binary

map from the database and precision and recall were com-

puted. This resulted in the precision-recall curves shown

in Fig. 3, top. It should be noted that some of the methods

(e.g., iNVT, ST, AIM) are designed rather for simulating hu-

man eye movements than for the detection of salient objects

in web images. Therefore, these results should be regarded

with caution. We have included them for completeness.

As already pointed out in [15], obtaining high precision-

recall values for images with large objects is not too diffi-

cult: if an object occupies 80% of the image, an algorithm

that selects the whole image obtains 80% precision with

100% recall. Thus, it is more challenging to obtain high

precision-recall curves for small objects. To test this, we de-

termined a subset of the database containing small objects,

similarly as in [15]. We selected 549 images with objects

occupying at most 20% of the image area. The resulting

precision-recall curves are shown in Fig. 3, bottom. Here it

shows more clearly that our approach outperforms the other

methods.



Figure 4. Comparison of saliency maps on psychological patterns. Saliency methods from left to right: iNVT [12], ST [24], AC09 [1],

AC10, [2], HZ08 [10], AIM [4], our approach BITS. Green bounding boxes: outlier detected; red boxes: failure.

5. Conclusion

We presented a new approach to compute visual saliency

in an information-theoretic way. By means of the Kullback-

Leibler Divergence, we determine the contrast of the cen-

ter and the surround distribution of features for the dimen-

sions intensity, color, and orientation. This enables a well-

founded fusion of channels based on a common entity. We

have shown that the new approach outperforms eight other

saliency computation methods, especially for small objects.

Since information-theoretic approaches are based on fea-

ture distributions, the computation is intrinsically more

computationally expensive than the classical area-based

center-surround filters. To obtain a system that is applica-

ble in reasonable time, calculations are often restricted. For

example, AIM uses a center patch with a fixed size and one

global surround distribution that covers the complete image.

However, since the detection of salient structures relies

essentially on center-surround pairs of different sizes, it is

important to integrate scalable feature computations in a

computationally still feasible way. Especially for applica-

tions on large image databases or on mobile robots, real-

time performance is an essential requirement. With our in-

tegral image based framework, we found a good compro-

mise between accuracy and speed. With less than 0.5 sec

(320×240 pixel image, 2.66 GHz quad-core PC using dou-

ble precision computations) the system is close to real-time

performance. Since the code is not yet optimized, we are

confident to obtain real-time performance easily by stan-

dard optimizations and/or more extensive parallelization.

Systems as the proposed one always include many pa-

rameters and design choices. The parameters used here

have shown to be reasonable for the detection of salient ob-

jects in web images. We tested the approach also on other

images, and it shows to be quite stable and not strongly de-

pendent on parameter choices. Our combinations of center-

surround pairs enable the detection of a wide range of sizes

of salient regions. Nevertheless, for other applications such

as modeling human eye movements, the parameters might

have to be adapted to yield optimal performance.
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Computational Visual Attention

Simone Frintrop

Visual attention is one of the key mechanisms of perception that enables humans

to efficiently select the visual data of most potential interest. Machines face similar

challenges as humans: they have to deal with a large amount of input data and have

to select the most promising parts. In this chapter, we explain the underlying biolog-

ical and psychophysical grounding of visual attention, show how these mechanisms

can be implemented computationally, and discuss why and under what conditions

machines, especially robots, profit from such a concept.

1 What Is Attention? And Do We Need Attentive Machines?

Attention is one of the key mechanisms of human perception that enables us to act

efficiently in a complex world. Imagine you visit Cologne for the first time, you

stroll through the streets and look around curiously. You look at the large Cologne

Cathedral and at some street performers. After a while, you remember that you have

to catch your train back home soon and you start actively to look for signs to the

station. You have no eye for the street performers any more. But when you enter

the station, you hear a fire alarm and see that people are running out of the station.

Immediately you forget your waiting train and join them on their way out.

This scenario shows the complexity of human perception. Plenty of information

is perceived at each instant, much more than can be processed in detail by the hu-

man brain. The ability to extract the relevant pieces of the sensory input at an early

processing stage is crucial for efficient acting. Thereby, it depends on the context

which part of the sensory input is relevant. When having a goal like catching a train,

the signs are relevant, without an explicit goal, salient things like the street perform-

ers attract the attention. Some things or events are so salient that they even override

Simone Frintrop
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2 Simone Frintrop

your goals, such as the fire alarm. The mechanism to direct the processing resources

to the potentially most relevant part of the sensory input is called selective attention.

One of the most famous definitions of selective attention is from William James, a

pioneering psychologist, who stated in 1890: “Everyone knows what attention is. It

is the taking possession by the mind, in clear and vivid form, of one out of what

seem several simultaneously possible objects or trains of thought” [11]. While the

concept of attention exists for all senses, here we will concentrate on visual attention

and thus on the processing of images and videos.

While it is obvious that attention is a useful concept for humans, why is it of in-

terest for machines and which kinds of machines profit most from such a concept?

To answer these questions, let us tackle two goals of attention separately. The first

goal is to handle the complexity of the perceptual input. Since many visual process-

ing tasks concerned with the recognition of arbitrary objects are NP-hard [23], an

efficient solution is often not achievable. Problems arise for example if arbitrary ob-

jects of arbitrary sizes and extends shall be recognized, i.e. everything from the fly

on the wall to the building in the background. The typical approach to detect objects

in images is the sliding-window paradigm in which a classifier is trained to detect an

object in a subregion of the image and is repeatedly applied to differently sized test

windows. A mechanism to prioritize the image regions for further processing is of

large interest, especially if large image databases shall be investigated or if real-time

processing is desired, e.g. on autonomous mobile robots.

The second goal of attention is to support action decisions. This task is especially

important for autonomous robots that act in a complex, possibly unknown environ-

ment. Even if equipped with unlimited computational power, robots still underlie

similar physical constraints as humans: at one point in time, they can only navigate

to one location, zoom in on one or a few regions, and grasp one or a few objects.

Thus, a mechanism that selects the relevant parts of the sensory input and decides

what to do next is essential. Since robots usually operate in the same environments

as humans, it is reasonable to imitate the human attention system to fulfill these

tasks. Furthermore, in domains as human-robot interaction, it is helpful to generate

a joint focus of attention between man and machine to make sure that both com-

municate about the same object1. Having similar mechanisms for both human and

robot facilitates this task.

As a conclusion, we can state that the more general a system shall be and the

more complex and undefined the input data are, the more urgent the need for a

prioritizing attention system that preselects the data of most potential interest.

This chapter aims to provide you with everything you must know to build a

computational attention system2. It starts with an introduction to human percep-

tion (sec. 2). This section gives you an insight to the important mechanisms in the

brain that are involved in visual attention and thus provides the background knowl-

edge that is required when working in the field of computational attention. If you

are mainly interested in how to build a computational system, you might skip this

1 The social aspect of human attention is described in chapter 8, section 5.4.1
2 Parts of this chapter have been published before in [4].
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Fig. 1 Left: The human visual system (Fig. adapted from http://www.brain-maps.com/visual-

fields.html). Right: The receptive field of a ganglion cell with center and surround and its sim-

ulation with Difference-of-Gaussian filters (Fig. adapted from [15]).

section and directly jump to sec. 3. This section explains how to build a bottom-

up system of visual attention and how to extend such a system to perform visual

search for objects. After that, we discuss different ways to evaluate attention systems

(sec. 4) and mention two applications of such systems in robotic contexts (sec. 5).

At the end of the chapter you find some useful links to Open Source code, freely

accessible databases, and further readings on the topic.

2 Human Visual Attention

In this section, we will introduce some of the cognitive foundations of human vi-

sual attention. We start with the involved brain mechanisms, continue with several

psychological concepts and evaluation methods, and finally present two influential

psychological models.

2.1 The Human Visual System

Let us first regard some of the basic concepts of the human visual system. While

being far from an exhaustive explanation, we focus on describing parts that are

necessary to understand the visual processing involved in selective attention. The

most important visual areas are illustrated in Fig. 1, left.

2.1.1 Eye, Retina, and Ganglion Cells

The light that enters the eye through the pupil passes through the lens, and reaches

the retina at the back of the eye. The retina is a light-sensitive surface and is densely

covered with over 100 million photoreceptor cells, rods and cones. The rods are

more numerous and more sensitive to light than the cones but they are not sensitive
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to color. The cones provide the eye’s color sensitivity: among the cones, there are

three different types of color reception: long-wavelength cones (L-cones) which are

sensitive primarily to the red portion of the visible spectrum, middle-wavelength

cones (M-cones) sensitive to green, and short-wavelength cones (S-cones) sensi-

tive to blue. In the center of the retina is the fovea, a rod-free area with very thin,

densely packed cones. It is the center of the eye’s sharpest vision. Because of this

arrangement of cells, we perceive the small region currently fixated in a high resolu-

tion and the whole surrounding only diffuse and coarse. This mechanism makes eye

movements an essential part of perception, since they enable high resolution vision

subsequently for different regions of a scene.

The photoreceptors transmit information to the so called ganglion cells, which

combine the trichromatic input by subtraction and addition to determine color and

luminance opponency. The receptive field of a ganglion cell, i.e. the region the cell

obtains input from, is circular and separated into two areas: a center and a surround

(cf. Fig. 1, right). There are two types of cells: on-center cells which are stimu-

lated by light at the center and inhibited by light at the surround, and off-center cells

with the opposite characteristic. Thus, on-center cells are well suited to detect bright

regions on a dark background and off-center cells vice versa. Additional to the lumi-

nance contrast, there are also cells that are sensitive to red-green and to blue-yellow

contrasts. The center-surround concept of visual cells can be modeled computation-

ally with Difference-of-Gaussian filters (cf. Fig. 1, right) and is the basic mechanism

for contrast detection in computational attention systems.

2.1.2 From the Optic Chiasm to V1

The visual information leaves the eye via the optic nerve and runs to the optic chi-

asm. From here, two pathways go to each brain hemisphere: the smaller one goes

to the superior colliculus (SC), which is e.g. involved in the control of eye move-

ments. The more important pathway goes to the Lateral Geniculate Nucleus (LGN)

and from there to higher brain areas. The LGN consists of six main layers composed

of cells that have center-surround receptive fields similar to those of retinal ganglion

cells but larger and with a stronger surround. From the LGN, the visual information

is transmitted to the primary visual cortex (V1) at the back of the brain.

V1 is the largest and among the best-investigated cortical areas in primates. It has

the same spatial layout as the retina itself. But although spatial relationships are pre-

served, the densest part of the retina, the fovea, takes up a much smaller percentage

of the visual field (1%) than its representation in the primary visual cortex (25%).

The cells in V1 can be classified into three types: simple cells, complex cells, and

hypercomplex cells. As the ganglion cells, the simple cells have an excitatory and an

inhibitory region. Most of the simple cells have an elongated structure and, there-

fore, are orientation sensitive. Complex cells take input from many simple cells.

They have larger receptive fields than the simple cells and some are sensitive to

moving lines or edges. Hypercomplex cells, in turn, receive the signals from com-
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plex cells as input. These neurons are capable of detecting lines of a certain length

or lines that end in a particular area.

2.1.3 Beyond V1: the Extrastriate Cortex and the Visual Pathways

From the primary visual cortex, a large collection of neurons sends information to

higher brain areas. These areas are collectively called extrastriate cortex, in opposite

to the striped architecture of V1. The areas belonging to the extrastriate cortex are

V2, V3, V4, the infero-temporal cortex (IT), the middle temporal area (MT or V5)

and the posterior-parietal cortex (PP).3

On the extrastriate areas, much less is known than on V1. One of the most im-

portant findings of the last decades was that the processing of the visual information

is not serial but highly parallel. While not completely segregated, each area has a

prevalence of processing certain features such as color, form (shape), or motion.

Several pathways lead to different areas in the extrastriate cortex. The statements

on the number of existing pathways differ: the most common belief is that there are

three main pathways, one color, one form, and one motion pathway which is also

responsible for depth processing [12].

The color and form pathways go through V1, V2, and V4 and end finally in IT,

the area where the recognition of objects takes place. In other words, IT is concerned

with the question of “what” is in a scene. Therefore, the color and form pathway

together are called the what pathway. It is also called ventral stream because of its

location on the ventral part of the body. The motion-depth pathway goes through V1,

V2, V3, MT, and the parieto occipale area (PO) and ends finally in PP, responsible

for the processing of motion and depth. Since this area is mainly concerned with

the question of “where” something is in a scene, this pathway is also called where

pathway. Another name is dorsal stream because it is considered to lie dorsally.

Finally, it is worth to mention that although the processing of the visual informa-

tion was described above in a feed-forward manner, it is usually bi-directional. Top-

down connections from higher brain areas influence the processing and go down as

far as LGN. Also lateral connections combine the different areas, for example, there

are connections between V4 and MT, showing that the “what” and “where” pathway

are not completely separated.

2.1.4 Neurobiological Correlates of Visual Attention

The mechanisms of selective attention in the human brain still belong to the open

problems in the field of research on perception. Perhaps the most prominent out-

come of neuro-physiological findings on visual attention is that there is no single

brain area guiding the attention, but neural correlates of visual selection appear to

be reflected in nearly all brain areas associated with visual processing. Attentional

3 The notation V1 to V5 comes from the former belief that the visual processing would be serial.
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mechanisms are carried out by a network of anatomical areas. Important areas of

this network are the posterior parietal cortex (PP), the superior colliculus (SC), the

Lateral IntraParietal area (LIP), the Frontal Eye Field (FEF) and the pulvinar.

Brain areas involved in guiding eye movements are the FEF and the SC. There is

also evidence that a kind of saliency map exists in the brain, but the opinions where

it is located diverge. Some researchers locate it in the FEF, others at the LIP, the SC,

at V1 or V4 (see [4] for references). Further research will be necessary to determine

the tasks and interplay of the brain areas involved in the process of visual attention.

2.2 Psychological Concepts of Attention

Certain concepts and expressions are frequently used when investigating human

visual attention and shall be introduced here.

Usually, directing the focus of attention to a region of interest is associated with

eye movements (overt attention). However, it is also possible to attend to peripheral

locations of interest without moving the eyes, a phenomenon which is called covert

attention. The allocation of attention is guided by two principles: bottom-up and

top-down factors. Bottom-up attention (or saliency) is derived solely from the per-

ceptual data. Main indicators for visual bottom-up saliency are a strong contrast of a

region to its surround and the uniqueness of this region. Thus, a clown in the parlia-

ment is salient, whereas it is not particularly salient among other clowns (however,

a whole group of clowns in the parliament is certainly salient!). The bottom-up in-

fluence is not voluntary suppressible: a highly salient region captures your attention

regardless of the task, an effect called attentional capture. This effect might save

your life, e.g. if an emergency bell or a fire captures your attention.

On the other hand, top-down attention is driven by cognitive factors such as pre-

knowledge, context, expectations, and current goals. In human viewing behaviour,

top-down cues always play a major role. Not only looking for the train station signs

in the introductory example is an example of top-down attention, also more sub-

tle influences like looking at food when being hungry. In psychophysics, top-down

influences are often investigated by so called cueing experiments, in which a cue di-

rects the attention to a target. A cue might be an arrow that points into the direction

of the target, a picture of the target, or a sentence (“search for the red circle”).

One of the best investigated aspect of top-down attention is visual search. The

task is exactly what the name implies: given a target and an image, find an instance

of the target in the image. Visual search is omnipresent in every-day life: finding a

friend in a crowd or your keys in the livingroom are examples.

In psychophysical experiments, the efficiency of visual search is measured by the

reaction time (RT) that a subject needs to detect a target among a certain number

of distractors (the elements that differ from the target) or by the search accuracy.

To measure the RT, a subject has to report a detail of the target or has to press one

button if the target was detected and another if it is not present in the scene. The

RT is represented as a function of set size (the number of elements in the display).
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(a) Feature search (b) Conjunction search (c) Continuum of search slopes

Fig. 2 (a) Feature search: the target (horizontal line) differs from the distractors (vertical lines) by

a unique visual feature (pop-out effect). (b) Conjunction search: the target (red, horizontal line)

differs from the distractors (red, vertical and black, horizontal lines) by a conjunction of features.

(c) The reaction time (RT) of a visual search task is a function of set size. The efficiency is measured

by the intercept and slopes of the functions (Fig. redrawn from [27]).

The search efficiency is determined by the slopes and the intercepts of these RT ×
set size functions (cf. Fig. 2 (c)). The searches vary in their efficiency: the smaller

the slope of the function and the lower the value on the y-axis, the more efficient

the search. Two extremes are serial and parallel search. In serial search, the reaction

time increases with the number of distractors, whereas in parallel search, the slope

is near zero. But note that the space of search slope functions is a continuum.

Feature searches take place in settings in which the target is distinguished from

the distractors by a single basic feature (such as color or orientation)(cf. Fig. 2, (a)).

In conjunction searches on the other hand, the target differs by more than one fea-

ture (see Fig. 2 (b)). While feature searches are usually fast and conjunction searches

slower, this is not generally the case. Also a feature search might be slow if the dif-

ference between target and distractors is small (e.g. a small deviation in orientation).

Generally, it can be said that search becomes harder as the target-distractor similarity

increases and easier as distractor-distractor similarity increases. The most efficient

search takes place for so called “pop-out” experiments that denote settings in which

a single element immediately captures the attention of the observer. You understand

easily what this means by looking at Fig. 2 (a). Other methods to investigate visual

search is by measuring accuracy or eye movements. References for further readings

on this topic can be found in [6].

One purpose of such experiments is to study the basic features of human per-

ception, that means the features that are early and pre-attentively processed in the

human brain and guide visual search. Undoubted basic features are color, motion,

orientation and size (including length and spatial frequency) [28]. Some other fea-

tures are guessed to be basic but there is limited data or dissenting opinions.

An interesting effect in visual search tasks are search asymmetries, that means the

effect that a search for stimulus ’A’ among distractors ’B’ produces different results

than a search for ’B’ among ’A’s. An example is that finding a tilted line among

vertical distractors is easier than vice versa. An explanation is proposed by [22]: the

authors claim that it is easier to find deviations among canonical stimuli than vice

versa. Given that vertical is a canonical stimulus, the tilted line is a deviation and

may be detected quickly.
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(a) Feature integration theory (b) Guided search model

Fig. 3 Left: Model of the Feature Integration Theory (FIT) (Fig. redrawn from [20]) Right: The

Guided Search model of Wolfe (Fig. adapted from [26] c©1994 Psychonomic Society).

2.3 Important Psychological Attention Models

In the field of psychology, there exists a wide variety of theories and models on vi-

sual attention. Their objective is to explain and better understand human perception.

Here, we introduce two approaches which have been most influential for computa-

tional attention systems.

The Feature Integration Theory (FIT) of Treisman claims that “different features

are registered early, automatically and in parallel across the visual field, while ob-

jects are identified separately and only at a later stage, which requires focused atten-

tion” [21]. Information from the resulting feature maps — topographical maps that

highlight conspicuities according to the respective feature — is collected in a mas-

ter map of location. Scanning serially through this map focuses the attention on the

selected scene regions and provides this data for higher perception tasks (cf. Fig. 3

(a)). The theory was first introduced in 1980 but it was steadily modified and adapted

to current research findings.

Beside FIT, the Guided Search Model of Wolfe is among the most influential

work for computational visual attention systems [26]. The basic goal of the model

is to explain and predict the results of visual search experiments. Mimicking the

convention of numbered software upgrades, Wolfe has denoted successive versions

of his model as Guided Search 1.0 to Guided Search 4.0. The best elaborated de-

scription of the model is available for Guided Search 2.0 [26]. The architecture of

the model is depicted in Figure 3 (b). It shares many concepts with the FIT, but

is more detailed in several aspects which are necessary for computer implementa-

tions. An interesting point is that in addition to bottom-up saliency, the model also

considers the influence of top-down information by selecting the feature type which

distinguishes the target best from its distractors.
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3 Computational Attention Systems

Computational attention systems model the principles of human selective attention

and aim to select the part of the sensory input data that is most promising for further

investigation. Here, we concentrate on visual attention systems that are inspired by

concepts of the human visual system but are designed with an engineering objective,

that means their purpose is to improve vision systems in technical applications.4

3.1 General structure

Most computational attention systems have a similar structure, which is depicted

in Fig. 4. This structure is originally adapted from psychological theories like the

Feature Integration Theory and the Guided Search model (cf. Sec. 2.3). The main

idea is to compute several features in parallel and to fuse their conspicuities in a

saliency map. If top-down information is available, this can be used to influence the

processing at various levels of the models. A saliency map is usually a gray-level

image in which the brightness of a pixel is proportional to its saliency. The maxima

in the saliency map denote the regions that are investigated by the focus of attention

(FOA) in the order of decreasing saliency. This trajectory of FOAs shall resemble

human eye movements. Output of a computational attention system is either the

saliency map or a trajectory of focused regions.

While most attention systems share this general structure, there are different ways

to implement the details. One of the best known computational attention systems is

the iNVT from Itti and colleagues [10]. The VOCUS model [4] has adopted and

extended several of their ideas. It is real-time capable and has a top-down mode to

search for objects (visual search). Itti and Baldi presented an approach that is able

to detect temporally salient regions, called surprise theory [8]. Bruce and Tsotsos

compute saliency by determining the self-information of image regions with respect

to their surround [1]. The types of top-down information that can influence an atten-

tion model are numerous and only a few have been realized in computational sys-

tem. For example, the VOCUS model uses pre-knowledge about a target to weight

the feature maps and perform visual search. Torralba et al. use context information

about the scene to guide the gaze, e.g., to search for people on the street level of an

image rather than on the sky area [19]. More abstract types of top-down cues, such

as emotions and motivations, have to our knowledge not yet been integrated into

computational attention systems.

In this chapter, we follow the description of the VOCUS model as representative

of one of the classic approaches to compute saliency.5 We start with introducing the

4 In this chapter, we assume that the reader has basic knowledge on image processing, otherwise

you find a short explanation of the basic concepts in the appendix of [4].
5 While the description here is essentially the same as in [4], some improvements have been made

in the meantime that are included here. Differences of VOCUS to the iNVT can be found in [4].
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Fig. 4 General structure of

most visual attention systems.

Several features are com-

puted in parallel and fused

to a single saliency map.

The maxima in the saliency

map are the foci of attention

(FOAs). Output is a trajectory

of FOAs, ordered by decreas-

ing saliency. Top-down cues

may influence the processing

on different levels.

bottom-up part (Sec. 3.2), followed by a description of the top-down visual search

part (Sec. 3.3).

3.2 Bottom-up saliency

Bottom-up saliency is usually a combination from different feature channels. The

most frequently used features in visual attention systems are intensity, color, and

orientation. When image sequences are processed, also motion and flicker are im-

portant. The main concept to compute saliency are contrast computations that deter-

mine the difference between a center region and a surrounding region with respect

to a certain feature. These contrasts are usually computed by center-surround fil-

ters. Such filters are inspired by cells in the human visual system, as the ganglion

cells and the simple and complex cells introduced in Sec. 2.1. Cells with circular

receptive fields are best modeled by Difference-of-Gaussian filters (cf. Fig. 1, right)

while cells with elongated receptive fields are best modeled by Gabor functions. In

practice, the circular regions are usually approximated by rectangles.

To enable the detection of regions of different extends, the center as well as the

surround vary in size. Instead of directly adapting the filter sizes, the computations

are usually performed on the layers of an image pyramid.

The structure of the bottom-up part of the attention system VOCUS is shown in

Fig. 5. Let us regard the computation of the intensity feature in more detail now to

understand the concept and then extend the ideas to the other feature channels.

3.2.1 Intensity Channel

Given a color input image I, this image is first converted to an image ILab in the Lab

(or CIELAB) color space. This space has the dimension ’L’ for lightness and ’a’ and

’b’ for the color-opponent dimensions (cf. Fig. 5, bottom right); it is perceptually
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Fig. 5 The bottom-up saliency computation of the attention system VOCUS.
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(a) Input image (b) Gaussian pyramid, s0 to s4

Fig. 6 The image which serves as demonstration example throughout this chapter (a) and the

derived Gaussian image pyramid (b).

uniform, which means that a change of a certain amount in a color value is perceived

as a change of about the same amount in human visual perception.

From ILab, a Gaussian pyramid is determined by successively smoothing the im-

age with a Gaussian filter and subsampling it with a factor of 2 along each coordinate

direction (see Fig. 6). In VOCUS, we use a 5×5 Gaussian kernel. The level of the

pyramid determines the area that the center-surround filter covers: on high levels of

the pyramid (fine resolution), small salient regions are detected while on low levels

(coarse resolution), large regions obtain the highest response. In VOCUS, 5 pyramid

levels (scales) are computed: Is
Lab, s ∈ {0, ..,4}. Level I1

Lab is only an intermediate

step used for noise reduction, all computations take place on levels 2 – 4.6

The intensity computations can be performed directly on the images Is
L that

originate from the ’L’ channel of the LAB image. According to the human sys-

tem, we determine two feature types for intensity: the on-center difference re-

sponding strongly to bright regions on a dark background, and the off-center dif-

ference vice versa. Note that it is important to treat both types separately and to

not fuse them in a single map since otherwise it is not possible to detect bright-

dark pop-outs, such as in Fig. 12. This yields 12 intensity scale maps I′′i,s,σ with

i ∈ {(on), (off)},s ∈ {2,3,4},σ ∈ {3,7}. A pixel (x,y) in one of the on-center scale

maps is thus computed as:

I′′on,s,σ (x,y) = center(Is
L,x,y)− surroundσ (I

s
L,x,y)

= Is
L(x,y)−

1

(2σ +1)2 −1

(

σ

∑
i=−σ

σ

∑
j=−σ

Is
L(x+ i,y+ j)− Is

L(x,y)

)

(1)

The off-center maps I′′off,s,σ (x,y) are computed equivalently by surround − center.

The straight-forward computation of the surround value is quite costly, especially

for large surrounds. To compute the surround value efficiently, it is convenient to

use integral images [24].

6 The number of levels that is reasonable depends on the image size as well as on the size of the

objects you want to detect. Larger images and a wide variety of possible object sizes require deeper

pyramids. The presented approach usually works well for images of up to 400 pixels in width and

height in which the objects are comparatively small as in the example images of this chapter.
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Fig. 7 Left: The integral image contains at II(x,y) the sum of the pixel values in the shaded region.

Right: the computation of the average value in the shaded region is based on four operations on the

four depicted rectangles according to eq. 5.

The advantage of an integral image (or summed area table) is that when it is once

created, the sum and mean of the pixel values of a rectangle of arbitrary size can be

computed in constant time. An integral image II is an intermediate representation

for the image and contains for a pixel position (x,y) the sum of all gray scale pixel

values of image I above and left of (x,y), inclusive:

II(x,y) =
x

∑
x′=0

y

∑
y′=0

I(x′,y′). (2)

The process is visualized in Fig. 7, left. The integral image can be computed recur-

sively in one pass over the image with help of the cumulative sum s:

s(x,y) = s(x,y−1)+ I(x,y) (3)

II(x,y) = II(x−1,y)+ s(x,y) (4)

with s(x,−1)= 0 and II(−1,y)= 0. This intermediate representation allows to com-

pute the sum of the pixel values in a rectangle F using four references (see Fig. 7

(right)):

F(x,y,h,w) = II(x+w−1,y+h−1)− II(x−1,y+h−1) (5)

−II(x+w−1,y−1)+ II(x−1,y−1).

The ’-1’ elements in the equation are required to obtain a rectangle that includes

(x,y). By replacing the computation of the surround in (1) with the integral compu-

tation in (5) we obtain:

I′′on,s,σ (x,y) = Is
L(x,y)−

F(x−σ ,y−σ ,2σ +1,2σ +1)− Is
L(x,y)

(2σ +1)2 −1
(6)
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Fig. 8 Left: the 12 intensity scale maps I′′i,s,σ . First row: the on-maps. Second row: the off-maps.

Right: the two intensity feature maps I′(on) and I′(off) resulting from the sum of the corresponding

six scale maps on the left.

To enable this computation, one integral image has to be computed for each of the

three pyramid levels Is
L,s ∈ {2,3,4}. This pays off since then each surround can be

determined by three simple operations. The intensity scale maps I′′ are depicted in

Fig. 8, left.

The six maps for each center-surround variation are summed up by across-scale

addition: first, all maps are resized to scale 2 whereby resizing scale i to scale i−1 is

done by bilinear interpolation. After resizing, the maps are added up pixel by pixel.

This yields the intensity feature maps I′:

I′i =
⊕

s,σ

I′′i,s,σ , (7)

with i ∈ {(on), (off)},s ∈ {2,3,4},σ ∈ {3,7}, and
⊕

denoting the across-scale addi-

tion. The two intensity feature maps are shown in Fig. 8, right.

3.2.2 Color Channel

The color computations are performed on the two-dimensional color layer Iab of

the Lab image that is spanned by the axes ’a’ and ’b’. Besides its resemblance to

human visual perception, the Lab color space fits particularly well as basis for an

attentional color channel since the four main colors red, green, blue and yellow are

at the end of the axes ’a’ and ’b’. Each of the 6 ends of the axes that confine the

color space serves as one prototype color, resulting in two intensity prototypes for

white and black and four color prototypes for red, green, blue, and yellow.

For each color prototype, a color prototype image is computed on each of the

pyramid levels 2 – 4. In these maps, each pixel represents the Euclidean distance to

the prototype:

Cs
γ(x,y) =Vmax −||Is

ab(x,y)−Pγ ||, γ ∈ {R,G,B,Y}, (8)
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Fig. 9 Top: the color prototype images of scale s2 for red, green, blue, yellow. Bottom: the corre-

sponding color feature C′
γ maps which result after applying center-surround filters.

where Vmax is the maximal pixel value and the prototypes Pγ are the ends of the ’a’

and ’b’ axes (thus, in an 8-bit image, we have Vmax = 255 and PR = (255,127),PG =
(0,127),PB = (127,0),PY = (127,255)). The color prototype maps show to which

degree a color is represented in an image, i.e., the maps in the pyramid PR show the

“redness” of the image regions: the brightest values are at red regions and the darkest

values at green regions (since green has the largest distance to red in the color space).

Analogical to the intensity channel, it is also important here to separate red-green

and blue-yellow in different maps to enable red-green and blue-yellow pop-outs.

The four color prototype images I2
γ are displayed in Fig. 9, top.

On these pyramids, the color contrast is computed by on-center differences yield-

ing 4∗3∗2 = 24 color scale maps:

C′′
γ,s,σ = center(Cs

γ ,x,y)− surroundσ (C
s
γ ,x,y), (9)

with γ ∈ {R,G,B,Y},s ∈ {2,3,4}, and σ ∈ {3,7}. According to the intensity chan-

nel, the center is a pixel in the corresponding color prototype map, and the surround

is computed according to eq. 6. The off-center-on-surround difference is not needed,

because these values are represented in the opponent color pyramid. The maps of

each color are rescaled to the scale 2 and summed up into 4 color feature maps C′
γ :

C′
γ =

⊕

s,σ

C′′
γ,s,σ . (10)

Fig. 9, bottom shows the color feature maps for the example image.

3.2.3 Orientation Channel

The orientation maps are computed from oriented pyramids. An oriented pyramid

contains one pyramid for each represented orientation (cf. Fig.10, left). Each of

these pyramids highlights edges with this specific orientation. To obtain the ori-

ented pyramid, first a Laplacian Pyramid is obtained from the Gaussian pyramid Is
L

by subtracting adjacent levels of the pyramid. The orientations are computed by

Gabor filters which respond most to bar-like features according to a specified orien-
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Fig. 10 Left: to obtain an oriented pyramid, a Gaussian pyramid is computed from the input image,

then a Laplacian pyramid is obtained from the Gaussian pyramid by subtracting two adjacent levels

and, finally, Gabor filters of 4 orientations are applied to each level of the Laplacian pyramid. Right:

The four orientation feature maps O′
0◦ ,O′

45◦ ,O′
90◦ ,O′

135◦ for the example image.

tation. Gabor filters, which are the product of a symmetric Gaussian with an oriented

sinusoid, simulate the receptive field structure of orientation-selective cells in the

primary visual cortex (cf. 2.1). Thus, the Gabor filters replace the center-surround

filters of the other channels.

Four different orientations are computed yielding 4× 3 = 12 orientation scale

maps O′′
θ ,s, with the orientations θ ∈ {0◦,45◦,90◦,135◦} and scales s ∈ {2,3,4}.

The orientation scale maps O′′
θ ,s are summed up by across-scale addition for each

orientation, yielding four orientation feature maps O′
θ , one for each orientation:

O′
θ =

⊕

s

O′′
θ ,s, (11)

The orientation feature maps for the example image are depicted in Fig. 10, right.

3.2.4 Motion Channel

If image sequences are used as input for the attention system, motion is an important

additional feature. It can be computed easily by determining the optical flow field.

Here, we use a method based on total variation regularization that determines a

dense optical flow field and is capable to operate in real-time [29]. If the horizontal

u and the vertical v component of the optical flow are visualized as images, the

center-surround filters can be applied to these images directly. By applying on- as

well as off-center filters to both images, we achieve four motion maps for each scale

s which we call M′′
ϑ ,s, with ϑ = {right, left, up, down}. After accross-scale addition

we obtain four motion feature maps
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Fig. 11 The motion feature maps M′ for a scene in which a ball rolls from right to left through the

image. From left to right: example frame, motion maps M′
right,M

′
left,M

′
up,M

′
down.

M′
ϑ =

⊕

s

M′′
ϑ ,s. (12)

An example for a sequence in which a ball rolls from right to left through the image

is displayed in Fig. 11. In videos, motion itself is not necessarily salient, but the

contrast of the motion in the current frame to the motion (or absence of motion) in

previous frames. Itti and Baldi describe in their surprise theory how such temporal

saliency can be integrated into a computational attention system [8].

3.2.5 The Uniqueness Weight

Up to now, we have computed local contrasts for each of the feature channels. While

contrast is an important aspect of salient regions, they additionally have an impor-

tant property: they are rare in the image, in the best case unique. A red ball on grass

is very salient, while it is much less salient among other red balls. That means, we

need a measure for the uniqueness of a feature in the image. Then, we can strengthen

maps with rare features and diminish the influence of maps with omnipresent fea-

tures.

A simple method to determine the uniqueness of a feature is to count the number

of local maxima m in a feature map X . Then, X is divided by the square root of m:

W (X) = X/
√

m, (13)

In practice, it is useful to only consider maxima in a pre-specified range from the

global maximum (in VOCUS, the threshold is 50% of the global maximum of the

map). Fig. 12 shows how the uniqueness weight enables the detection of pop-outs.

Other solutions to determine the uniqueness are described in [10, 9].

3.2.6 Normalization

Before the feature maps can be fused, they have to be normalized. This is necessary

since some channels have more maps than others. Let us first understand why this

step is not trivial. The easiest solution would be to normalize all maps to a fixed

range. This method goes along with a problem: normalizing maps to a fixed range

removes important information about the magnitude of the maps. Assume that one
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(a) Input image (b) I′(on) (c) I′(off) (d) I = ∑ W (I′)

Fig. 12 The effect of the uniqueness weight function W (eq. 13). The off-center intensity feature

map I′(off) has a higher weight than the on-center intensity feature map I′(on), because it contains

only one strong peak. So this map has a higher influence and the region of the black dot pops out

in the conspicuity map I.

intensity and one orientation map belonging to an image with high intensity but low

orientation contrasts are to be fused into one saliency map. The intensity map will

contain very bright regions, but the orientation map will show only some moderately

bright regions. Normalizing both maps to a fixed range forces the values of the

orientation maps to the same range as the intensity values, ignoring that orientation

is not an important feature in this case.

A similar problem occurs when dividing each map by the number of maps in this

channel: imagine an image with equally strong intensity and color blobs. A color

map would be divided by 4, an intensity map only by 2. Thus, although all blobs

have the same strength, the intensity blobs would obtain a higher saliency value.

Instead, we propose the following normalization technique: To fuse the maps

X = {X1, ..,Xk}, determine the maximum value M of all Xi ∈ X and normalize each

map to the range [0..M]. Normalization of map Xi to the range [0..M] will be denoted

as N[0..M](Xi) in the following.

3.2.7 The Conspicuity Maps

The next step in the saliency computation is the generation of the conspicuity maps.

The term conspicuity is usually used to denote feature specific saliency. To obtain

the maps, all feature maps of one feature dimension are weighted by the uniqueness

weight W , normalized, and combined into one conspicuity map, yielding map I for

intensity, and C for color, O for orientation, and M for motion:

I = ∑
i

N[0..Mi](W (I′i )), Mi = maxvaluei(I
′
i ), i ∈ {on,off},

C = ∑
γ

N[0..Mγ ](W (C′
γ)), Mγ = maxvalueγ(C

′
γ), γ ∈ {R,G,B,Y},

O = ∑
θ

N[0..Mθ ](W (O′
θ )), Mθ = maxvalueθ (O

′
θ ), θ ∈ {0◦,45◦,90◦,135◦},

M = ∑
ϑ

N[0..Mϑ ](W (M′
ϑ )), Mϑ = maxvalueϑ (C

′
ϑ ), ϑ ∈ {right, left, up, down},

(14)
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where W is the uniqueness weight, N the normalization and maxvalue the function

that determines the maximal value from several feature maps. The conspicuity maps

I,C, and O are illustrated in Fig. 13 (a) - (c).7

(a) Consp. map I (b) Consp. map C (c) Consp. map O (d) Saliency map S

Fig. 13 The three conspicuity maps for intensity, color, and orientation, and the saliency map.

3.2.8 The Saliency Map and Focus Selection

Finally, the conspicuity maps are weighted and normalized again, and summed up

to the bottom-up saliency map S:

Sbu = ∑
Xi

N[0..MC ](W (Xi)), MC = maxvalue(I,C,O,M), Xi ∈ {I,C,O,M}. (15)

The saliency map for our (static) example is illustrated in Fig. 13 (d). While it is

sometimes sufficient to compute the saliency map and provide it as output, if is

often required to determine a trajectory of image locations which resembles eye

movements. To obtain such a trajectory from the saliency map, it is common practice

to determine the local maxima in the saliency map, ordered by decreasing saliency.

These maxima are usually called Focus of Attention (FOA). Here, we first discuss

the standard, biologically motivated approach to find FOAs, then we introduce a

simple, computationally convenient solution.

The standard approach to detect FOAs in the saliency map is via a Winner-Take-

All Network (WTA) (cf. Fig. 14) [13]. A WTA is a neural network that localizes

the most salient point xi in the saliency map. Thus, it represents a neural maximum

finder. Each pixel in the saliency map gives input to a node in the input layer. Local

competitions take place between neighboring units and the more active unit trans-

mits the activity to the next layer. Thus, the activity of the maximum will reach the

top of the network after k = logm(n) time steps if there are n input units and local

comparisons take place between m units. However, since it is not the value of the

maximum that is of interest but the location of the maximum, a second pyramid out

of auxiliary units is attached to the network. It has a reversed flow of information

7 Since input is a static image, the motion channel is empty and omitted here.
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Fig. 14 A Winner-Take-All

network (WTA) is a neural

maximum finder that detects

the most salient point xi in the

saliency map. Fig. redrawn

from [13].

and “marks” the path of the most active unit. An auxiliary unit is activated if it re-

ceives excitation from its main unit as well as from the auxiliary unit at the next

higher layer. The auxiliary unit yi, corresponding to the most salient point xi, will be

activated after at most 2logm(n) time steps. On a parallel architecture with locally

connected units, such as the brain, this is a fast method to determine the maximum.

It is also a useful approach on a parallel computer architecture, such as a graphics

processing unit (GPU). However, if implemented on a serial machine, it is more

convenient to simply scan the saliency map sequentially and determine the most

salient value. This is the solution chosen for VOCUS.

When the most salient point has been found, the surrounding salient region is

determined by seeded region growing. This method starts with a seed, here the most

salient point, and recursively finds all neighbors with similar values within a certain

range. In VOCUS, we accept all values that differ at most 25% from the value of

the seed. We call the selected region most salient region (MSR). Some MSRs are

shown in Fig. 18. For visualization, the MSR is often approximated by an ellipse

(cf. Fig. 22).

To allow the FOA to switch to the next salient region with a WTA, a mechanism

called inhibition of return (IOR) is used. It inhibits all units corresponding to the

MSR by setting their value to 0. Then, the WTA activates the next salient region. If

it is desired that the FOA may return to a location after a while, as it is the case in

human perception, the inhibition is only active for a predefined time and diminishes

after that. If no WTA is used, it is more convenient to directly determine all local

maxima in the saliency map that exceed a certain threshold (in VOCUS, 50% of the

global maximum), sort them by saliency value, and then switch the focus from one

to the next. This also prevents border effects that result from inhibition when the

focus returns to the borders of an inhibited region.

3.3 Visual Search with Top-down Cues

While bottom-up saliency is an important part of visual attention, top-down cues are

even more important in many applications. Bottom-up saliency is useful if no pre-

knowledge is available, but the exploitation of available pre-knowledge naturally

increases the performance of every system, both biological and technical. One of the

best investigated aspects of top-down knowledge is visual search. In visual search,
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a target shall be located in the image, e.g. a cup, a key-fob, or a book. Here, we

describe the visual search mode of the VOCUS model. Learning the appearance of

the target from a training image and searching for the target in a test image are both

directly integrated into the previously described model. Top-down and bottom-up

cues interact to achieve a joint focus of attention.

An overview of the complete algorithm for visual search is shown in Fig. 15.

Learning mode (input: training image and region of interest (ROI)):

compute bottom-up saliency map Sbu

determine most salient region (MSR) in ROI of Sbu

for each feature and conspicuity map Xi

compute target descriptor value vi

Search mode (input: test image and target descriptor v):

compute bottom-up saliency map Sbu

compute top-down saliency map Std:

compute excitation map E = ∑i(vi ∗Xi) ∀i : vi > 1

compute inhibition map I = ∑i((1/vi)∗Xi) ∀i : vi < 1

compute top-down saliency map Std = E − I

compute saliency map S = t ∗Std +(1− t)∗Sbu with t ∈ [0..1]
determine most salient region(s) in S

Fig. 15 The algorithm for visual search

3.3.1 Learning Mode

“Learning” in our application means to determine the object properties of a specified

target from one or several training images. In learning mode, the system is provided

with a region of interest (ROI) containing the target object and learns which features

distinguish the target best from the remainder of the image. For each feature, a value

is determined that specifies to what amount the feature distinguishes the target from

its background. This yields a target descriptor v which is used in search mode to

weight the feature maps according to the search task (cf. Fig. 16).

The input to the system in learning mode is a training image and a region of

interest (ROI). The ROI is a rectangle which is usually determined manually by the

user but might also be the output of a classifier that specifies the target. Inside the

ROI, the most salient region (MSR) is determined by first computing the bottom-

up saliency map and, second, determining the most salient region within the ROI.

This method enables the system to determine automatically what is important in a

specified region and to ignore the background. Additionally, it makes the system

stable since usually the same MSR is computed, regardless of the exact coordinates

of the rectangle. So the system is independent of variations the user makes when

determining the rectangle manually and it is not necessary to mark the target exactly.
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Fig. 16 In learning mode, VOCUS determines the most salient region (MSR) within the region

of interest (ROI) (yellow rectangle). A target descriptor v is determined by the ratio of MSR vs.

background for each feature and conspicuity map. Values vi > 1 (green) are target relevant and

used in search mode for excitation, values vi < 1 (red) are used for inhibition.

Next, a target descriptor v is computed. It has one entry for each feature and each

conspicuity map Xi. The values vi indicate how important a map is for detecting

the target and are computed as the ratio of the mean target saliency and the mean

background saliency:

vi = mi,(MSR)/mi,(Xi−MSR), i ∈ {1, ...,13}, (16)

where mi,(MSR) denotes the mean intensity value of the pixels in the MSR in map Xi,

showing how strong this map contributes to the saliency of the region of interest,

and mi,(Xi−MSR) is the mean of the remainder of the image in map Xi, showing how

strong the feature is present in the surroundings.

Fig. 16 shows the target descriptor for a simple example. Values larger than 1

(green) are features that are relevant for the target while features smaller than 1

(red) are more present in the background and are used for inhibition.

Learning features of the target is important for visual search but if these features

also occur in the environment they might be of not much use. For example, if a red

target is placed among red distractors it is not reasonable to consider color for visual

search, although red might be the strongest feature of the target. In VOCUS, not only

the target’s features but also the features of the background are considered and used

for inhibition. This method is supported by psychophysical experiments, showing

that both excitation and inhibition of features are important in visual search. Fig. 17

shows the effect of background information on the target descriptor.

Note that it is important that target objects are learned in their typical environ-

ment since otherwise their appearance with respect to the background cannot be

represented adequately. Fig. 18 shows some typical training images and the regions

that the system determined to represent the target.
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Feature target vector v (top) target vector v (bottom)

intensity on/off 0.01 0.01

intensity off/on 9.13 13.17

orientation 0◦ 20.64 29.84

orientation 45◦ 1.65 1.96

orientation 90◦ 0.31 0.31

orientation 135◦ 1.65 1.96

color green 0.00 0.00

color blue 0.00 0.01

color red 47.60 10.29

color yellow 36.25 9.43

conspicuity I 4.83 6.12

conspicuity O 7.90 11.31

conspicuity C 17.06 2.44

Fig. 17 Effect of background information on the target vector. Left: the same target (red horizontal

bar, 2nd in 2nd row) in different environments: all vertical bars are black (top) resp. red (bottom).

Right: the target vectors (most important values printed in bold face). In the upper image, red is

the most important feature. In the lower image, surrounded by red distractors, red is no longer the

prime feature to detect the bar but orientation is (image from [4]).

Fig. 18 Top: some training images with targets (name plate, fire extinguisher, key fob). Bottom:

The part of the image that was marked for learning (region of interest (ROI)) and the contour of

the region that was extracted for learning (most salient region (MSR)) (images from [4]).

3.3.2 Several Training Images

Learning weights from one single training image yields good results if the target

object occurs in all test images in a similar way, i.e., the background color is similar

and the object always occurs in a similar orientation. These conditions often occur

if the objects are fixed elements of the environment. For example, name plates or

fire extinguishers are within the same building usually placed on the same kind of

wall, so the background has always a similar color and intensity. Furthermore, since

the object is fixed, its orientation does not vary and thus it makes sense to learn that

fire extinguishers usually have a vertical orientation.
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weights for red bar

Feature v,b h,b v,d h,d average

int on/off 0.00 0.01 8.34 9.71 0.14

int off/on 14.08 10.56 0.01 0.04 0.42

ori 0◦ 1.53 21.43 0.49 10.52 3.61

ori 45◦ 2.66 1.89 1.99 2.10 2.14

ori 90◦ 6.62 0.36 5.82 0.32 1.45

ori 135◦ 2.66 1.89 1.99 2.10 2.14

col green 0.00 0.00 0.00 0.00 0.00

col blue 0.00 0.00 0.01 0.01 0.00

col red 18.87 17.01 24.13 24.56 20.88

col yellow 16.95 14.87 21.21 21.66 18.45

consp I 7.45 5.56 3.93 4.59 5.23

consp O 4.34 7.99 2.87 5.25 4.78

consp C 4.58 4.08 5.74 5.84 5.00

Fig. 19 Influence of averaging the target descriptor from several training images. Left: four train-

ing examples to learn red bars of horizontal and vertical orientation and on different backgrounds.

The target is marked by the yellow rectangle. Right: The learned target descriptors. Column 2–

5: the weights for a single training image (v=vertical,h=horizontal,b=bright background,d=dark

background). The highest values are highlighted in bold face. Column 6: average vector. Color is

the only stable feature (example from [4]).

To automatically determine which object properties are general and to make the

system robust against illumination and viewpoint changes, the target descriptor v

can be computed from several training images by computing the average descriptor

from n training images with the geometric mean:

vi = n

√

n

∏
j=1

vi j, i ∈ {1, ..,13} (17)

where vi j is the i-th feature in the j-th training image. If one feature is present in the

target region of some training images but absent in others, the average values will

be close to 1 leading to only a low activation in the top-down map. Fig. 19 shows

the effect of averaging target descriptors on the example of searching for red bars in

different environments.

In practice, best results are usually obtained by only two training images. In

complicated image sets, up to 4 training images can be useful (see experiments in

[4]). Since not each training image is equally useful, it can be preferable to select

the training images automatically from a set of training images. An algorithm for

this issue is described in [4].

3.3.3 Search Mode

In search mode, we search for a target by means of the previously learned target

descriptor. The values are used to excite or inhibit the feature and conspicuity maps
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Fig. 20 Computation of the top-down saliency map Std that results from an excitation map E and

an inhibition map I. These maps result from the weighted sum of the feature and conspicuity maps,

using the learned target descriptor.

according to the search task. The weighted maps contribute to a top-down saliency

map highlighting regions that are salient with respect to the target and inhibiting

others. Fig. 20 illustrates this procedure.

The excitation map E is the weighted sum of all feature and conspicuity maps Xi

that are important for the target, namely the maps with weights greater than 1:

E = ∑
i:vi>1

(vi ∗Xi). (18)

The inhibition map I collects the maps in which the corresponding feature is less

present in the target region than in the remainder of the image, namely the maps

with weights smaller than 1:8

I = ∑
i:vi<1

((1/vi)∗Xi). (19)

8 Entries with value 1 are ignored since they indicate that the mean saliency of the target region is

exactly the same as the mean saliency of the surrounding; such a feature is completely useless for

detecting the target. However, in practice this usually does not occur unless a feature is not present

at all, e.g., color is not present in a gray-scale image and the color weights are set to 1.
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The excitation and inhibition map are not normalized to the same range since we

want to preserve the differences among the maps.

The top-down map is obtained by subtracting the inhibition map from the exci-

tation map:

Std = E − I. (20)

After subtraction, negative values are clipped to 0. Fig. 20 shows that both, excita-

tion and inhibition are important to find a target: when searching for the cyan vertical

bar, the excitation map shows bright values for the cyan bar but the brightest region

for the green bar. However, green contains also yellow which is inhibited for a cyan

target. Thus in the resulting top-down map, only the cyan bar is salient.

If the task is pure visual search for a target, the top-down saliency map can

be directly used to determine the focus of attention.9 This is done equivalently to

sec. 3.2.8. However, if bottom-up cues shall be regarded additionally, the bottom-up

and the top-down saliency map have to be fused. This will be discussed in the next

section.

3.3.4 Bottom-up and Top-down Cues Compete for Attention

In human perception, bottom-up and top-down cues compete for attention all of the

time. Depending on how engrossed in a task you are, the influences of bottom-up

and top-down vary. The introductory city-visiting example illustrates this: without a

clear task, the salient street performers attract your gaze. When you start to actively

look for the train station, your top-down attention is focusing on street signs. Finally,

the fire alarm is salient enough to override the task and captures your attention.

Consequently, it is important for a technical system to know what the overall

tasks are, which one the most important task is at the moment, and how important

it is. Depending on such pre-knowledge, the influence of bottom-up and top-down

factors might be determined. After obtaining such a factor, the bottom-up and top-

down saliency map are weighted accordingly and finally fused to a global saliency

map S. To make the maps comparable, Std is normalized in advance to the same

range as Sbu:

S = (1− t)∗Sbu + t ∗N[0..MS]Std, MS = maxvalue(Sbu). (21)

Here, t ∈ [0..1] is the top-down factor that determines the amount of top-down in-

fluence. Determining t is not trivial. Probably the best solution is to learn it while

performing some tasks on a real system, but this is beyond the scope of this article.

Note that a simple solution for a technical system is to not fuse bottom-up and top-

down saliency but to process them independently. Bottom-up salient regions might

be fed to an object recognition module that recognizes the objects, builds a seman-

tic map of the environment with object annotations, and successively improves the

9 Note that in human perception, bottom-up cues always play a role and thus should be considered

if similarity to human perception is desired.
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Fig. 21 Typical pop-out images. Attention systems should be able to detect the outliers.

background knowledge of the system, while top-down cues can be used to solve the

current task by searching for desired objects.

4 Evaluation of computational attention systems

The evaluation of computational attention systems can be done from a psychophys-

ical perspective, e.g. by comparing their results with human perception, or from a

technical perspective, e.g. by measuring the success in an application.

When considering bottom-up systems of attention, the first step is to determine

whether the system is able to detect pop-outs in the dimension of the implemented

features. These tests are important to ensure the basic capabilities of the systems

and are suitable to reveal their strengths and limitations. Thus, a system with the

standard features intensity, color, and orientation should be able to detect popouts

as the ones in Fig. 21. Hereby, the saliency of the target depends on the similarity to

the distractors, the more it differs, the higher the saliency. Thus, a target that differs

only slightly from the distractors might not be detected with the first fixation. This

is in accordance with the psychophysical findings that the more similar target and

distractors are, the slower the visual search (cf. Sec. 2.2)

The evaluation on artificial patterns is only the first step, testing on natural im-

ages is important too. Here, it is usually less clear which region shall be salient,

top-down influences play a larger role and saliency depends stronger on the context

and of preknowledge of the observer. A possibility for evaluation is to compare the

output of the system with human eye movement data (see also Sec. 7 and chapter

11, Sec. 3.2.2). Note that a computational attention system can only roughly ap-

proximate such eye movement trajectories since the top-down cues that influence

human perception are hardly possible to model in such a general scenario and thus

the systems usually operate in bottom-up mode. It is however possible to compare

different attention system based on such data.

An alternative that occurred recently in the computer vision community is the

evaluation on image databases with salient objects, manually labeled by different

users [14]. Note however that the database in [14] contains many close-up views of

objects that cover a large portion of the image, a case for which the human attention

system is not designed. In contrast, the task of human attention is to direct the gaze to

a small region in a complex scene which is afterwards investigated in detail. Thus,

a system as the one described here is designed to operate on scene images rather

than on close-up views of objects and might have to be adapted accordingly to work
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on the above database. A similar approach for evaluation was used by Elazary and

Itti, who used 24 836 pictures of natural scenes from the LabelMe database, in

which objects were manually marked and labeled by a large population of users.

They found that the hot spots in the saliency map predict the locations of objects

significantly above chance [3].

From a technical point-of-view it is not necessarily important that a computa-

tional attention system operates similar to human perception, as long as the outcome

is useful for an application. Two applications in which attention system are applied

are mentioned in sec. 5. But even in these cases, a system should be able to detect

outliers as in Fig. 21 since this belongs to the basic capabilities of visual attention

systems.

The evaluation of top-down systems is easier. Here, the task is clearly specified

and it can be determined easily if a target was detected or not. Note, that a top-down

attention system is no object recognizer, that means it cannot decide whether an

object is present in an image or not. It can simply determine locations that are likely

to obtain the target, usually in form of a trajectory of locations. Thus, instead of

determining a detection rate, it is more reasonable to determine the hit number, i.e.

the number of the focus that is on the target. A hit number of 1 is best and means

that the first focus of attention was on the target. An example of the evaluation of

visual search with VOCUS is displayed in Fig. 22.

Target # test im. av. hit number [%]

Fire extinguisher 46 1.09

Key fob 30 1.23

Fig. 22 Left: Average hit number of VOCUS for two targets on a set of test images. The target de-

scriptors were computed from two training images each (examples of training images cf. Fig. 18).

Right: Two example test images with foci of attention (red ellipses) (example from [4]).

5 Applications in computer vision and robotics

In the introduction, we have pointed out the importance of attentional selection for

tasks that deal with large amounts of image data. Especially in the field of au-

tonomous mobile robots, the concept of visual attention has increasingly gained

interest during the last decade. A large number of EU projects on cognitive robotics

has been launched, e.g. the projects MACS, CogVis, POP, and SEARISE. In many

of these projects, visual attention has been used as perception module.

We will concentrate here on two applications of visual attention systems. A

broader overview can be found in [6]. The first application that we will introduce is

visual robot localization. Here, a robot has to determine its position in the world by
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interpreting its sensor data. When a camera is used as sensor, this is usually done

by detecting visual landmarks in the environment and computing the robot posi-

tion based on the position estimation of the landmarks. An important property of

landmarks is the redetectability in frames that are taken from different viewpoints.

Using salient regions as landmarks is a natural way of exploiting that salient regions

are “special” in an environment and, thus, easy to redetect. An example of a typical

salient landmark is a fire extinguisher. As part of the EU project NEUROBOTICS,

we have used salient visual landmarks for simultaneous localization and mapping

(SLAM) [5]. This task is more difficult than pure localization since the robot ini-

tially does not know anything about its environment and has to build a map and

localize itself inside the map at the same time. We have detected salient regions

with VOCUS, tracked them over several frames to determine the most stable ones

and to determine their 3D position, and stored them as landmarks in a database. At

every time step, currently seen salient regions are compared with landmarks from

the database to enable the robot to detect that it has returned to a previously vis-

ited location (loop closing). This is an especially important step in SLAM to correct

accumulated position errors. A picture of the process is displayed in Fig. 23, left.

Another application is the PlayBot project, lead by Prof. John K. Tsotsos from

York university, Canada [18].10 Goal of the project is to develop a smart wheelchair

to support disabled children. The wheelchair has a display as easily accessible user

interface which shows pictures of places and toys. Once a task like “go to table,

point to toy” is selected, the system drives to the selected location and searches for

the specified toy, using mechanisms based on visual attention (see Fig. 23, (b)).

6 Summary

Computational attention systems are inspired by human perception and aim to de-

tect the most promising regions in images. While computational attention systems

already do a good job in bottom-up saliency computation, many open questions re-

main in the field of top-down attention. All kinds of background knowledge about

the context, the current situation, the layout of the scene, and the specification of the

current task influence the visual processing in humans and should therefore also be

integrated into a technical system. The more technical systems advance, the more

urgent the need for preprocessing modules such as attention systems that prioritize

the data and enable efficient processing with limited resources. Especially in the

field of autonomous robots such a mechanism is important to facilitate the decision

which actions to perform next.

10 More on http://web.me.com/john.tsotsos/Applications/Playbot.html
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(a) Visual SLAM (b) Object manipulation in PlayBot

Fig. 23 Two application scenarios for visual attention systems: (a) Attentional landmarks for visual

SLAM (simultaneous localization and mapping) at the Royal Institute of Technology (KTH) in

Stockholm: robot Dumbo corrects its position estimate by redetecting a salient landmark based

on the attention system VOCUS. The yellow rectangle shows the currently seen frame with a

landmark (top) and the corresponding saliency map (bottom) [5] (Fig. from http://www.iai.uni-

bonn.de/∼frintrop/research.html). (b) PlayBot: a visually guided robotic wheelchair for disabled

children. The selective tuning model of visual attention supports the detection of objects of interest

(Fig. fromhttp://www.cse.yorku.ca/∼playbot).

7 Open Source code, databases, and further reading

Open Source code:

• The iLab Neuromorphic Vision C++ Toolkit (iNVT, pronounced “invent”) from

the group of Laurent Itti is probably the best known and most distributed Open

Source code for computational attention systems [10]. It includes the surprise

model for temporal saliency [8] and is available at http://ilab.usc.edu/toolkit/.

• The SaliencyToolbox from Dirk B. Walther [25] is a more compact reimplemen-

tation of iNVT in Matlab: http://www.saliencytoolbox.net/

• The original VOCUS source code is not freely available, but a reimplementa-

tion of the bottom-up part (in C++) can be found http://sourceforge.net/projects/-

openvolksbot/

• The AIM model (Attention based on Information Maximation) is an attention

system based on information theory. It determines the self-information of a cen-

ter region with respect to a global surround [1]. Matlab code is available at:

http://www-sop.inria.fr/members/Neil.Bruce

• For implementing an own attention system, it is convenient to use the Open

Source Computer Vision Library OpenCV that contains many basic techniques,

from displaying images over computing pyramids to converting images to other

color spaces: http://sourceforge.net/projects/opencvlibrary.
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Databases:

Several databases are available for testing and evaluating visual attention system:

• Image databases of popout search arrays and natural images can be found on the

websites of the iLab: http://ilab.usc.edu/imgdbs/

• Eye tracking data from 20 test persons on 120 still images can be found on:

http://www-sop.inria.fr/members/Neil.Bruce/

• Eye-tracking data from human volunteers watching complex video stimuli are

available from the CRCNS (Collaborative Research in Computational Neuro-

science) data sharing website: http://crcns.org/data-sets/eye

• The MSRA Salient Object Database contains 25000 images with manually la-

beled salient objects: http://research.microsoft.com/en-us/um/people/jiansun/ -

SalientObject/salient object.htm. For a subset of 1000 images, binary maps of the

salient objects are available as ground truth: http://ivrg.epfl.ch/supplementary -

material/RK CVPR09

Further reading:

More about the human visual system can be found in the books of Palmer [16] or

Kandel et al. [12]. The psychology of attention and details on many psychological

attention models are described in a book by Pashler [17] and in the chapter “Atten-

tion” by Bundesen & Habekost in the Handbook of Cognition [2]. A description of

the social aspects of attention can be found later in this book in chapter 8, section

5.4.1. Wolfe has written a comprehensive article that contains everything you ever

wanted to know about visual search [27]. One of the first computational models of

visual attention was introduced by Koch and Ullman in 1985 with a detailed de-

scription of the winner-take-all approach [13]. The basic paper that describes the

widely used computational attention model by the group of Laurent Itti in a com-

prehensive manner is [10]. Recently, several groups have used information-theoretic

approaches to determine visual saliency [8, 1, 7]. The latter also tackle the aspect

of top-down saliency for object recognition by determining salient features that best

distinguish a visual class from other classes [7]. Top-down information in the form

of knowledge about the scene and its visual layout was used by Torralba et al. to

guide visual attention to relevant parts of an image [19]. A survey on computational

attention systems that aims to bridge the gap between the research on human and

computational visual attention can be found in [6].

Research papers on computational attention appear on conferences and in jour-

nals of many different areas, e.g. cognitive perception, computer vision, and cog-

nitive robotics. Important journals for cognitive aspects of attention are “Attention,

Perception, and Psychophysics” and the “Journal of Vision”. In the technical fields,

much work can be found on workshops on cognitive systems that usually take place

as satellites of big conferences, such as the “International Symposium on Attention

in Cognitive Systems” at IJCAI 2011. Journal articles appear e.g. in “Computer Vi-

sion and Image Understanding” and in the “IEEE Transactions on Pattern Analysis
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and Machine Intelligence”, or, if related to robotics, in the “IEEE Transactions on

Robotics” and the “Robotics and Autonomous Systems”.

8 Questions

The following questions shall help you to think more deeply about certain impor-

tant aspects of attention systems, leading hopefully to a better understanding of the

abilities and limitations of such approaches.

• Which objects of the following list are likely to be detected with a bottom-up

attention system and which are not: a traffic sign, a glass, a large object among

small ones, an apple on the table, an apple in a box full of apples?

• You notice that the attention system detects very small salient regions on your

test images. How could you adapt the attention system to detect larger objects as

well? What could you do if you do not have access to the source code and you

can only adapt the input image itself?

• Why is the arithmetic mean not an adequate alternative for eq. 17? Tip: consider

two training images with vi = 0.5 and vi = 2 respectively, for feature map i.

Which value would you expect and what do you get by arithmetic/geometric

mean?

• What happens if you search for a target object with the top-down attention system

in an image where the target is not present?

• How does an attention system differ from a standard interest point detector such

as the Difference of Gaussian detector or the Harris corner detector? How does a

top-down attention system differ from an object recognition module?

9 Glossary

• Bottom-up attention: one of the factors that guide human attention (the other is

top-down attention). Bottom-up attention is purely data-driven and guides the

gaze to salient regions in a scene. Indicators that attract bottom-up attention are

strong contrasts and the uniqueness of a region.

• Center-surround filters: the main concept in visual attention systems to detect

contrasts. They are inspired by on-center and off-center cells of the human visual

system.

• Saliency: The quality of a region to stand out relative to its surround.

• Top-down attention: one of the factors that guide human attention (the other is

bottom-up attention). Top-down attention is driven by cognitive factors such as

pre-knowledge, context, expectations, motivations, and current goals. One of the

best investigated areas of top-down attention is visual search.
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• Visual search: the task to find an item in a scene. It is one of the best investigated

parts of top-down attention. Visual search experiments are used frequently in

cognitive sciences to investigate the human visual system.
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Based on concepts of the human visual system, computational visual attention systems aim to
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1. INTRODUCTION

Every stage director is aware of the concepts of human selective attention and knows
how to exploit them to manipulate his audience: A sudden spotlight illuminating a
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character hidden in the audience, these effects not only keep our interest alive, they
also guide our gaze, telling where the current action takes place. The mechanism in
the brain that determines which part of the multitude of sensory data is currently
of most interest is called selective attention. This concept exists for each of our
senses; for example, the cocktail party effect is well-known in the field of auditory
attention. Although a room may be full of different voices and sounds, it is possible
to voluntarily concentrate on the voice of a certain person [Cherry 1953]. Visual
attention is sometimes compared with a spotlight in a dark room. The fovea – the
center of the retina – has the highest resolution in the eye. Thus, directing the
gaze to a certain region complies with directing a spotlight to a certain part of a
dark room [Shulman et al. 1979]. By moving the spotlight around, one can obtain
an impression of the contents of the room, while analogously, by scanning a scene
with quick eye movements, one can obtain a detailed impression of it.

Evolution has favored the concepts of selective attention because of the human
need to deal with a high amount of sensory input at each moment. This amount
of data is in general too high to be completely processed in detail and the possible
actions at one and the same time are restricted; the brain has to prioritize. The same
problem is faced by many modern technical systems. Computer vision systems have
to deal with thousands, sometimes millions of pixel values from each frame and the
computational complexity of many problems related to the interpretation of image
data is very high [Tsotsos 1987]. The task becomes especially difficult if a system
has to operate in real-time. Application areas in which real-time performance is
essential are cognitive systems and mobile robotics since the systems have to react
to their environment instantaneously.

For mobile autonomous robots, focusing on the relevant data is even more im-
portant than for pure vision systems. Many modules have to share resources on a
robot. Usually, different modules share a visual sensor and each module has its own
requirements. An obstacle avoidance module requires access to peripheral data to
generate a motion flow, whereas a recognition module requires high resolution cen-
tral data. Such a module might profit from zooming to the object, other modules
might require gaze shifts. These resource conflicts depend on a selection mechanism
which controls and prioritizes possible actions. Furthermore, cameras are often used
in combination with other sensors, and modules concerned with tasks like naviga-
tion and manipulation of objects require additional computation power. And in
contrast to early robotic systems applied in simple industrial conveyor belt tasks,
current systems are supposed to drive and act autonomously in complex, previously
unknown environments with challenges such as changing illuminations and people
that walk around. Thus, for humans as well as for robots, limited resources require
a selection mechanism which prioritizes the sensory input from “very important”
to “not useful right now”.

In order to cope with these requirements, people have investigated how the con-
cepts of human selective attention can be exploited for computational systems. For
many years, these investigations have been of mainly theoretical interest since the
computational demands were too high for practical applications. Only during the
last 5-10 years, the computational power enabled implementations of computational
attention system that are useful in practical applications, causing an increasing in-
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terest in such mechanisms in fields like computer vision, cognitive systems and
mobile robotics. Example applications include object recognition, robot localiza-
tion or human-robot interaction.

In this paper, we provide a survey of computational visual attention systems
and their applications. The article is intended to bridge the gap between communi-
ties. For researchers from engineering sciences interested in computational attention
systems, it provides the necessary psychophysical and neuro-scientific background
knowledge about human visual attention. For psychologists and neuro-biologists,
it explains the techniques applied to build computational attention systems. And
for all researchers concerned with visual attention, it provides an overview of the
current state of the art and of applications in computer vision and robotics.

This work focuses on systems which are both biologically motivated and serve a
technical purpose. Such systems aim to improve computational vision systems in
speed and/or quality of detection and recognition. Other computational attention
systems focus on the objective to basically simulate and understand the concepts
of human visual attention. A brief overview is given in section 2.3, but for a more
thorough exposition the authors point the interested reader to the following review
papers. A review of computational attention systems with a psychological objec-
tive can be found in [Heinke and Humphreys 2004], and a survey on computational
attention models significantly inspired from neurobiology and psychophysics is pre-
sented by Rothenstein and Tsotsos [2006a]. Finally, a broad review on psychological
attention models in general is found in [Bundesen and Habekost 2005].

Since the term “attention” is not clearly defined, it is sometimes used in other
contexts. In the broadest sense, any pre-processing method might be called atten-
tional, because it focuses subsequent processing to parts of the data which seem
to be relevant. For example, Viola and Jones [2004] present an object recogni-
tion technique which they call “attentional cascade”, since it starts processing at a
coarse level and intensifies processing only at interesting regions. In this paper, we
focus on approaches which are motivated by human visual attention (see sec. 2.2.1
for a definition).

The structure of the paper is as follows. In section 2, we introduce the concepts
of human visual attention and present the psychological theories and models which
have been most influential for computational attention systems. Section 3 describes
the general structure and characteristics of computational attention systems and
provides an overview over the state of the art in this field. Applications of visual
attention systems in computer vision and robotics are described in section 4. A
discussion on the limitations and open questions in the field concludes the paper.

2. HUMAN VISUAL ATTENTION

This section introduces background knowledge on human visual attention that re-
searchers should have when dealing with computational visual attention. We start
by briefly sketching the human visual system in sec. 2.1. After that, section 2.2
introduces the concepts of visual attention. Finally, we present in sec. 2.3 the most
important psychological theories and models of visual attention which form the
basis for most current computational systems.

ACM Journal Name, Vol. 7, No. 1, 1 2010.
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Fig. 1. Left: Visual areas and pathways in the human brain (Fig. from
http://philosophy.hku.hk/courses/cogsci/ncc.php). Right: some of the known connections
of visual areas in the cortex (Fig. adapted from [Palmer 1999]).

2.1 The Human Visual System

Here, we start with providing a very rough overview of the human visual system
(cf. Fig. 1). Further literature on this topic can be found in [Palmer 1999; Kandel
et al. 1996] and [Zeki 1993].

The light that arrives at the eye is projected onto the retina and then the visual
information is transmitted via the optic nerve to the optic chiasm. From there,
two pathways go to each brain hemisphere: the collicular pathway leading to the
Superior Colliculus (SC) and, more important, the retino-geniculate pathway, which
transmits about 90% of the visual information and leads to the Lateral Geniculate
Nucleus (LGN). From the LGN, the information is transferred to the primary visual
cortex (V1). Up to here, the processing stream is also called primary visual pathway.
Many simple feature computations take part during this pathway. Already in the
retina, there are cells responding to color contrasts and orientations. Up through
the pathway, cells become more complex and combine results obtained from many
previous cell outputs.

From V1, the information is transmitted to the “higher” brain areas V2 – V4,
infero temporal cortex (IT), the middle temporal area (MT or V5) and the posterior
parietal cortex (PP). Although there are still many open questions concerning V1
[Olshausen and Field 2005; 2006], even less is known on the extrastriate areas. One
of the most important findings during the last decades was that the processing of
the visual information is not serial but highly parallel. Many authors have claimed
that the extrastriate areas are functionally separated [Kandel et al. 1996; Zeki 1993;
Livingstone and Hubel 1987; Palmer 1999]. Some of the areas process mainly color,
some form, and some motion.

The processing leads to mainly two different locations in the brain: First, the
color and form processing leads to IT, the area where the recognition of objects
takes place. Since IT is concerned with the question of “what” is in a scene, this
pathway is called the what pathway. Other names are the P pathway or ventral
stream because of its location on the ventral part of the body. Second, the motion
and depth processing leads to PP. Since this area is mainly concerned with the
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question of “where” something is in a scene, this pathway is also called where
pathway. Other names are the M pathway or dorsal stream because it lies dorsally.

Newer findings propose that there is much less segregation of feature computa-
tions. It is for example indicated that luminance and color are not separated but
there is a continuum of cells, varying from cells that respond only to luminance, to
a few cells that do not respond to luminance at all [Gegenfurtner 2003]. Addition-
ally, the form processing is not clearly segregated from color processing since most
cells that respond to oriented edges respond also to color contrasts.

2.2 Visual Attention

In this section, we discuss several concepts of visual attention. More detailed infor-
mation can be found in some books on this topic, e.g. [Pashler 1997; Styles 1997;
Johnson and Proctor 2003]. Here, we start with a definition of visual attention,
and introduce the concepts of covert and overt attention, the units of attention,
bottom-up saliency and top-down guidance. Then, we elaborate on visual search,
its efficiency, pop-out effects, and search asymmetries. Finally, we discuss the neu-
robiological correlates of attention.

2.2.1 What is Visual Attention?. The concept of selective attention refers to a
fact already mentioned by [Aristotle]: “it is impossible to perceive two objects coin-
stantaneously in the same sensory act”. Although we usually have the impression
to retain a rich representation of our visual world and that large changes to our
environment will attract our attention, various experiments reveal that our ability
to detect changes is usually highly overestimated. Only a small region of the scene
is analyzed in detail at each moment: the region that is currently attended. This
is usually but not always the same region that is fixated by the eyes. That other
regions than the attended one are usually largely ignored is shown, for example, in
experiments on change blindness [Simons and Levin 1997; Rensink et al. 1997]. In
these experiments, a significant change in a scene remains unnoticed, that means
the observer is “blind” for this change.

The reason why people are nevertheless effective in every-day life is that they
are usually able to automatically attend to regions of interest in their surrounding
and to scan a scene by rapidly changing the focus of attention. The order in which
a scene is investigated is determined by the mechanisms of selective attention. A
definition is given for example in [Corbetta 1990]: “Attention defines the mental
ability to select stimuli, responses, memories, or thoughts that are behaviorally
relevant among the many others that are behaviorally irrelevant”. Although the
term attention is also often used to refer to other psychological phenomena (e.g.,
the ability to remain alert for long periods of time), in this work, attention refers
exclusively to perceptual selectivity.

2.2.2 Covert versus Overt Attention. Usually, directing the focus of attention
to a region of interest is associated with eye movements (overt attention). However,
this is only half of the story. We are also able to attend to peripheral locations of
interest without moving our eyes, a phenomenon which is called covert attention.
This phenomenon was already described in the 19th century by von Helmholtz
[1896]: “I found myself able to choose in advance which part of the dark field off to
the side of the constantly fixated pinhole I wanted to perceive by indirect vision”
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(English translation from M. Mackeben in [Nakayama and Mackeben 1989]). This
mechanism should be well known to each of us when we detect peripheral motion
or suddenly spot our name in a list.

There is evidence that simple manipulation tasks can be performed without overt
attention [Johansson et al. 2001]. On the other hand, there are cases in which an eye
movement is not preceeded by covert attention: Findlay and Gilchrist [2001] found
that in tasks like reading and complex object search, saccades (quick, simultaneous
movements of both eyes in the same direction [Cassin and Solomon 1990]) were
made with such frequency that covert attention could not have scanned the scene
first. Even though, covert attention and saccadic eye movements usually work
together: the focus of attention is directed to a region of interest followed by a
saccade that fixates the region and enables the perception at a higher resolution.
That covert and overt attention are not independent was shown by Deubel and
Schneider [1996]: it is not possible to attend to one location while directing the
eyes to a different one.

2.2.3 The unit of attention. During the last decades, there has been a long
debate about the units of attention, that means about the target our attentional
focus is directed to. Do we attend to spatial locations, to features, or to objects?

The majority of studies, both from psychophysics and from neurobiology, is about
space-based attention (also referred to as location-based attention) [Posner 1980;
Eriksen and St. James 1986; Yantis et al. 2002; Bisley and Goldberg 2003]. However,
there is also strong evidence for feature-based attention [Treisman and Gelade 1980;
Giesbrecht et al. 2003; Liu et al. 2003] and for object-based attention [Duncan 1984;
Driver and Baylis 1998; Scholl 2001; Ben-Shahar et al. 2007; Einhäuser et al. 2008].
Today, most researchers believe that these theories are not mutually exclusive but
that visual attention can be deployed to each of these candidate units [Vecera and
Farah 1994; Fink et al. 1997; Yantis and Serences 2003]. A broad introduction and
overview over the different approaches and studies can be found in [Yantis 2000].

Finally, it is worth mentioning that there is often not only a single unit of at-
tention. Humans are able to attend simultaneously to multiple regions of interest,
usually between 4 and 5 regions. This has been shown in psychological [Pylyshyn
and Storm 1988; Pylyshyn 2003; Awh and Pashler 2000] as well as neurobiological
experiments [McMains and Somers 2004].

2.2.4 Bottom-up versus Top-down Attention. There are two major categories of
factors that drive attention: bottom-up factors and top-down factors [Desimone and
Duncan 1995]. Bottom-up factors are derived solely from the visual scene [Noth-
durft 2005]. Regions of interest that attract our attention in a bottom-up way are
called salient and the responsible feature for this reaction must be sufficiently dis-
criminative with respect to surrounding features. Beside bottom-up attention, this
attentional mechanism is also called exogenous, automatic, reflexive, or peripherally
cued [Egeth and Yantis 1997].

On the other hand, top-down attention is driven by cognitive factors such as
knowledge, expectations and current goals [Corbetta and Shulman 2002]. Other
terms for top-down attention are endogenous [Posner 1980], voluntary [Jonides
1981], or centrally cued attention. There are many intuitive examples of this pro-
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(a) Cueing experiment (b) Attentional capture

Fig. 2. (a) Cueing experiment: a cue (left) is presented for 200 ms. Then, human subjects have to
search for the cued shape in a search array (right) (Fig. reprinted with permission from [Vickery
et al. 2005] c© 2005 The Association for Research in Vision and Ophthalmology (ARVO)).
(b) Attentional capture: in both displays, human subjects had to search for the diamond. Al-
though they knew that color was unimportant in this search task, the red circle in the right display
slowed down the search about 65 ms (885 vs 950 ms) [Theeuwes 2004]. That means, the color
pop-out “captures” the attention independent of the task (Fig. adapted from [Theeuwes 2004]).

cess. Car drivers are more likely to see the petrol stations in a street and cyclists
notice cycle tracks. If you are looking for a yellow highlighter on your desk, yellow
regions will attract the gaze more readily than other regions.

Yarbus [1967] has already early shown that eye movements depend on the current
task: for the same scene (“an unexpected visitor” which shows a room with a
family and a person entering the room), subjects got different instructions such
as “estimate the material circumstances of the family”, “what are the ages of the
people”, or simply to freely examine the scene. Eye movements differed considerably
for each of these cases. Visual context, such as the gist (semantic category) or the
spatial layout of objects, also influence visual attention in a top-down manner.
For example, Chun and Jiang [1998] have shown that targets appearing in learned
configurations were detected more quickly.

In psychophysics, top-down influences are often investigated by so called cueing
experiments. In these experiments, a “cue” directs the attention to the target. Cues
may have different characteristics: they may indicate where the target will be, for
example by a central arrow that points into the direction of the target [Posner 1980;
Styles 1997], or what the target will be, for example the cue is a (similar or exact)
picture of the target or a word (or sentence) that describes the target (“search for
the black, vertical line”) [Vickery et al. 2005; Wolfe et al. 2004] (cf. Fig. 2 (a)).

The performance in detecting a target is typically better in trials in which the
target is present at the cued location than in trials in which the target appears at an
uncued location; this was called the Posner cueing paradigm [Posner 1980]. A cue
speeds up the search if it matches the target exactly and slows down the search if it
is invalid. Deviations from the exact match slow down search speed, although they
lead to faster speed compared with a neutral cue or a semantic cue [Vickery et al.
2005; Wolfe et al. 2004]. Recent physiological evidence from monkey experiments
support these findings: neurons give enhanced responses when a stimulus in their
receptive field matches a feature of the target [Bichot et al. 2005].

Evidence from neuro-physiological studies indicates that two independent but in-
teracting brain areas are associated with the two attentional mechanisms [Corbetta
and Shulman 2002]. During normal human perception, both mechanisms interact.
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As per Theeuwes [2004], the bottom-up influence is not voluntary suppressible: a
highly salient region “captures” the focus of attention regardless of the task. For
example, if there is an emergency bell, you will probably stop reading this article,
regardless of how engrossed in the text you were. This effect is called attentional
capture (cf. Fig. 2 (b)). Neural evidence from monkey experiments support these
findings: Ogawa and Komatsu [2004] show that even if monkeys searched for a
target of one dimension (shape or color), singletons (pop-out elements) from the
other dimension (color or shape) induced high activation in some neurons. However,
although attentional capture is definitely a strong effect which occurs frequently,
there is also evidence that in some cases the bottom-up effects can be overridden
completely [Bacon and Egeth 1994]. These difficulties are discussed in more detail
in [Connor et al. 2004]; a review of different studies on attentional capture can be
found in [Rauschenberger 2003].

Bottom-up attention mechanisms have been more thoroughly investigated than
top-down mechanisms. One reason is that data-driven stimuli are easier to control
than cognitive factors such as knowledge and expectations. Even less is known on
the interaction between the two processes.

2.2.5 Visual Search and Pop-out Effect. An important tool in research on visual
attention is visual search [Neisser 1967; Styles 1997; Wolfe 1998a]. The general
question of visual search is: given a target and a test image, is there an instance of
the target in the test image? We perform visual search all the time in every-day life.
For example, finding a friend in a crowd is such a visual search task. Tsotsos has
proven that the problem of unbounded visual search is so complex that it in practice
is unsolvable in acceptable time1 [Tsotsos 1987; 1990]. In contrast, bounded visual
search (the target is explicitly known in advance) can be performed in linear time.
Also, psychological experiments on visual search with known targets report that
the search time complexity is linear and not exponential, thus the computational
nature of the problem strongly suggests that attentional top-down influences play
an important role during the search.

In psychophysical experiments, the efficiency of visual search is measured by the
reaction time (also response time) (RT) that a subject needs to detect a target
among a certain number of distractors (the elements that differ from the target) or
by the search accuracy.

To measure the RT, a subject has to report a detail of the target or has to press
one button if the target was detected and another if it is not present in the scene.
The RT is represented as a function of set size (the number of elements in the
display). The search efficiency is determined by the slopes and the intercepts of
these RT × set size functions (cf. Fig. 3 (c)).

The searches vary in their efficiency: the smaller the slope of the function and the
lower the value on the y-axis, the more efficient the search. Two extremes hereby
are serial and parallel search. In serial search, the reaction time increases with the
number of distractors, whereas in parallel search, the slope is near zero, i.e., there is

1The problem is NP-complete, i.e., it belongs to the hardest problems in computer science. No
polynomial algorithm is known for this class of problems and they are expected to require expo-
nential time in the worst case [Garey and Johnson 1979].
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(a) Feature search (b) Conjunction search (c) The continuum of search slopes

Fig. 3. (a) Feature search: the target (red T) differs from the distractors (blue T’s) by a unique
visual feature (pop-out effect). (b) Conjunction search: the target (red T) differs from the distrac-
tors (red X’s and blue T’s) by a conjunction of features. (c) The reaction time (RT) of a visual
search task is a function of set size. The efficiency is measured by the intercept and slopes of the
functions (Fig. adapted from [Wolfe 1998a]).

no significant variation in reaction time if the number of distractors grows; here, a
target is found immediately without the need to perform several shifts of attention.
Experiments by Wolfe [1998b] indicate that the studies of visual search should not
be classified into the distinct groups “parallel” and “serial” since the increase in
reaction time is a continuum. He suggests instead to describe them as “efficient”
versus “inefficient”. This allows one to use expressions like “more efficient than”,
“quite efficient” or “very inefficient” (cf. Fig. 3 (c)).

The concept of efficient search has been discovered a long time ago. Already in
the 11th century, Ibn Al-Haytham (English translation: [Sabra 1989]) found that
“some of the particular properties of which the forms of visible objects are composed
appear at the moment when sight glances at the object, while others appear only
after scrutiny and contemplation”. This effect is nowadays referred to as pop-out
effect, according to the subjective impression that the target leaps out of the display
to grab attention (cf. Fig. 3 (a)). Scenes with pop-outs are sometimes also referred
to as odd-man-out scenes. Efficient search is often but not always accompanied by
pop-out [Wolfe 1994]. Usually, pop-out effects only occur when the distractors are
homogeneous, for example, the target is red and the distractors are green. Instead,
if the distractors are green and yellow, search is efficient but there is no pop-out
effect.

In conjunction search tasks (also conjunctive search), in which the target is de-
fined by several features, the search is usually less efficient (cf. Fig. 3 (b)). However,
the steepness of the slope depends on the experiment; there are also search tasks
in which conjunction search is quite efficient [Wolfe 1998a; 1998b].

While experimentally simple to perform, RT measures are not sufficient to answer
all questions concerning visual search. It documents only the completion of search
and not the search process itself. Thus, neither spatial information (where is the
subject looking during search and how many saccades are performed) nor temporal
information (how long is each part fixated) can be measured. According to Zelinsky
and Sheinberg [1997], measuring eye movements is more suitable to provide such
information.
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Another method to determine search efficiency is by measuring accuracy. A
search stimulus is presented only briefly and followed by a mask that terminates
the search. The time between the onset of the stimulus and that of the mask is
called stimulus onset asynchrony (SOA). The SOA is varied and accuracy is plotted
as a function of SOA [Wolfe 1998a]. Easy search tasks can be performed efficiently
even with short SOAs, whereas harder search tasks require longer SOAs. A single-
stage Signal Detection Theory (SDT) model can predict these accuracy results in
terms of the probability of correctly detecting the presence or absence of the target
[Verghese 2001; Cameron et al. 2004] (cf. sec. 2.3.3).

Finally, it is worth mentioning the eccentricity effect : the physical layout of
the retina, with high resolution in the center and low resolution in the periphery,
makes targets at peripheral locations more difficult to detect. Both reaction times
and errors increase with increasing distance from the center [Carrasco et al. 1995].

There has been a multitude of experiments on visual search and many settings
have been designed to discover which features enable efficient search and which
do not. Some interesting examples are the search for numbers among letters, for
mirrored letters among normal ones, for the silhouette of a “dead” elephant (legs
to the top) among normal elephants [Wolfe 2001a], and for the face of another race
among faces of the same race as the test subject [Levin 1996].

One purpose of these experiments is to study the basic features (also primitive
features or attributes) of human perception, that means the features which are early
and pre-attentively processed in the human brain and guide visual search. Testing
the efficiency of visual search helps to investigate this since efficient search is said
to take place if the target is defined by a single basic feature and the distractors
are homogeneous [Treisman and Gormican 1988]. Thus, finding out that a red blob
pops out among green ones indicates that color is a basic feature. Opinions on what
are basic features are still controversial. Some features are doubtless basic, others
are guessed to be basic but there is limited data or dissenting opinions. A listing of
the current opinion is presented by Wolfe and Horowitz [2004]. According to them,
undoubted basic features are color, motion, orientation and size (including length
and spatial frequency). The role of luminance (intensity) is still unclear. In some
studies luminance behaves like colors, whereas in others it acts more independently
[Wolfe 1998a]. Probable basic features are luminance onset (flicker), luminance
polarity, Vernier offset (a small lateral break in a line), stereoscopic depth and
tilt, pictorial depth cues, shape, line termination, closure, topological status and
curvature. Features which are possibly basic, but have even less confidence, are
lighting direction (shading), glossiness (luster), expansion, number and aspect ra-
tio. Features which are unconvincing but still possible are novelty, letter identity,
and alphanumeric category. Finally, features which are probably not basic are in-
tersection, optic flow, color change, three-dimensional volumes, faces, your name
and semantic categories as “animal” or “scary”. While this listing does not claim
to be exhaustive, it gives a good overview about the current state of research.

An interesting effect in visual search tasks are search asymmetries, that means
the effect that a search for stimulus ’A’ among distractors ’B’ produces different
results from a search for ’B’ among ’A’s. An example is that finding a tilted line
among vertical distractors is easier than vice versa (cf. Fig. 4). An explanation is
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(a) (b)

Fig. 4. Search asymmetries: it is easier to detect a tilted line among vertical distractors (a) than
vice versa (b)

proposed by Treisman and Gormican [1988]: the authors claim that it is easier to
find deviations among canonical stimuli than vice versa. Given that vertical is a
canonical stimulus, the tilted line is a deviation and may be detected fast. There-
fore, by investigating search asymmetries it is possible to determine the canonical
stimuli of visual processing which might be identical to feature detectors. For ex-
ample, Treisman suggests that for color the canonical stimuli are red, green, blue,
and yellow; for orientation, they are vertical, horizontal, and left and right diagonal,
and for luminance there exist separate detectors for darker and lighter contrasts
[Treisman 1993]. Especially when building a computational model of visual atten-
tion this is of significant interest: if it is clear what feature detectors exist in the
human brain, it might be adequate to focus on the computation of these features.
However, one should be careful to accept evidence about search asymmetries. Find-
ings by Rosenholtz [2001] indicate that the asymmetries in many of the studies are
due to built-in design asymmetries instead of to an underlying asymmetry in the
search mechanism. A comprehensive overview about search asymmetries is pro-
vided by Wolfe [2001a], more papers can be found in the same issue of Perception
& Psychophysics, 63 (3), 2001.

2.2.6 Neurobiological Correlates of Visual Attention. The mechanisms of selec-
tive attention in the human brain still belong to the open problems in the field of
research on perception. Perhaps the most prominent outcome of neuro-physiological
findings on visual attention is that there is no single brain area guiding the atten-
tion, but neural correlates of visual selection appear to be reflected in nearly all
brain areas associated with visual processing [Maunsell 1995]. Additionally, new
findings indicate that many brain areas share the processing of information from
different senses and there is growing evidence that large parts of the cortex are
multisensory [Ghazanfar and Schroeder 2006].

Attentional mechanisms are carried out by a network of anatomical areas [Cor-
betta and Shulman 2002]. Important areas of this network are the posterior parietal
cortex (PP), the superior colliculus (SC), the Lateral IntraParietal area (LIP), the
Frontal Eye Field (FEF) and the pulvinar. Regarding the question which area
fulfills which task, the opinions diverge. We review several findings here.

Posner and Petersen [1990] describe three major functions concerning attention:
first, orienting of attention, second, target detection, and third, alertness. They
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claim that the first function, the orienting of attention to a salient stimulus, is
carried out by the interaction of three areas: the PP, the SC, and the pulvinar.
The PP is responsible for disengaging the focus of attention from its present loca-
tion (inhibition of return), the SC shifts the attention to a new location, and the
pulvinar is specialized in reading out the data from the indexed location. Posner
and Petersen call this combination of systems the posterior attention system. The
second attentional function, the detection of a target, is carried out by what the
authors call the anterior attention system. They claim that the anterior cingulate
gyrus in the frontal part of the brain is involved in this task. Finally, they state that
the alertness to high priority signals is dependent on activity in the norepinephrine
system (NE) arising in the locus coeruleus.

Brain areas involved in guiding eye movements are the FEF and the SC. Fur-
thermore, Bichot [2001] claims that the FEF is the place where a kind of saliency
map is located which derives information from bottom-up as well as from top-down
influences. Other groups locate the saliency map at different areas, e.g., at LIP
[Gottlieb et al. 1998], at SC [Findlay and Walker 1999], at V1 [Li 2005], or at V4
[Mazer and Gallant 2003].

There has been evidence that the source of top-down biasing signals may derive
from a network of areas in parietal and frontal cortex. According to Kastner and
Ungerleider [2001], these areas include the superior parietal lobule (SPL), the FEF
and the supplementary eye field (SEF), and, less consistently, areas in the inferior
parietal lobule (IPL), the lateral prefrontal cortex in the region of the middle frontal
gyrus (MFG), and the anterior cingulate cortex. Corbetta and Shulman [2002] find
transient responses to a cue in the occipital lobe (fusiform and MT+) and more
sustained responses in the dorsal posterior parietal cortex along the intraparietal
sulcus (IPs) and in the frontal cortex at or near the putative human homologue of
the FEFs. According to Ogawa and Komatsu [2004], the interaction of bottom-up
and top-down cues takes place in V4.

To sum up, at the current time it is known that there is not a single brain area
that controls attention but a network of areas. Several areas have been verified to
be involved in attentional processes but the accurate task and behavior of each area
as well as the interplay among them still remain open questions.

2.3 Psychophysical Theories and Models of Attention

In the field of psychology, there exists a wide variety of theories and models on visual
attention. Their objective is to explain and better understand human perception.
Here, we introduce the theories and models which have been most influential for
computational attention systems. More on psychological attention models can be
found in the review of Bundesen and Habekost [2005].

2.3.1 Feature Integration Theory. The Feature Integration Theory (FIT) of
Treisman has been one of the most influential theories in the field of visual at-
tention. The theory was first introduced in 1980 [Treisman and Gelade] but it was
steadily modified and adapted to current research findings. One has to be careful
when referring to FIT, since some of the older findings concerning a dichotomy
between serial and parallel search are no longer believed to be valid (cf. sec. 2.2.5).
An overview of the theory is found in [Treisman 1993].
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Fig. 5. Model of the Feature Integration Theory (FIT) (Fig. reprinted with permission from
[Treisman and Gormican 1988] c© 1988 American Psychological Association (APA)).

The theory claims that “different features are registered early, automatically and
in parallel across the visual field, while objects are identified separately and only
at a later stage, which requires focused attention” [Treisman and Gelade 1980].
Information from the resulting feature maps — topographical maps that highlight
conspicuities according to the respective feature — is collected in a master map
of location. This map specifies where in the display things are, but not what they
are. Scanning serially through this map focuses the attention on the selected scene
regions and provides this data for higher perception tasks (cf. Fig. 5).

Treisman mentions that the search for a target is easier the more features dif-
ferentiate the target from the distractors. If the target has no unique features but
differs from the distractors only in how its features are combined, the search is more
difficult and often requires focused attention (conjunctive search). This usually re-
sults in longer search times. However, if the features of the target are known in
advance, conjunction search can sometimes be accomplished rapidly. She proposes
that this is done by inhibiting the feature maps which code non-target features.

Additionally, Treisman introduced so called object files as “temporary episodic
representations of objects”. An object file “collects the sensory information that has
so far been received about the object. This information can be matched to stored
descriptions to identify or classify the object” [Kahneman and Treisman 1992].

2.3.2 Guided Search Model. Beside FIT, the Guided Search Model of Wolfe
is among the most influential work for computational visual attention systems.
Originally, the model was created as an answer to some criticism on early versions
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Fig. 6. The Guided Search model of Wolfe (Fig. reprinted with permission from [Wolfe 1994]
c©1994 Psychonomic Society).

of the FIT. During the years, a competition arose between Treisman’s and Wolfe’s
work, resulting in continuously improved versions of the models.

The basic goal of the model is to explain and predict the results of visual search
experiments. There has been also a computer simulation of the model [Cave and
Wolfe 1990; Wolfe 1994]. As Treisman’s work, the model has been continuously
developed further over the years. Mimicking the convention of numbered software
upgrades, Wolfe has denoted successive versions of his model as Guided Search 1.0
[Wolfe et al. 1989], Guided Search 2.0 [Wolfe 1994], Guided Search 3.0 [Wolfe and
Gancarz 1996], and Guided Search 4.0 [Wolfe 2001b; 2007]. Here, we focus on
Guided Search 2.0 since this is the best elaborated description of the model. Ver-
sions 3.0 and 4.0 contain changes which are of minor importance here, for example,
in 3.0 eye movements are included into the model and in 4.0 the implementation of
memory for previously visited items and locations is improved.

The architecture of the model is depicted in Figure 6. It shares many con-
cepts with the FIT, but is more detailed in several aspects which are necessary for
computer implementations. An interesting point is that in addition to bottom-up
saliency, the model also considers the influence of top-down information by selecting
the feature type which distinguishes the target best from its distractors.

2.3.3 Other theories and models. Beside these approaches, there is a wide vari-
ety of psychophysical models on visual attention. Eriksen and St. James [1986] have
introduced the zoom lens model. In this model, the spatial extent of the attentional
focus can be manipulated by precueing. In this model, the scene is investigated
by a spotlight with varying size. Many attention models fall into the category of
connectionist models, that means models based on neural networks. They are com-
posed of a large number of processing units connected by inhibitory or excitatory
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links. Examples are the dynamic routing circuit [Olshausen et al. 1993], and the
models MORSEL [Mozer 1987], SLAM (SeLective Attention Model) [Phaf et al.
1990], SERR (SEarch via Recursive Rejection) [Humphreys and Müller 1993], and
SAIM (Selective Attention for Identification Model) [Heinke and Humphreys 2003].

A formal mathematical model is presented by Logan [1996]: the CODE Theory
of Visual Attention (CTVA). It integrates the COntour DEtector (CODE) theory
for perceptual grouping [van Oeffelen and Vos 1982] with the Theory of Visual
Attention (TVA) [Bundesen 1990]. The theory is based on a race model of selection.
In these models, a scene is processed in parallel and the element that first finishes
processing is selected (the winner of the race). That means, a target is processed
faster than the distractors in a scene. Newer work concerning CTVA can be found
in [Bundesen 1998].

Another type of psychological models is based on the signal detection theory
(SDT), a method to measure the search accuracy by quantifying the ability to
distinguish between signal and noise [Green and Swets 1966; Abdi 2007]. The
distractors in a search task are considered to be noise and the target is signal plus
noise. In a SDT experiment, one or several search displays are presented briefly and
masked afterwards. In yes/no designs, one display is presented and the observer
has to decide whether the target was present or not; in an M-AFC (alternative
forced-choice) design, M displays are shown and the observer has to identify the
display containing the target. The order of presentation is varied randomly in
different trials. Performance is measured by determining how well the target can
be distinguished from the distractors and the SDT model is used to calculate the
performance degradation with increasing set size. SDT models which have been
used to predict human performance for detection and localization of targets have
been presented in [Palmer et al. 1993; Verghese 2001; Eckstein et al. 2000].

An interesting theoretical model has been introduced by Rensink [2000]. His
triadic architecture consists of three parts: first, a low-level vision system produces
proto-objects rapidly and in parallel. Second, a limited-capacity attentional system
forms these structures into stable object representations. Finally, a non-attentional
system provides setting information, for example, on the gist — the abstract mean-
ing of a scene, e.g., beach scene, city scene, etc. — and on the layout — the spatial
arrangement of the objects in a scene. This information influences the attentional
system, for example, by restricting the search for a person on the sand region of a
beach scene and ignoring the sky region.

3. COMPUTATIONAL ATTENTION SYSTEMS

In computer vision and robotics, there is increasing interest in a selection mechanism
which determines the most relevant parts within the large amount of visual data.
Visual attention is such a selection mechanism and therefore, many computational
attention systems have been built during the last three decades (mainly during
the last 5-10 years). The systems which are considered here have in common that
they built on the psychological and neurobiological concepts and theories which
have been presented in the previous section. In contrast to the models described
in sec. 2.3, we focus here on computational systems with an engineering objective.
The objective of these systems is less in understanding human perception but more
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Fig. 7. General structure of most bottom-up attention systems.

in improving existing vision systems. Usually, they are able to cope not only with
synthetical images but also with natural scenes. The systems vary in detail, but
most of them have a similar structure.

We start with a description of the general structure of typical computational
attention systems (sec. 3.1). Then, we continue with a more detailed investigation
of the characteristics of different approaches. Connectionist versus filter models
are distinguished (sec. 3.2), the choice of different feature channels is discussed
(sec. 3.3), and the integration of top-down cues is introduced (sec. 3.4). Finally,
we provide a chronological overview of important computational attention systems
(sec. 3.5).

3.1 General structure

Most computational attention systems have a very similar structure which is de-
picted in Figure 7. This structure is originally adapted from psychological theories
like the feature integration theory [Treisman and Gormican 1988] and the Guided
Search model [Wolfe 1994]. The main idea is to compute several features in parallel
and to fuse their saliencies in a representation which is usually called saliency map.
Detailed information on how to implement such a system is presented for example
in [Itti et al. 1998] or [Frintrop 2005]. The necessary background knowledge on
computer vision methods is summed up in the appendix of [Frintrop 2005]. An
overview of the techniques follows.

In filter-based models (cf. Sec. 3.2), usually the first step is to compute one
or several image pyramids from the input image, to enable the computation of
features on different scales [Itti et al. 1998]. This saves computation time since it
avoids explicitly applying large filters to the image. The following computations are
performed on several of the layers of the pyramid, usually ignoring the first, finest
layers to reduce the influence of noise. An alternative approach is to use integral
images for a fast computation of features on different scales [Frintrop et al. 2007].

An interesting approach is to exchange this standard uniform sampling scheme
with a more biologically plausible space-variant sampling, according to the space-
variant arrangement of photoreceptors in the retina. However, Vincent et al. [2007]
have found that this causes feature coding unreliability and that there is “only a
very weak relation between target eccentricity and discrimination performance”.
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Interesting in this context would be a replacement of the normal camera with a
retina-like sensor to achieve space-variant sampling [Sandini and Metta 2002].

Next, several features are computed in parallel, and feature-dependent saliencies
are computed for each feature channel. The information for different features is
collected in maps. These might be represented as gray-scale images, in which the
brightness of a pixel is proportional to its saliency (cf. Fig. 8), or as collections of
nodes of an artificial neural network.

Commonly used features are intensity, color, and orientation; a detailed investi-
gation of the choice of features is presented in sec. 3.3. Usually, the computation
of these feature dimensions is subdivided into the computation of several feature
types, for example, for the feature dimension color the feature types red, green, blue,
and yellow may be computed. The feature types are usually displayed in feature
maps and summed up to feature dependent saliency maps which are often called
conspicuity maps, a term first used by Milanese [1993]. The conspicuity maps are
finally fused to a single saliency map [Koch and Ullman 1985], a term that is widely
used and corresponds to Treisman’s master map of location.

The feature maps collect the local within-map contrast. This is usually computed
by center-surround mechanisms, also called center-surround differences [Marr 1982].
This operation compares the average value of a center region to the average value of
a surrounding region, inspired from the ganglion cells in the visual receptive fields
of the human visual system [Palmer 1999]. In most implementations, the feature
detectors are based on rectangular regions, which makes them less accurate than a
circular filter but much easier to implement and faster to compute.

A very important aspect of attentional systems, maybe even the most important
one, is the way different maps are fused, i.e., how the between-map interaction
takes place. How is it accomplished that the important information is not lost in
the large collection of maps? How is it achieved that the red ball on green grass
pops out, although this saliency only shows up strongly in one of the maps, namely
the red-green map? It is not yet completely clear how this task is solved in the
brain nor is an optimal solution known how to solve this problem in a computational
system. Usually, a weighting function, we call it uniqueness weight [Frintrop 2005],
is applied to each map before summing up the maps. This weighting function
determines the uniqueness of features: if there is only a single bright region in a
map, its uniqueness weight is high, if there are several equally bright regions, it
is lower. One simple solution to compute this is to determine the number of local
maxima m in each map and divide each pixel by the square root of m [Frintrop
2005]. Other solutions are presented for example in [Itti et al. 1998; Itti and Koch
2001b; Harel et al. 2007]. An evaluation of different weighting approaches has,
to our knowledge, not yet been done. However, even if it is not clear what the
optimal weighting looks like, all these approaches are able to reproduce the human
pop-out effect and detect outliers in images from psychophysical experiments such
as the one in Figure 3(a). An example of applying such a weighting function to
real-world images is shown in Figure 8. Note, that this weighting by uniqueness
covers only the bottom-up aspect of visual attention. In human visual attention
almost always top-down effects participate and guide our attention according to
the current situation. These effects will be discussed in sec. 3.4.
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Before the weighted maps are summed up, they are usually normalized. This is
done to weed out the differences between a priori not comparable modalities with
different extraction mechanisms. Additionally, it prevents the higher weighting of
channels that have more feature maps than others. Most straightforward is to
normalize all maps to a fixed range [Itti et al. 1998]. This results in problems if one
channel is more important than another since information about the magnitude of
the maps is removed. A method which keeps this information is to determine the
maximum M of all maps which shall be summed up and normalize each map to
the range [0..M ] [Frintrop et al. 2005]. An alternative that scales each conspicuity
map with respect to a long-term estimate of its maximum is presented in [Ouerhani
et al. 2006].

After weighing and normalizing, the maps are summed up to the saliency map.
This saliency map might already be regarded as an output of the system since it
shows the saliency for each region of a scene. But usually, the output of the system
is a trajectory of image regions – mimicking human saccades – which starts with the
highest saliency value. The selected image regions are local maxima in the saliency
map. They might be determined by a winner-take-all (WTA) network which was
introduced by Koch and Ullman [1985]. It shows how the selection of a maximum is
implementable by neural networks, that means by single units which are only locally
connected. This approach is strongly biologically motivated and shows how such a
mechanism might work in the human brain. A simpler, more technically motivated
alternative to the WTA with the same result is to straightforwardly determine the
pixel with the largest intensity value in the image. This method requires fewer
operations to compute the most salient region, but note that the WTA might be a
good solution if implemented on a parallel architecture like a GPU.

Since the focus of attention (FOA) is usually not on a single point but on a
region (we call it MSR (most salient region)), the next step is to determine this
region. The simplest approach is to determine a fixed-sized circular region around
the most salient point [Itti et al. 1998]. More sophisticated approaches integrate
segmentation approaches on feature [Walther 2006] or saliency maps [Frintrop 2005]
to determine a irregularly shaped attention region.

After the FOA has been computed, some systems determine a feature vector
which describes how much each feature contributes to the region. Usually, also the
local or global surrounding of the region is considered [Navalpakkam et al. 2005;
Frintrop et al. 2005]. The vector can be used to match the region to previously
seen regions, e.g., to search for similar regions in a top-down guided visual search
task [Frintrop et al. 2005] or to track a region over subsequent frames [Frintrop and
Kessel 2009]. Such a feature vector resembles the psychological concept of object
files as temporary episodic representations of objects, which were introduced by
Treisman (cf. sec. 2.3.1).

To obtain a trajectory of image regions which mimics a human search trajec-
tory, most common is a method called inhibition of return (IOR). It refers to the
observation that in human vision, the speed and accuracy with which a target is
detected is impaired after the target was attended. It was first described by Pos-
ner and Cohen [1984] and prevents that the FOA stays at the most salient region.
In computational systems, IOR is implemented by inhibiting (reseting) the sur-
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Fig. 8. Feature, conspicuity and saliency map(s) for an example image computed with the attention
system VOCUS [Frintrop 2005]. 1st row: intensity maps (on-off and off-on). 2nd row: color maps
(green, blue, red, yellow). 3rd row: orientation maps (0◦, 45◦, 90◦, 135◦). The feature map ’red’
is weighted highest since the red fire extinguisher is unique in the scene. This results in a strong
peak in the conspicuity color map and finally in a strong saliency in the saliency map.

rounding region in the saliency map. The surrounding region can be a fixed region
around the FOA (spatial inhibition) or the MSR (feature-based inhibition), or a
combination as in [Aziz and Mertsching 2007]. Interesting in this context is that
Horowitz and Wolfe [2003] discovered that human visual search has no complete
memory, i.e., not all items in a search display are marked after they have been
considered. That means, IOR works probably only for a few items at a time. A
possible implementation inhibits each distractor for a short time, dependent on a
probabilistic value. In [Wolfe 2007], this results on average in about three inhibited
items at a time. An alternative which is simple to implement and obtains good
results is to determine all peaks in the saliency map, sort them by their saliency
values, and direct the FOA attention subsequently to each salient region [Frintrop
and Cremers 2007]. IOR is not necessary in this approach. We found that this
method yielded better results than the IOR method since it avoids “border effects”
in which the FOA returns to the border of the inhibited region. More difficult is
IOR in dynamic scenes since not only the currently focused region must be tracked
over time but also every inhibited region [Backer et al. 2001].

The structure described so far was purely bottom-up. Including prior knowledge
and target information to the system in a top-down manner is described in sec. 3.4.

3.2 Connectionist versus Filter Models

A basic difference between models concerns the underlying structure which is ei-
ther based on neural networks (connectionist models) or on a collection of gray-scale
maps (filter models). Usually, the connectionist models claim to be more biolog-
ically plausible than the filter models since they have single units corresponding
to neurons in the human brain, but it has to be noted that they are still a high
abstraction from the processes in the brain. Examples of connectionist systems of
visual attention are presented for instance in [Olshausen et al. 1993; Postma 1994;
Tsotsos et al. 1995; Baluja and Pomerleau 1997; Cave 1999]. Many psychophysi-
cal models fall into this category, too, for example [Mozer 1987; Phaf et al. 1990;

ACM Journal Name, Vol. 7, No. 1, 1 2010.



20 · Simone Frintrop et al.

Humphreys and Müller 1993; Heinke and Humphreys 2003]. An advantage of con-
nectionist models is that they are — at least theoretically — able to show a different
behavior for each neuron whereas in filter models usually each pixel in a map is
treated equally. In practice, treating each unit differently is usually too costly and
so a group of units shows the same behavior.

Advantages of filter models are that they can profit from approved techniques in
computer vision and that they are especially well suited for the application to real-
world images. Examples of linear filter systems of visual attention are presented
for instance in [Milanese 1993; Itti et al. 1998; Backer et al. 2001; Sun and Fisher
2003; Heidemann et al. 2004; Hamker 2005; Frintrop 2005].

3.3 The Choice of Features

Many computational attention systems focus on the computation of mainly three
features: intensity, color, and orientation [Itti et al. 1998; Draper and Lionelle 2005;
Sun and Fisher 2003; Ramström and Christensen 2004]. Reasons for this choice
are that these features belong to the basic features proposed in psychological and
biological work [Treisman 1993; Palmer 1999; Wolfe 1994; Wolfe and Horowitz 2004]
and that they are relatively easy to compute. A special case of color computation is
the separate computation of skin color [Rae 2000; Heidemann et al. 2004; Lee et al.
2003]. This is often useful if faces or hand gestures have to be detected. Other
features that are considered are for example curvature [Milanese 1993], spatial
resolution [Hamker 2005], optical flow [Tsotsos et al. 1995; Vijayakumar et al. 2001],
flicker [Itti et al. 2003], or corners [Fraundorfer and Bischof 2003; Heidemann et al.
2004; Ouerhani et al. 2005]. Several systems compute also more complex features
that use approved techniques of computer vision to extract image information.
Examples for such features are entropy [Kadir and Brady 2001; Heidemann et al.
2004], Shannon’s self-information measure [Bruce and Tsotsos 2005b], ellipses [Lee
et al. 2003], eccentricity [Backer et al. 2001], or symmetry [Backer et al. 2001;
Heidemann et al. 2004; Lee et al. 2003].

A very important feature in human perception is motion. Some systems that
consider motion as a feature are presented in [Maki et al. 2000; Ouerhani 2003;
Itti et al. 2003; Rae 2000]. These approaches implement a simple kind of motion
detection: usually, two subsequent images in a video stream are subtracted and
the difference codes the feature conspicuity. Note that these approaches require a
static camera and are not applicable on a mobile system as a robot. A sophisticated
approach concerning motion was proposed by Tsotsos et al. [2005]. This approach
considers the direction of movements, and processes motion on several levels similar
to the processing in the brain regions V1, MT, and MST. In the above approaches,
motion and static features are combined in a competitive scheme: they all con-
tribute to a saliency map and the strongest cue wins. Bur et al. [2007] propose
instead a motion priority scheme in which motion is prioritized by suppressing the
static features in presence of motion.

Another important but rarely considered aspect in human perception is depth.
From the psychological literature it is not clear whether depth is simply a feature
or something else; definitely, it has some unusual properties distinguishing it from
other features: if one of the dimensions in a conjunctive search is depth, a second
feature can be searched in parallel [Nakayama and Silverman 1986], a property that

ACM Journal Name, Vol. 7, No. 1, 1 2010.



Computational Visual Attention Systems and their Cognitive Foundations: A Survey · 21

does not exist for the other features. Computing depth for an attention system
is usually solved with stereo vision [Maki et al. 2000; Bruce and Tsotsos 2005a;
Björkman and Eklundh 2007]. Another approach is to use special sensors to obtain
depth data, for example 3D laser scanners, which provide dense and precise depth
information and may provide additionally reflection data [Frintrop et al. 2005], or
3D cameras [Ouerhani and Hügli 2000].

Finally, it may be noted that although considering more features usually results
in more accurate and biologically plausible detection results, it also reduces the
processing speed since the parallel models are usually implemented sequentially.
Therefore, a trade-off has to be found between accuracy and speed. Using three to
four feature channels seems to be a useful compromise for most systems.

3.4 Top-down Cues

As outlined in section 2.2.4, top-down cues play an important role in human percep-
tion. For a computational attention system, they are equally important: most sys-
tems shall not only detect bottom-up salient regions but there are goals to achieve
and targets to detect. Despite the well-known significance of top-down cues, most
systems consider only bottom-up computations.

In human perception, there exist different kinds of top-down influences. They
have in common that they represent information on the world or the state of the
subject (or system). This includes aspects like current tasks and prior knowledge
about the target, the scene or the objects that might occur in the environment, but
also emotions, desires, and motivations. In the following, we discuss these different
kinds of top-down information.

Emotions, desires, and motivations are hard to conceptualize and are not realized
in any computer system we know about. Wells and Matthews [1994] provide a re-
view from a psychological perspective about attention and emotion; Fragopanagos
and Taylor [2006] present a neuro-biological model about the interplay of attention
and emotions in the human brain. The interaction of attention, emotions, motiva-
tions, and goals is discussed by Balkenius [2000], but in his computer simulation
these aspects are not considered.

Top-down information that refers to knowledge of the outer world, that means
of the background scene or of the objects that might occur, is considered in several
systems. In these approaches, for example, all objects of a database that might
occur in a scene are investigated in advance and their most discriminative regions
are determined, i.e., the regions that distinguish an object best from all others in
the database [Fritz et al. 2004; Pessoa and Exel 1999]. Another approach is to
regard context information, that means searching for a person in a street scene is
restricted to the street region; the sky region is ignored. The contextual information
is obtained from past search experiences in similar environments [Oliva et al. 2003;
Torralba 2003b]. Another kind of context which can be integrated into attention
models is the gist, i.e., the semantic category of the scene such as “office scene” or
“forest” [Oliva 2005]. The gist is known to guide eye movements [Torralba 2003a]
and is usually computed as a vector of contextual features. In visual attention
systems, the gist may be computed directly from the feature channels [Siagian and
Itti 2009].
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One important kind of top-down information is the prior knowledge about a
target that is used to perform visual search. Systems regarding this kind of top-
down information use knowledge of the target to influence the computation of the
most salient region. This knowledge is usually learned in a preceding training phase
but might in simpler approaches also be provided manually by the user.

In existing systems, the target information influences the processing at different
stages: the simplest solution computes the bottom-up saliency map and investigates
the target similarity of the most salient regions [Rao et al. 2002; Lee et al. 2003].
Only the most salient targets in a scene can be found with this approach. More elab-
orated is the tuning of the conspicuity maps [Milanese et al. 1994; Hamker 2005],
but biologically most plausible and also most useful from an engineering perspective
is the approach to already bias the feature types [Tsotsos et al. 1995; Frintrop et al.
2005; Navalpakkam and Itti 2006a]. This is supported by findings of Navalpakkam
and Itti [2006b]: not only the information about the feature dimensions influence
top-down search but also information about feature types.

Different methods exist for influencing the maps with the target information.
Some approaches inhibit the target-irrelevant regions [Tsotsos et al. 1995; Choi
et al. 2004], whereas others prefer to excite target-relevant regions [Hamker 2005].
Newer findings suggest that inhibition and excitation both play an important rule
[Navalpakkam et al. 2004]; this is realized in [Navalpakkam et al. 2005] and [Frintrop
et al. 2005]. Navalpakkam and Itti [2006a] present an interesting approach in which
not only knowledge about a target but also about distractors influences the search.
Vincent et al. [2007] learn the optimal feature map weights with multiple linear
regression.

If human behavior shall be imitated, the bottom-up and the top-down saliency
have to be fused to obtain a single focus of attention. Note however that in a
computational system, it is also possible to deal with both maps in parallel and use
the bottom-up and the top-down information for different purposes. The decision
whether to fuse the maps or not has to be done depending on the application. If the
maps shall be fused, one difficulty is how to combine the weighting for uniqueness
(bottom-up) and the weighting for target-relevance (top-down). One possibility is
to multiply the bottom-up maps with the top-down feature weights after applying
the uniqueness weight [Hamker 2005; Navalpakkam et al. 2005]. A problem with
this approach is that it is difficult to find non-salient objects, since the bottom-up
computations assign a very low saliency to the target region. One approach to
overcome this problem is to separate bottom-up and top-down computations and
to finally fuse them again as done by Frintrop et al. [2005]. Here, the contribution
of bottom-up and top-down cues is adjusted by a parameter t which has to be
set according to the system state: in exploration mode there is a high bottom-up
contribution, in search mode the parameter shall be set proportionally to the search
priority. Rasolzadeh et al. [2009] have adopted this idea and present an extension
in which t can vary over time depending on the energy of bottom-up and top-down
saliency maps. Xu et al. [2009] propose an approach that switches automatically
between bottom-up and top-down behavior depending on the two internal robot
states ’observing’ and ’operating’.

The evaluation of top-down attention systems will be discussed in sec. 3.6.
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Fig. 9. The Koch-Ullman model. Different features are computed in parallel and their conspicuities
are represented in several feature maps. A central saliency map combines the saliencies of the
features and a winner take all network (WTA) determines the most salient location. This region
is routed to the central representation where complex processing takes place (Fig. reprinted with
permission from [Koch and Ullman 1985] c© Springer Science and Business Media).

3.5 Important Attention Systems in Chronological Order

In this section, we will present some of the most important attention systems in a
chronological order and mention their particularities.

The first computational architecture of visual attention was introduced by Koch
and Ullman [1985] which was inspired by the Feature Integration Theory. When
it was first published, the model was not yet implemented, but it provided the
algorithmic reasoning serving as a foundation for later implementations and for
many current computational attention systems. An important contribution of their
work is the WTA network (see Fig. 9).

One of the first implementations of an attention system was presented by Clark
and Ferrier [1988]. Based on the Koch-Ullman model, it contains feature maps
which are weighted and summed up to a saliency map. The feature computations
are performed by filter operations, realized by a special purpose image processing
system, so the system belongs to the class of filter-based models.

Another early filter-based attention model was introduced by Milanese [1993].
In a derivative, Milanese et al. [1994] include top-down information from an ob-
ject recognition system realized by distributed associative memories (DAMs). By
first introducing concepts like conspicuity maps and feature computations based
on center-surround mechanisms (called “conspicuity operator”), the system has
set benchmarks for several techniques which are used in computational attention
models until today.

One of the oldest attention models which is widely known and still developed
further is Tsotsos’ selective tuning (ST) model of visual attention [Tsotsos 1990;
1993; Tsotsos et al. 1995]. It is a connectionist model which consists of a pyramidal
architecture with an inhibitory beam (see Fig. 10). It is also possible to consider
target-specific top-down cues by either inhibiting all regions with features different
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Fig. 10. The inhibitory attentional beam of Tsotsos et al. The selection process requires two
traversals of the pyramid: first, the input traverses the pyramid in a feedforward manner (pass
zone). Second, the hierarchy of WTA processes is activated in a top-down manner to localize the
strongest item in each layer while pruning parts of the pyramid that do not contribute to the most
salient item (inhibit zone) (Fig. kindly provided by John Tsotsos).

from the target features or regions of a specified location. The model has been
implemented for several features, for example luminance, orientation, or color op-
ponency [Tsotsos et al. 1995], motion [Tsotsos et al. 2005], and depth from stereo
vision [Bruce and Tsotsos 2005a]. Originally, each version of the ST model pro-
cessed only one feature dimension, but recently, it was extended to perform feature
binding [Rothenstein and Tsotsos 2006b; Tsotsos et al. 2008].

An unusual adaptation of Tsotsos’s model is provided by Ramström and Chris-
tensen [2002]: the distributed control of the attention system is performed by game
theory concepts. The nodes of the pyramid are subject to trading on a market, the
features are the goods, rare goods are expensive (the features are salient), and the
outcome of the trading represents the saliency.

One of the currently best known attention systems is the Neuromorphic Vision
Toolkit (NVT) (Fig. 11), a derivative of the Koch-Ullman model, that is steadily
kept up to date by the group around Itti [Itti et al. 1998; Itti and Koch 2001a;
Navalpakkam and Itti 2006a]. Their model as well as their implementation serve as
a basis for many research groups; one reason for this is the good documentation and
the online availability of the source code2. Itti et al. introduce image pyramids for
the feature computations, which enables an efficient processing of real-world images.
In its original version, the system concentrates on computing bottom-up attention.
In newer work, Navalpakkam and Itti [2006a] introduce a derivative of the NVT
which is able to deal with top-down cues to enable visual search. Interesting to
mention is also that Itti and Baldi [2009] recently introduced a Bayesian model of
surprise which aims to predict eye movements. For tasks like watching video games,
they found better correspondences to eye movements for the surprise model than
for their saliency model.

2http://ilab.usc.edu/
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Fig. 11. Model of the Neuromorphic Vision Toolkit (NVT) by Itti et al. For each input image,
image pyramids are computed to enable processing on different scales. Several feature channels
investigate feature-dependent conspicuity independently. These are fused to a saliency map and
a winner take all network determines the most salient location in this map (Fig. reprinted with
permission from http://ilab.usc.edu/).

Since the NVT belongs to the best known and most distributed systems that
exist, many groups tested it and suggested several improvements. For example,
Draper and Lionelle [2005] came along with the system SAFE (selective attention
as a front end) which shows several differences: e.g., it does not combine the feature
maps across scales but keeps them, resulting in a pyramid of saliency maps. They
show that this approach is more stable with respect to geometric transformations
like translations, rotations, and reflections. Additionally, Frintrop [2005] suggested
to separate the intensity feature computations into on-off and off-on computations
instead of combining them in a single map and showed that certain pop-out effects
are only detected by this separation. The same applies to the separation of red and
green as well and blue and yellow.

The attention system of Hamker lays special emphasis on closely mimicking the
neural processes in the human visual cortex [Hamker 2005; 2006]. In addition to
bottom-up saliency which is similar to Itti’s NVT, the system belongs to the few
systems considering top-down influences. It is able to learn a target, that means it
remembers the feature values of a presented stimulus. An interesting point is that
Hamker’s system is able to perform a very rough kind of object recognition by so
called match detection units.

An approach to hierarchical object-based selection of regions of interest is pre-
sented by Sun and Fisher [2003]. Regions of interest are computed on different
scales, first on a coarse scale and then, if the region is sufficiently interesting, it is
investigated on a finer scale. This yields foci of attention of different extents.
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Backer presented an interesting model of attention with two selection stages
[Backer et al. 2001; Backer 2004]. The first stage resembles standard architectures
like [Koch and Ullman 1985], but the result is not a single focus but a small number,
usually 4, of salient locations. In the second selection stage, one of these locations
is selected and yields a single focus of attention. The model investigates some of the
more unregarded experimental data on multiple object tracking and object-based
inhibition of return.

The system VOCUS of Frintrop has several aspects which make it well suitable
for applications in computer vision and robotics. The top-down part enables an
easy, user-friendly search for target objects [Frintrop 2005]. The system is largely
robust to illumination and viewpoint changes and it is real-time capable (50 ms per
frame for a 400 × 300 pixel image on a 2.8 GHz PC) [Frintrop et al. 2007].

3.6 The Evaluation of Computational Attention Systems

There are mainly two possibilities to evaluate computational attention systems.
First, the obtained saliency maps can be compared with the results from psy-
chophysical experiments to determine how well the systems simulate human behav-
ior. Second, one can evaluate how well systems perform a certain task, how they
compare to standard algorithms for these tasks, and how different systems compare
to each other.

Several groups have compared the performance of bottom-up attention systems
with human eye movements. These evaluations are not trivial since there is a high
variability between scanpaths of different subjects and, in free-viewing tasks, there
is usually no “best” scanpath. This variability may partly be explained by the
fact that in human attention, always top-down cues like motivations, emotions,
and pre-knowledge influence the processing. Easiest is the evaluation on simple,
artificial scenes containing pop-outs, as the one in Figure 3. Here, it is clear what
the most salient spot is and most computational systems perform well in finding
these pop-outs immediately (cf. [Frintrop 2005]).

Several groups have also compared the correspondence of saliency models with
eye movements for natural scenes. Parkhurst et al. [2002] reported a significant
coherence of human eye movements with a computational saliency map, which was
highest for the initial fixation. Especially high correspondence was found for fix-
ations that followed stimulus onset. The correspondence was higher for artificial
images like fractals than for natural images, probably because the top-down influ-
ence is lower for artificial scenes. Also Tatler et al. [2005] discovered that features
like contrast, orientation energy, and chromaticity all differ between fixated and
non-fixated locations. The consistency of fixated locations between participants
was highest for the first few fixations. In [Tatler et al. 2006] they state that espe-
cially short saccades are dependent on the image features while long are less so. It
may be also noted that the first fixations of subjects who have the task of viewing
scenes on a monitor tend to be clustered around the middle of the screen. This is
called the central bias. While a final explanation is still to be found, Tatler [2007]
provides several results and an interesting discussion on this topic. Probably the
broadest evaluation of bottom-up saliency was presented by Elazary and Itti [2008].
They used the LabelMe database which contained 24 836 photographs of natural
scenes in which objects were manually marked and labeled by a large population
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of users. They found that the hot spots in the saliency map predict the locations
of objects significantly above chance.

Henderson et al. [2007] investigated the influence of visual saliency on fixated
locations during active search. They compared predictions from the bottom-up
saliency model of Itti and Koch with fixation sequences of humans and concluded
that the evidence for the visual saliency hypothesis in active visual search is rel-
atively weak. This is not surprising since obviously top-down cues are essential
in active search. Attention systems able to perform active search, as for example
[Navalpakkam et al. 2005] or [Frintrop 2005], are likely to achieve a larger corre-
spondence in such settings. Other work comparing computational saliency with
human visual attention is presented in [Ouerhani et al. 2004; Bruce and Tsotsos
2005b; Itti 2005; Peters et al. 2005; Peters and Itti 2008]. For example, Peters and
Itti [2008] compared human eye movements with the prediction of a computational
attention system in video games.

Several people have investigated how strongly the separate feature channels cor-
respond to eye movements. Parkhurst et al. [2002] found that not one channel is
generally superior to the others, but that the relative strength of each feature di-
mension depends on the image type: for fractal and home interior images, color was
superior, for natural landscapes, buildings and city scenes, intensity was dominant.
Color and intensity contributed in general more than orientation, but for buildings
and city scenes, orientation was superior to color. Also Frey et al. [2008] found
such a dependency of performance on different categories. While color had almost
no influence on overt attention for some categories like faces, there is a high influ-
ence for images from other categories, e.g., Rainforest. This is especially interesting
since there is evidence that it is the rainforest where the trichromatic color vision
evolved [Sumner and Mollon 2000]. Furthermore, Frey et al. [2008] found that the
saliency model they investigated (Itti’s NVT) exhibits good prediction performance
of eye movements in more than half of the investigated categories. Kootstra et al.
[2008] found that symmetry is a better predictor for human eye movements than
contrast. Tatler et al. [2005] and Baddeley and Tatler [2006] compared the visual
characteristics on images at fixated and non-fixated locations with signal detection
and information theoretic techniques. In [Tatler et al. 2005], they state that “con-
trast and edge information was more strongly discriminatory than luminance or
chromaticity”. In [Baddeley and Tatler 2006], they found that the mapping was
dominated by high frequency edges and that low frequency edges and contrast on
the other hand had an inhibitory effect. They claim that previous correlates be-
tween fixations and contrast were simply artefacts of their correlates with edges.
Color was not investigated in these experiments. In active search tasks, Vincent
et al. [2007] discovered that color made the largest contribution for the search per-
formance while edges made no important contribution. Altogether, it seems like
further research is necessary to determine which features are most relevant in which
settings and tasks.

Evaluating computational top-down attention systems in visual search tasks is
easier than evaluating bottom-up systems since a target is known and the detection
rate for this target can be determined. As in human perception, the performance
depends on the target and on the setting. Some results can be found in [Hamker
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2005; Navalpakkam et al. 2005; Frintrop 2005; Vincent et al. 2007]. For example
in [Frintrop 2005], a target object in natural environments was in most cases found
with the first fixation, e.g., a fire extinguisher in a corridor or a key fob on a desk.
Vincent et al. [2007] have found a relatively low fixation probability for real world
targets in their approach, especially for difficult search targets like a wine glass.
These approaches are difficult to compare since they operate on different data. So,
it is hard to distinguish which differences come from the implementation of the
system and which from the difference in data. In [Frintrop 2005], we present a
comparison of VOCUS with the systems in [Hamker 2005] and [Navalpakkam et al.
2005], each on the same image data sets.

Another possibility to evaluate the quality of attentional systems is their use in
applications. If the system performance is increased in either time or quality, it
is not necessarily important to achieve exact correspondences to human eye move-
ments. Several application domains of visual attention systems will be presented
in the next section.

4. APPLICATIONS IN COMPUTER VISION AND ROBOTICS

Restricting the large amount of visual data to a manageable rate has been an
omnipresent topic during the last years in research areas concerned with image
data. Although machines became much faster and hardware cheaper, processing
all information is still not possible and will either not be possible in the future.
The reason is that the complexity of many problems is very high — as mentioned
before, unbounded visual search is NP-complete — so finding a polynomial solution
for such a problem is extremely unlikely.

Therefore, concepts like selective visual attention arouse much interest in com-
puter vision and robotics. They provide an intuitive method to determine the most
interesting regions of an image in a “natural”, human-like way and are a promising
approach to improve computational vision systems.

We organize the applications of computational attention systems roughly into
three categories: in the first, low-level category, attentional regions are used as low-
level features, so called interest points or regions of interest (ROIs) for tasks like
image matching (sec. 4.1). The second, mid-level category considers attention as a
front-end for high-level tasks as object recognition (sec. 4.2). In the third, highest-
level category, attention is used in a human-like way to guide the action of an
autonomous system like a robot, i.e., to guide object manipulation or human-robot
interaction (sec. 4.3).

4.1 Attention as Salient Interest Point Detector

Detecting regions of interest is an important method in many computer vision tasks.
Many methods exist to detect interest points or regions in images, an overview is
provided by Tuytelaars and Mikolajczyk [2007]. An alternative to these approaches
are attention regions. While common detectors usually work on gray-scale images,
computational attention systems integrate several features and determine the over-
all saliency from many cues. Another difference is that attention systems focus on a
few, highly discriminative features while common detectors often tend to find many
similar regions. Depending on the application, the restriction to a few discrimina-
tive regions is favorable because it reduces computation complexity. We have shown

ACM Journal Name, Vol. 7, No. 1, 1 2010.



Computational Visual Attention Systems and their Cognitive Foundations: A Survey · 29

that the repeatability of regions in different scenes is significantly higher for salient
regions than for regions detected by standard detectors [Frintrop 2008]3.

One application area of salient ROIs is image segmentation. Segmentation
is the problem of grouping parts of an image together according to some measure
of similarity. The automatic segmentation of images into regions usually deals
with two major problems: first, setting the starting points for segmentation (seeds)
and second, choosing the similarity criterion to segment regions. Ouerhani [2003]
presents an approach that supports both aspects by visual attention: the saliency
spots of the attention system serve as natural candidates for the seeds and the ho-
mogeneity criterion is adapted according to the features that discriminate a region
from its surrounding. A comparison to other segmentation algorithms has, to our
knowledge, not yet been done.

Another application area is image and video compression. The idea is to
compress non-focused regions stronger than focused ones, based on the findings
that there is correspondence between the regions focused by humans and those
detected by computational attention systems. Ouerhani [2003] performs focused
image compression with a visual attention system. A color image compression
method adaptively determines the number of bits to be allocated for coding image
regions according to their saliency. Regions with high saliency have a higher re-
construction quality than less salient regions. Itti [2004] uses his attention system
to perform video compression by blurring every frame, increasingly with distance
from salient locations.

A large field with many application areas is image matching, i.e., finding cor-
respondences between two or more images which show the same scene or the same
object. When searching for correspondences between two images, it is computation-
ally too expensive to compare images on a pixel basis and variations in illumination
and viewpoint make such a simple approach unsuitable. Instead, ROIs can be used
to find such correspondences. This is necessary for tasks like stereo matching,
building panoramas, place recognition, or robot localization.

To compare two ROIs, a descriptor is required. Attentional descriptors are
vectors which determine the feature saliencies of the ROI and its surrounding
(cf. sec. 3.1) [Navalpakkam et al. 2005; Frintrop et al. 2005]. Since matching with
an attentional descriptor alone is usually not powerful enough, several groups have
combined their attention regions with other detectors or descriptors. A common
approach is the SIFT descriptor (scale invariant feature transform) which captures
the gradient magnitude in the surrounding of a region [Lowe 2004]. It is very pow-
erful also under image transformations. Walther [2006] and Siagian and Itti [2009]
detect SIFT keypoints (intensity extrema in scale space and combined with a SIFT
descriptor) inside the attention regions, i.e., the attentional regions determine a
search area whereas the matching is based on the SIFT keypoints. Note however
that this approach is sometimes problematic since attention regions favor homoge-
neous regions whereas corner features are usually detected at textured areas. Thus,
the combination results often in very few features which makes matching difficult.
In our work, we obtained better results by directly applying a SIFT descriptor to
the attention regions [Frintrop and Jensfelt 2008].

3See also http://www.informatik.uni-bonn.de/∼frintrop/research/saliency.html
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One application scenario in which image matching is used is robot localization.
Based on a known map of the surrounding, the robot has to determine its position in
this map by interpreting its sensor data. Standard approaches for such problems use
range sensors such as laser scanners and there are good and stable solutions for such
problems. However, in outdoor environments and open areas, the standard methods
for localization are likely to fail. Instead, a promising approach is localization by
detecting visual landmarks with a known position. Attentional mechanisms can
facilitate the search of landmarks during operation by selecting interesting regions
in the sensor data. An early project that followed this approach was the ARK
project [Nickerson et al. 1998]. It relied on hand-coded maps, including the locations
of known static obstacles as well as the locations of natural visual landmarks.
Ouerhani et al. [2005] track salient spots over time and use them as landmarks
for robot localization. The results must be considered preliminary since testing
was done on the training sequence on a straight corridor without loops. Scene
classification and global localization based on salient landmarks was presented in
[Siagian and Itti 2009]. Additionally to the landmarks, the authors use the “gist”
of the scene, a feature vector which captures the appearance of the scene, to obtain
a coarse localization hypothesis.

In the above examples, a map of the environment is initially known. Usually, it is
obtained in a training phase. A more difficult task is simultaneous localization
and mapping (SLAM) in which a robot initially does not know anything about
its environment and has to build a map and localize itself inside the map at the
same time. This topic was up to now rarely investigated in combination with
visual attention. Frintrop et al. investigated the combination of visual attention
and SLAM [Frintrop and Jensfelt 2008]. The salient regions are detected with
the attention systems VOCUS, matched with a SIFT descriptor and tracked over
several frames to obtain a 3D position of the landmarks. Finally, they are matched
to database entries of the landmarks to detect if the robot closed a loop, i.e.,
returned to a previously visited area (see Fig. 12 (a)).

In addition to the presented application areas, image matching with attentional
ROIs is sometimes also used for object recognition. This aspect will be described
in the next section.

4.2 Attention as Front-end for Object Recognition

Probably the most suggestive application of an attention system is object recogni-
tion since the two-stage approach of a preprocessing attention system and a classi-
fying recognizer mimics human perception [Neisser 1967]. Miau et al. [2001] present
a biologically motivated approach that combines an attentional front-end with the
biologically motivated object recognition system HMAX [Riesenhuber and Poggio
1999] which simulates processes in human cortex and has rather limited capabili-
ties. It is restricted to recognize simple artificial objects like circles or rectangles.
Miau et al. [2001] also replaced the HMAX system by a support vector machine to
detect pedestrians in natural images. This approach is much more powerful with
respect to the recognition rate but computationally expensive.

Salah et al. [2002] combine an attention system with neural networks and an
observable Markov model for handwritten digit recognition and face recognition
and Ouerhani [2003] presents an attention-based traffic sign recognition system. In
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(a) Robot localization and mapping (b) Object recognition

Fig. 12. Two application scenarios for visual attention systems: (a) Robot localization and map-
ping: robot Dumbo corrects its position estimate by detecting a landmark which it has seen before.
Landmark detection is done with the attention system VOCUS. The top-left corner shows the cur-
rently seen frame (top) and the frame from the database (bottom) with the matched landmark
[Frintrop and Jensfelt 2008]. (b) Object recognition: top: SIFT keypoints are extracted for the
whole image. Bottom: attentional regions of interest restrict the keypoints to regions which are
likely to contain objects. This enables unsupervised learning in cluttered scenes (Fig. reprinted
with permission from [Walther 2006]).

[Frintrop et al. 2004], we have combined an attention system with an AdaBoost-
based object classifier [Viola and Jones 2004] which was trained for objects in
laser scanner data. Walther [2006] combine an attention system with an object
recognizer based on SIFT features [Lowe 2004] and show that the recognition results
are improved by the attentional front-end (see Fig. 12 (b)).

All of these systems rely only on bottom-up information and therefore on the
assumption that the objects of interest are sufficiently salient by themselves. Non-
salient objects are not detected. For some object classes like traffic signs which
are intentionally designed salient, this works quite well; for other applications, top-
down information is needed to enable the system to focus on the desired objects.
A combination of a top-down modulated computational attention system with a
classifier is presented by Mitri et al. [2005]. Here, the attention system VOCUS
generates object hypotheses which are verified or falsified by a classifier. For the
application of ball detection in the robot soccer scenario ROBOCUP4, the amount
of false detections is reduced significantly.

In the above mentioned approaches, the attentional part is separated from the
object recognition; both systems work independently. In human perception, these
processes are strongly intertwined. A few groups have recently started to work

4http://www.robocup.org
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on approaches in which both processes share resources. Hamker [2005] introduces
match detection units that compare the encoded pattern with the target template.
If these patterns are similar, an eye movement is initiated towards this region and
the target is said to be detected. Currently, results have to be considered conceptual
since recognition does not consider spatial configuration of features and recognizes
only patterns that are presented with the same orientation as during learning.
An interesting approach is presented by Walther and Koch [2007]. The authors
suggest a unifying framework for object recognition and attention. It is based on
the HMAX model for object recognition and modulates the activity by spatial and
feature modulation functions which suppress or enhance locations or features due
to spatial attention.

Another interesting approach is provided by Rybak et al. [1998]: although the
attentional part of their system is rather limited (it uses only one feature (orien-
tation) and no target-specific tuning of the feature computations), they present a
sophisticated approach to investigate an image guided by prior knowledge. In a
memorizing mode, a sequence of fixation points is determined and stored in two
kinds of memories: the sensory memory (“what”-structure) stores the features of
the fixations and the motor memory (“where”-structure) stores the relative shifts
between the fixations. This information is used in search mode to guide the visual
search and to compare the stored fixation patterns with the current image.

A different view on attention for object recognition present Fritz et al. [2004]: an
information-theoretic saliency measure is used to determine discriminative regions
of interest in objects. The saliency measure is computed by the conditional entropy
of estimated posteriors of the local appearance patterns. That means, regions of
an object are considered as salient if they discriminate the object well from other
objects in an object data base. A similar approach pursue Pessoa and Exel [1999].

4.3 Attention Systems for Guiding Robot Action

A robot which has to act in a complex world faces the same problems as a human:
it has to decide what to do next. Because of limited resources, usually only one
task can be performed at a time: the robot can only manipulate one object, it can
only follow one object with the camera, and it can only interact with one person at
the same time (even if these capabilities could be slightly extended by additional
hardware to a few parallel tasks, such extensions are very limited). Thus, even if
computational power would allow us to find all correspondences, to recognize all
objects in an image, and process everything of interest, it would still be necessary
to filter out the relevant information to determine the next action. This decision
is based first, on the current sensor input and second, on the internal state, for
example the current tasks and goals.

A topic in which the decision about the next action is intrinsically based on
visual data is active vision, i.e., the problem of where to look next. It deals
with controlling “the geometric parameters of the sensory apparatus ... in order
to improve the quality of the perceptual results” [Aloimonos et al. 1988]. Thus,
it is the technical equivalent for overt attention: it directs the camera to regions
of potential interest as the human visual system directs the gaze. Active vision is
of special interest in robotics: it makes “vision processing more robust and more

ACM Journal Name, Vol. 7, No. 1, 1 2010.



Computational Visual Attention Systems and their Cognitive Foundations: A Survey · 33

closely tied to the activities that a robotic system may be engaged in” [Clark and
Ferrier 1989].

One of the first approaches to realize an active vision system with the help of
visual attention was presented by Clark and Ferrier [1988]. They describe how to
steer a binocular robotic head with visual attention and perform simple experiments
to fixate and track the most salient region in artificial scenes composed of geometric
shapes. [Mertsching et al. 1999; Bollmann 1999] use the neural active vision system
NAVIS once with a fixed stereo camera head and once on a mobile robot with a
monocular camera head. Vijayakumar et al. [2001] present an attention system
which is used to guide the gaze of a humanoid robot. The authors consider only
one feature, visual flow, which enables the system to attend to moving objects. To
simulate the different resolutions of the human eye, two cameras per eye are used:
one wide-angle camera for peripheral vision and one narrow-angle camera for foveal
vision. Dankers et al. [2007] introduced an architecture for reactive visual analysis
of dynamic scenes as part of an active stereo vision system. Saliency is computed for
each camera separately. Active gaze control for simultaneous robot localization and
mapping was recently presented in [Frintrop and Jensfelt 2008]. The robot actively
controls the camera by switching between the behaviors tracking, redetection and
exploration. Thus, it obtains a better distribution of landmarks and facilitates the
redetection of landmarks.

Many of the above examples include the visual tracking problem, i.e., the prob-
lem of consistently following a region or object over several frames. The problem
becomes difficult if illumination changes, if the object is partially and/or temporary
occluded and if not only the object or the camera but both of them are mobile.
Walther et al. [2004] track objects in underwater videos by detecting them with a
bottom-up attention system and tracking them with Kalman filters. Currently, we
investigate general object tracking based on visual attention [Frintrop and Kessel
2009]. The appearance of an object is quickly learned from a single frame and the
most salient part of the person is redetected with top-down directed attention in
subsequent frames. An extension of this work deals with people tracking from a
mobile platform, an important task for service robots [Frintrop et al. 2010].

Another area in which the visual input determines the next action is object
manipulation. A robot that has to grasp and manipulate objects has to detect
and probably also to recognize the object first. Attentional mechanisms can support
these tasks. For example, Bollmann et al. [1999] present a robot that uses the active
vision system NAVIS to play at dominoes. In [Rae 2000], a robot arm has to grasp
an object a human has pointed at. The group around Tsotsos is working on a
smart wheelchair to support disabled children. The wheelchair has a display as
easily accessible user interface which shows pictures of places and toys. Once a
task like “go to table, point to toy” is selected, the system drives to the selected
location and searches for the specified toy, using mechanisms based on a visual
attention system (see Fig. 13) [Tsotsos et al. 1998; Rotenstein et al. 2007].

In the field of robot navigation, the problem of visual servoing has become
a well-established robot control technique which integrates vision in feedback con-
trol loops. The technique is mainly employed for controlling the robot’s position.
Clark and Ferrier [1992] describe how to realize a visual servo control system which
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Fig. 13. PlayBot: a visually guided robotic wheelchair for disabled children. The selective tun-
ing model of visual attention supports the detection of objects of interest (Fig. reprinted with
permission from http://www.cse.yorku.ca/∼playbot).

implements attentive control of a binocular vision system. Results on simple arti-
ficial scenes in which the most salient region is fixated and tracked are shown in
[Clark and Ferrier 1988]. In [Scheier and Egner 1997] a mobile robot uses an atten-
tion system to approach large objects. Since larger objects have a higher saliency,
only the regions with the highest saliency have to be approached. In [Baluja and
Pomerleau 1997], an attention system is used to support autonomous road follow-
ing by highlighting relevant regions in a saliency map. Borji [2009] investigates
the control of motor commands for an artificial agent in a navigation scenario by
reinforcement learning. The current state of the system is derived from object and
scene recognition at the focus of attention.

Finally, human-robot interaction is an intuitive application area for compu-
tational attention systems. If robots shall purposefully interact with humans, it is
convenient if both attend to the same object or region of interest. A computational
attention system similar to the human one can help a robot to focus on the same
region as a human. Breazeal [1999] introduces a robot that shall actively look at
people or toys. Although top-down information would be necessary to focus on a
particular object relevant for a certain task, bottom-up information can be use-
ful, too, if it is combined with other cues. For example, Heidemann et al. [2004]
combine an attention system with a system that follows the direction of a pointing
finger and can adjust to the selected region accordingly. This approach was used
by Rae [2000] to guide a robot arm towards an object and grasp it. Belardinelli
[2008] presents methods to let a robot learn visual scene exploration by imitat-
ing human gaze shifts. Nagai [2009] developed an action learning model based
on spatial and temporal continuity of bottom-up features. Finally, an interesting
sociological study in which the interaction of a human with a robot simulation is
investigated is presented by Muhl et al. [2007]. Human subjects had to show an
object to a robot face on a screen which attended to the object with help of a visual
attention system. If the robot was artificially diverted and directed its gaze away
from the object, humans tried to reobtain the robots attention by waving hands,
making noise, or approaching to the robot. This shows that people established a
communicative space with the robot and accepted it as a social partner.
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5. DISCUSSION AND CONCLUSION

This paper gives a broad overview over computational visual attention systems and
their cognitive foundations and aims to bridge the gap between different research
areas. Visual attention is a highly interdisciplinary field and the disciplines investi-
gate the area from different perspectives. Psychologists usually investigate human
behavior on special tasks to understand the internal processes in the brain, resulting
often in psychophysical theories or models. Neuro-biologists take a view directly
into the brain with new techniques like functional Magnetic Resonance Imaging
(fMRI). These methods visualize which brain areas are active under certain condi-
tions. Computer scientists use the findings from psychology and biology to build
improved technical systems.

During the last years, the different disciplines have profited considerably from
each other. Psychologists refer to neuro-biological findings to improve their atten-
tion models and neuro-biologists consider psychological experiments to interpret
their data. Additionally, more and more psychologists implement their models
computationally or refer to computational models to verify if the behavior of the
systems equals human perception. These findings help to improve the understand-
ing of the mechanisms and can also lead to improved computational systems.

Of course, in all of the three areas presented in this paper, namely human atten-
tion, computational systems, and applications, there are still many open questions.
Let us try to address some of them.

One important question is, what are the basic features of attention? Although
intensively studied, this question is still not fully answered (see e.g. [Wolfe and
Horowitz 2004]). Other research questions relate to how these features interact. The
theory that peak salience computed from local feature contrast maxima in several
feature dimensions determine human fixations has been questioned in some articles.
For example, the correlations between local image statistics and the locations of
human fixations have been investigated, leading to new hypotheses, for instance that
high spatial frequency edges guide attention rather than contrast in other feature
dimensions [Baddeley and Tatler 2006]. These new ideas require more investigation.

Other questions concern the nature of top-down cues and processes. Visual search
in artificial search arrays has been well investigated and also studies on natural im-
ages have been done (e.g. [Peters et al. 2005]). For both, especially for the research
on natural scenes, certainly open questions remain. A still largely unexplored area
is the investigation of visual perception in dynamic scenes (but see e.g. [Peters and
Itti 2008]) and, even more challenging, during interactions of humans in the real
world (e.g. [Land 2006]). Additionally, top-down influences are not limited to target
search. Other cues like prior knowledge, motivations, and emotions influence the
visual system and are worth being investigated further. Interesting are also ques-
tions like “how much learning is involved in visual processing?”, “how does context
influence the search?” and “how much memory is involved in these mechanisms?”.
Some current findings on these topics can be found in [Kunar et al. 2008]. When
going beyond visual attention, questions arise like “how does visual attention in-
teract with other senses?” [Fritz et al. 2007], “which concepts of selective attention
are shared in the brain among different senses?” [Ghazanfar and Schroeder 2006]
and “how do visual attention and object recognition interact?”.
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For computational attention systems, similar questions remain, starting from
“which are the optimal features?” and “how are these features integrated?” to “how
do top-down cues influence the computation?” and “how do bottom-up and top-
down cues interact?”. However, we want to claim here that computational systems
do not necessarily have to mimic biology perfectly to achieve similar performance. A
camera differs from the eye and a computer is not the brain. Even parallel hardware
like multi-processors or parallel computations on GPUs differ considerably from
the architecture of neurons. Especially interesting is to find out which concepts
of human perception make sense in computational systems and which have to be
adapted accordingly.

Finally, concerning the applications of computational attention systems, a current
challenge is to capacitate the systems to be used in the real world. That means, the
systems have to be robust to noise, image transformations and illumination changes,
and they have to be fast enough to process images at frame rate. Robustness to noise
has been shown by Itti et al. [1998], invariance to 2D similarity transformations to a
large extend is achieved by Draper and Lionelle [2005], and robustness of a top-down
attention system to viewpoint changes and illumination variations has been shown
by Frintrop [2005]. Recently, there have been approaches to extend to the concept
of 2D saliency maps to 3D [Fleming et al. 2006; Schauerte et al. 2009]. The speed of
the systems has prevented real-time applications for a long time. Parallelizations on
several CPU’s [Itti 2002], on dedicated hardware [Ouerhani 2003], or on a GPU [May
et al. 2007; Xu et al. 2009] enable a significant speed-up. Also software solutions
based on integral images have enabled real-time performance making the systems
flexibly applicable without special hardware [Frintrop et al. 2007]. Interesting is
also the investigation of how the concepts of attention apply to other sensors than
cameras, e.g. laser scanners (a visual attention system based on laser scanner data
is presented by Frintrop et al. [2005]). More research is necessary to find out how
these concepts might be adapted to best fit the properties of different sensors and
how the information from different sensors may be fused.

Computational attention has gained significantly in popularity over the last
decade. First of all, adequate computational resources are now available to study
attentional mechanisms with a high degree of fidelity. In addition, a large number
of cognitive projects have been launched, particularly in Europe. Good examples
include MACS, CogVis, POP, and SEARISE.5 In most of these approaches, visual
attention is included in the perception module and helps to deal with the complex-
ity of the real world. Over the next few years, a number of embodied cognitive
agents will be studied as part of new generation systems both in Europe and in the
US. The European efforts are part of the emphasis on cognitive systems whereas
the US efforts are part of the NSF Cyber Physical Systems program [Lee 2008]. As
vision systems are integrated into complete systems, the need for optimization of
the visual process in terms of overt and covert attention becomes more explicit. In
addition the interplay between attention and tasking can be studied more explic-
itly. The more complex the systems and their tasks become, the more urgent the
need for a pre-selecting attention system which determines in advance the regions
of highest potential interest in the sensor data.

5http://cordis.europa.eu/ist/cognition/projects.htm#list
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General Object Tracking with a Component-based Target Descriptor

Simone Frintrop

Abstract— In this paper, we present a component-based
visual object tracker for mobile platforms. The core of the
technique is a component-based descriptor that captures the
structure and appearance of a target in a flexible way. This
descriptor can be learned quickly from a single training image
and is easily adaptable to different objects. The descriptor
is integrated into the observation model of a visual tracker
based on the well known Condensation algorithm. We show
that the approach is applicable to a large variety of objects
and in different environments with cluttered backgrounds and
a moving camera. The method is robust to illumination and
viewpoint changes and applicable to indoor as well as outdoor
scenes.

I. INTRODUCTION

Object tracking is an important task in machine vision as

well as in mobile robotics. Applications include surveillance

systems, mobile robots that guide or follow people, or

human-robot interaction in which a robot interacts with a

human and both have to concentrate on the same objects.

Many good approaches for object tracking have been

proposed during the last years (see survey in [1]). However,

the methods that are applicable for a certain task vary largely

depending on requirements and setting. If the type of object

is known in advance, model-based trackers may be applied.

In these approaches, a model of the object is learned offline,

usually from a large set of training images which show the

object from different viewpoints and in different poses [2],

[3]. These methods are especially well-suited for specialized

tracking tasks such as person or face tracking. In some

applications however, the object of interest is not known in

advance, e.g., if a user shows an object to the system which

shall be able to immediately capture the appearance of the

object and track it. A long training phase is inacceptable in

such cases, online learning methods are required.

In systems with a static camera, it is possible to apply

methods like background subtraction [4]. For statistical in-

vestigations that do not require immediate response, like

e.g. counting people, it is possible to process the data

offline which extends the range of applicable algorithms

considerably.

On the other hand, systems which shall be applied on

a mobile platform usually have to operate in real-time and

have to deal with more difficult settings. The background

changes, illumination conditions vary, and platforms are

often equipped with low-resolution cameras. Such conditions

require robust and flexible tracking mechanisms. Mostly,

feature-based tracking approaches are applied in such areas.

They track an object based on simple features such as color

The author is with the Institute of Computer Science III, University of
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cues or corners. An example is the Mean Shift algorithm [5]

which classifies objects according to a color distribution or

the CamShift algorithm which is based on the Mean Shift

approach [6]. Other groups integrate color histograms into

a particle tracker [7], [8] or combine a color model with

a template tracker [9]. In previous work, we have used a

cognitive observation model for visual tracking that was

based on features inspired by human visual perception [10],

[11]. Several ideas from this work have been integrated into

the current approach. Over the last years, techniques which

use interest points, like colored Harris corners [12] or SIFT

features [13] for object tracking have been introduced. Note

that these approaches usually rely on textured objects and a

certain image resolution and quality to work well.

For feature-based tracking, it is especially important to

detect discriminative features that distinguish the target well

from the background. However, the discriminability of dif-

ferent parts of the object may differ strongly depending

on the appearance of object and background. If a person

wears a shirt in a color similar to the background, it has

a low discriminability while the trousers on the other hand

might have a high discriminability. To consider the different

discriminability of parts, Beuter et al. train a top-down

attention model to learn the face and the torso of a person

separately [14]. Pérez et al [7], [8] determine different color

histograms for different, rigidly linked parts of the target.

Similarly, Adam et al. represent the target by a rigid layout of

vertical and horizonal patches [15]. All of these approaches

define a rigid layout of the parts in advance. In contrast to

this, we suggest to automatically detect the different parts of

a target in a flexible and object-dependent way.

In this paper, we present a component-based approach

to visual tracking that is able to automatically detect the

most discriminative parts of a target and to quickly learn

its appearance from a single frame. Depending on the

appearance of the object, the system determines a flexible

number of components, each representing a discriminative

part with respect to a certain feature channel. The resulting

components form a target template that is used in the

following frames to detect the most likely target position.

A similarity measure determines the similarity between the

target template and image regions in the following frames.

Instead of computing the similarity for each pixel, we employ

the component-based approach within a CONDENSATION-

based person tracker [16]. For this purpose, the similarity

measure is converted to a likelihood function that is used as

observation model within the particle filter.

This approach leads to a robust and flexible tracker that

is quickly applicable to track arbitrary objects in unknown



environments. Currently, the system works on camera data

from a hand-held camera. Thus, it provides all conditions

which are necessary to use it on a mobile robot: it is real-

time capable and it is able to deal with background changes,

viewpoint changes and varying illuminations.

We evaluated the approach in different settings and com-

pared it to other color-based tracking methods. We tested

the ability of the methods to deal with illumination changes,

scale changes, occlusions, motion blur, background changes

and more. It shows that on average the performance of the

component-based tracking outperforms the other approaches

considerably.

In the following, we first introduce the component-based

descriptor (Sec. II). In Section III, we explain the visual

tracking system and Section IV presents experimental results.

We finally conclude in Section V.

II. A MULTI-COMPONENT TARGET DESCRIPTOR

In this section, we introduce the multi-component descrip-

tor that represents a target object. The descriptor consists of

a collection of components that have a strong contrast within

a certain feature dimension. These regions are automatically

and object-dependently extracted from the target region.

The components are color-based and the computation is

motivated from the cognitive perception model VOCUS [17]

that mimics human early visual processing.

Determining the multi-component descriptor consists of

two steps. First, six intensity and color feature maps are

computed (sec. II-A), second, components are automatically

determined within the feature maps and combined to form

the descriptor (sec. II-B). Finally, we describe how the target

descriptor is matched to a region in a different frame to test

if the target is present or not (sec. II-C).

A. Feature map computations

In this section, we describe how six intensity and color

maps are computed as a basis for the component-based

descriptor. An overview is displayed in Fig. 1.

First, the input image is converted to an image in the

CIELAB color space (also L∗a∗b∗), smoothed with a Gaus-

sian filter and subsampled twice to reduce the influence of

noise. The resulting image is called Ilab. CIELAB has the

dimension L for lightness and a and b for the color-opponent

dimensions; it is perceptually uniform, i.e., a change of a

certain amount in a color value is perceived as a change of

about the same amount in human visual perception. Each of

the 6 ends of the axes that confine the color space serve as

a prototype color, resulting in two intensity prototypes for

white and black and four color prototypes for red, green,

blue, and yellow (cf. Fig. 1, top right).

Then, the computation of feature maps is started. We

treat intensity and color computations separately since this

results in a higher illumination invariance. The intensity

computations can be performed directly from the L channel

Il. The color computations are performed on the color layer

Iab spanned by a and b. Now, we determine four color

Fig. 1. The feature computations: from an input image, 6 feature maps
are computed, showing bright-dark, dark-bright, red-green, green-red, blue-
yellow, and yellow-blue contrasts.

specific maps Ci that represent the four colors red, green,

blue and yellow.

For each of the color maps Ci, there is one prototype

color Pi (cf. Fig. 1, top right) and each pixel Ci(x, y) in a

color map stores the Euclidean distance to the corresponding

prototype color Pi:

Ci(x, y) = Vmax − ||Iab(x, y)−Pi|| i ∈ {1, ..., 4}, (1)

where Vmax = 255 is the maximal pixel value and the pro-

totypes Pi are the ends of the a and b axes with coordinates

(0, 127), (127, 0), (255, 127), (127, 255) in an 8-bit Iab.

Next, image pyramids with 3 levels are determined from Il

and Ci. This enables flexibility to scale changes. On each of

these scale maps in the pyramids we perform center-surround

mechanisms. These are filters that detect image contrasts

between a center c and a surround region s, similar to

ganglion cells in the human brain. Applied to our scale maps,

the filters detect intensity and color contrasts. On the color

maps, the filters react especially strong to red-green, green-

red, blue-yellow, and yellow-blue contrasts. We use surround

regions of two different sizes, resulting in six center-surround

maps Si,j , j ∈ {1, ..., 6} for each color/intensity (details

in [17]). Note that center surround applied to the intensity

scale maps detects only bright-dark contrast. To additionally

determine dark-bright contrasts, we compute the opposite

difference s− c. To speed up processing, all center-surround

filters are computed with integral images [18].

Finally, we sum up the 36 center-surround scale maps to

obtain 6 feature maps Fi =
∑6

j=1 Si,j . The feature maps for

some example images are displayed in Fig. 2.



Fig. 2. An example image and the corresponding feature maps Fi.

B. Determining a target template and descriptor

Now, we determine a component-based template from the

feature maps and derive a descriptor from the template. A

component is a peak in one of the feature maps within the

target region !R∗ = (x∗, y∗, w∗, h∗), where x∗, y∗ denote

the position and w∗, h∗ the width and height of the region.

The peaks are detected by first detecting local intensity

maxima and then segmenting the region around the maxima

with region growing. For easier computations, the regions

are approximated by rectangular bounding boxes that we

call mi,j = (xmi,j
, ymi,j

, wmi,j
, hmi,j

), where i denotes the

feature map and j the different maxima in a map. Hereby, the

number of components per map is flexible and depends on

the appearance of the object. Additionally, we add the whole

target region as one of the mi,j to make the descriptor more

robust.

The positions of the regions mi,j are stored relative to the

center of !R∗ and represent a template !MR∗ = {mi,j |i ∈
{1, .., 6}, j ∈ {1, .., li}}, where li is the number of compo-

nents detected in feature map Fi (cf. Fig. 3, left). Now, we

derive a descriptor vector from the mi,j . For each mi,j , we

compute the ratio of the mean intensity value within mi,j

and the mean value of the background:

ρi,j =
mean(mi,j)

mean(Fi\mi,j)
(2)

The mean is computed with integral images, to speed up

processing and enable constant computation times for each

region, independent of the size of the region. Thus, the target

descriptor that we obtain is !d∗ = {ρi,j |i ∈ {1, .., 6}, j ∈
{1, .., li}}.

C. Match descriptor to image region

In order to match the target descriptor !d∗ to an image

region !R′ of arbitrary size and dimension, we first determine

the factors fw and fh that represent the difference in size

between the target region !R∗ and !R′: fw = R′

w/R∗

w, fh =
R′

h/R∗

h, where R′

w, R∗

w denote the width and R′

h, R∗

h the

height of the regions. Now, an adapted template !MR′ is

computed by extending or compressing all mi,j ∈ !MR∗

with fw and fh: wm′

i,j
= fw ∗ wm∗

i,j
, hm′

i,j
= fw ∗ hm∗

i,j

(cf. Fig. 3, right). !MR′ is now used to compute a descriptor
!d′ equivalently as in eq. 2.

Finally, the descriptors !d∗ and !d′ are matched by comput-

ing the similarity of the vectors. As similarity measure, we

use the Tanimoto coefficient:

T (!d∗, !d′) =
!d∗ · !d′

||!d∗||2 + ||!d′||2 − !d∗ · !d′

. (3)

Fig. 3. Left: An illustration of the template !MR∗ for the target region
!R∗. The three colored rectangles denote the mi,j . Note that each of them

comes from a different feature map which is illustrated here by the different

colors. Right: the template !MR′ adapted to region !R′.

The Tanimoto coefficient produces values in the interval

[0, 1], the higher the value the higher the similarity. If the

two vectors are identical, the coefficient is 1.

III. THE VISUAL TRACKING SYSTEM

The tracking system uses the component-based descriptor

from the previous section as observation model of a par-

ticle filter approach. It employs the standard Condensation

algorithm [16] which maintains a set of weighted particles

over time using a recursive procedure based on the following

three steps: First, the system draws particles randomly from

the particle set of the previous time step, where each particle

is drawn with a probability proportional to the associated

weight of the particle. Second, the particles are transformed

(predicted) according to a motion model. Finally, all particles

are assigned new weights according to an observation model

and the object state is estimated.

Let us first introduce the notation. At each point in time

t ∈ {1, .., T}, the particle filter recursively computes an

estimate of the probability density of the object’s location

within the image using a set of J particles !Φt = {!φ1
t , ...

!φJ
t }

with
!φj

t = (!sj
t , π

j
t ,

!dj
t ), j ∈ {1, ..., J}. (4)

(here: J = 500). !sj
t = (x, y, vx, vy, w, h) is the state vector

that specifies the particle’s region with center (x, y), width

w and height h – in the following, the region is also denoted

as !Rj
t = (x, y, w, h). The vx and vy components specify

the current velocity of the particle in the x and y directions.

Each particle additionally has a weight πj
t determining the

relevance of the particle with respect to the target, and the

component-based descriptor !dj
t that describes the appearance

of the particle region.

In the following, we first mention how the system is

initialized (sec. III-A), second describe the motion model



(sec. III-B), and finally, specify the observation model as

core of the system (sec. III-C).

A. Initialization

Before starting the tracking, the initial target region !R∗ has

to be specified in the first frame. This can either be carried

out manually or automatically using a separate detection

module. We initialize manually here. Based on the initial

target region !R∗, the component-based descriptor !d∗ is

computed that describes the appearance of the object. The

initial particle set

!Φ0 = {(!sj
0, π

j
0,

!dj
0) | j = 1, ..., J} (5)

is generated by randomly distributing the initial target

location around the region’s center (x∗, y∗). The velocity

components vx and vy are initially set to 0 and the region

dimensions of each particle are initialized with the dimen-

sions of !R∗. The particle weights πj
0 are set to 1/J .

B. Motion model

The object’s motion is modeled by a simple first order au-

toregressive process in which the state of a particle depends

only on the state of the particle in the previous frame:

!sj
t = M · !sj

t−1 + !Q. (6)

Here, M is a state transition matrix of a constant velocity

model and !Q is a random variable that denotes some white

Gaussian noise. This enables a flexible adaption of position

and size of the particle region as well as of its velocity. Thus

the system is able to quickly react to velocity changes of the

object.

C. Observation model

In visual tracking, the choice of the observation model

is the most crucial step since it decides which particles

will survive. It therefore has the strongest influence on the

estimated position of the target. Here, we use the component-

based descriptor to determine the feature description for the

target and for each particle, enabling the comparison and

weighting of particles.

First, we compute a descriptor
!
dj

t for each of the particles

according to sec. II-B. That means, the target template !MR∗

is adapted to the size of the current particle and the descriptor
!
dj

t is computed for the resulting template M j
t . Then, the

weight of a particle is computed based on the Tanimoto

coefficient as

πj
t = c · eλ·T ("d∗,"d

j
t). (7)

This function prioritizes particles which are very similar

to !d∗ by assigning an especially high weight. A value of

λ = 14 has shown to be useful in our experiments. The

parameter c is a normalization factor which is chosen so

that
∑J

j=1 πj
t = 1.

Finally, the current target state, including target position

and size, can be estimated as a weighted average of the

particles by

!xt =

J∑

j=1

πj
t · !s

j
t . (8)

IV. EXPERIMENTS AND RESULTS

In this section, we compare three different approaches for

visual object tracking. All methods use the same particle

filter approach for tracking and a color-based observation

model. The first approach is a standard method based on

color histograms and was implemented according to [7]1.

The second approach that we call ROI tracking is a simplified

version of the here presented method. It uses the same feature

maps as in sec. II-A but no components. Instead, it considers

the whole target region and computes a descriptor based on

the ratio of the mean of the target region and the mean of the

background as in eq. 2. Thus, it computes a 6-dimensional

target descriptor.2 The third approach is the here presented

component-based tracking.

We test the three methods in seven different settings to

illustrate different properties. In each setting, we tracked one

object over a sequence of images (320 × 240 pixels, length

of sequences: 125 – 388 frames). Examples of the settings

together with the component-based descriptors are displayed

in Fig. 4. The complete tracking results can be watched in a

video on http://ivs.informatik.uni-bonn.de/research/tracking/.

For each estimated tracking trajectory, we computed the

Euclidean distance to the real position of the target that was

determined manually. Reference for the computation was the

center of the object resp. the center of the estimated target

position. These distances are displayed in Fig. 5. Since the

distance of the estimation from the real position is not always

meaningful (depending on the size of the object, the same

distance might be still acceptably good or quite bad), we

additionally determined whether the center of the estimation

was on the target or not. This detection rate is displayed in

Tab. I. The computation time varied between 69 and 90 ms

per frame (av. 80 ms), depending on the complexity of the

target template (on a 2.5 GHz dual core PC). This frame rate

was sufficient for online tracking but a higher rate could be

easily achieved by code optimization.

In the following, we describe the different settings.

A. Illumination Changes

In this example, we test the ability of the systems to

deal with illumination changes. We tested a static scene

in which only the illumination is varied by opening and

closing the sun-blinds. It shows that the new component-

based tracking is hardly effected by these changes, while

both other approaches have problems. Note that the detection

rate of histograms is better than the one of the ROI tracking

1The color histograms were implemented exactly as described in [7]
(HSV color model, bin numbers Nh = Ns = Nv = 10), the particle
filter was the same as for the other approaches (cf. sec. III) to concentrate
the comparison on the observation model.

2We used almost the same method in [11], but we omitted the orientation
features to make the approach comparable to the other methods which are
purely color-based.



Fig. 4. The test sequences A - G. First row: the target region used for initialization (yellow rectangles). Second row: the component-based descriptors
computed for the target region. Colors denote the feature map the component comes from (white: bright-dark map, black: dark-bright map, red: red-green
map, ...). 3rd and 4th row: other example frames from the sequences. See also video on http://ivs.informatik.uni-bonn.de/research/tracking/
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Fig. 5. Comparison of the trajectories of the three tracking methods with ground truth. The y axis shows the Euclidean distance of the center of the
estimated region to the center of the real position of the target. average errors: histogram = 41, roi = 28, new component-based = 22.

while the average distance of the trajectories (cf. Fig. 5) is

the same.

B. Object Motion and Scale Changes

Next, we test an object that is moving and changes

strongly in scale. We use face tracking as example appli-

cation. Again, the component-based method outperforms the

other approaches clearly.

C. Temporal Object Occlusion

In this example, we test how the approaches deal with

temporal occlusions of the object. The target is a face that is

temporary occluded by hands and arms of the person. This

is especially challenging since hands and face both have skin

color. The fact that the results of all methods are better for

this sequence than for seq. B shows that obviously the scale

changes affect the methods stronger than a brief occlusion.

D. Quick Object Motion

Here, we test the ability of the methods to deal with ex-

tremely quick object motion. The object changes its direction

abruptly and the motion is so quick that the object moves

many pixels between consecutive frames: Rows 3 and 4 in

column 4 of Fig. 4 show consecutive frames; the object

position varies almost 1/3 of the image width. All methods

show that the particle filter tracking needs some frames to

follow the object if the motion is very fast. Thus, the target is

briefly lost until the method adapts and redetects the target

again. This results in relatively low detection rates of all

methods (cf. Tab. I). From Fig. 5 it can be seen that the

error grows quickly for each quick motion but is reduced

briefly after when the target is redetected (see also video on

http://ivs.informatik.uni-bonn.de/research/tracking/).



Seq. Object # Frames detection rate [%]
Hist. ROI Comp. (our)

A. Box 264 61 42 100
B. Face 207 55 78 89
C. Face 229 76 82 100
D. Bottle 198 33 45 57
E.a left Person 388 45 78 89
E.b right Person 388 15 56 84
F. Box 125 92 70 74
G. Person 169 68 70 54

av. 56 65 81

TABLE I

COMPARISON OF THE THREE TRACKING METHODS BASED ON COLOR

HISTOGRAMS (HIST.), SIMPLE REGION OF INTEREST TRACKING (ROI)

AND THE HERE PRESENTED COMPONENT-BASED TRACKING (COMP.).

E. Moving Camera

While the previous examples have been tested with a

static camera, the following three examples are recorded with

a moving camera. This is considerably more challenging

since it envolves illumination changes, motion blur, and

background changes. The first example shows two people

walking down a corridor, while the camera is following them.

The persons cross their way twice. This is a typical setting

for a service robot that shall follow a person and not confuse

it with other people. We tested the tracking of each of the

persons individually. In both cases, the component-based

tracking clearly outperforms the other methods. Most dif-

ficulties has the histogram-based approach, especially when

tracking the right person.

F. Moving Camera with Strongly Changing Background

The next example shows an extreme case of background

change: the background changes from dark blue to white.

Since the target object has similar colors (also mainly blue

and white), the two tracking approaches that include the

background (ROI and component-based) have some dif-

ficulties here. While including the background is usually

helpful, it makes some problems in such an extreme case.

We are currently working on ways to adapt the descriptor

automatically to new environments.

G. Outdoor

Finally, we show an outdoor sequence that combines most

of the previous challenges: the camera is moving, several

objects (two people and a ball) are moving very quickly, the

appearance of the target person changes strongly in scale,

the shape of the person changes, e.g. when shooting the

ball (cf. Fig. 4, 3rd row, right), and the illumination as

well as the background change. Here, the purely color-based

approaches, histogram and ROI, outperform the component-

based tracking. The strong changes in shape are problematic

in the latter case. We are currently working on ways to track

the components of the target individually. This could help

to cope with such difficulties. However, it can be seen from

Fig. 5, that the approach is always able to redetect the target

after some frames.

In average, the new component-based tracking has outper-

formed the other two methods considerably with an average

error 22 and a detection rate of 81 %, compared to error 28

and detection rate 65 % for the ROI tracking and error 41

and detection rate 56 % for the histogram tracking.

V. CONCLUSION

We have presented a new approach for object tracking

based on a component-based descriptor. The method grabs

the appearance of an object in color and intensity together

with a rough spatial layout which are quickly learned from

a single training image. It can deal with different objects

and settings, works in real-time, and is applicable on a

moving platform. We have shown that it on average clearly

outperforms other methods.

However, there is still room for improvements. We are

currently working on ways to store the position of the

components individually to achieve more flexibility to defor-

mations and rotations of the objects. Additionally, we intend

to adapt the target descriptor online if background and/or

target appearance change strongly, as e.g. in [19].
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Abstract In this article, we present a component-based visual tracker for mobile plat-

forms with an application to person tracking. The core of the technique is a component-

based descriptor that captures the structure and appearance of a target in a flexible

way. This descriptor can be learned quickly from a single training image and is easily

adaptable to different objects. It is especially well suited to represent humans since

they usually do not have a uniform appearance but, due to clothing, consist of differ-

ent parts with different appearance. We show how this component-based descriptor can

be integrated into a visual tracker based on the well known Condensation algorithm.

Several person tracking experiments carried out with a mobile robot in different labo-

ratory environments show that the system is able to follow people autonomously and

to distinguish individuals. We furthermore illustrate the advantage of our approach

compared to other tracking methods.

Keywords Visual Tracking · Component-based Tracking · Person Tracking

1 Introduction

An important skill for mobile service robots is the ability to detect and keep track of

individual humans in their surrounding. Especially robots that are designed to pro-

vide services to individual persons need to be able to distinguish their client from the

surrounding environment. Usually, such systems shall be able to learn the appearance

of a target person quickly, possibly from a single snapshot. Additionally, to run on a

mobile platform the approaches have to be real-time capable and robust to illumination

changes, motion blur and quick viewpoint changes.
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While many approaches have been proposed to track humans, most of them are not

designed to distinguish individuals. This is especially true for laser-based systems that

usually track the legs of people, or for model-based vision approaches that consider the

shape of objects. Well suited to distinguish people are feature-based vision approaches.

For these methods, it is especially important to detect discriminative features that

distinguish the target well from the background. However different parts of complex

objects, such as people, provide different discriminability from the background. If a

person wears, for example, a shirt in a color similar to the background, it has a low

discriminability while the trousers on the other hand might have a high discriminability.

A good feature descriptor shall consider this variable discriminability and focus on the

most discriminative parts. Since the structure of parts differs from target to target, it is

preferable to automatically detect the different parts instead of using a rigid template.

In this paper, we present a component-based approach to visual tracking that is

able to automatically detect the most discriminative parts of a target person and to

quickly learn its appearance from a single frame. Depending on the appearance of the

person (clothing, hair color, skin color etc.), the system determines a flexible number of

components, each representing a discriminative part with respect to a certain feature

channel. The resulting components form a target template that is used in the follow-

ing frames to detect the most likely target position. A similarity measure determines

the similarity between the target template and image regions in the following frames.

Instead of computing the similarity for each pixel, we employ the component-based

approach within a Condensation-based person tracker [20]. For this purpose, the sim-

ilarity measure is converted to a likelihood function that is used as the observation

model within the particle filter.

This approach leads to a robust and flexible tracker that is quickly applicable to

track arbitrary people in unknown environments. It is able to work in real-time on a

mobile platform. We evaluated the approach in different settings: first, we compared the

approach to other color-based tracking approaches and show that the performance of

the component-based tracking outperforms the other approaches considerably. Second,

we tested the ability of the system to distinguish a target person from other people

that cross their way in front of the robot. Finally, we showed that the robot is able

to follow a person autonomously in different settings of our laboratory environment

under varying lighting conditions and backgrounds.

The remainder of the article is organized as follows. After discussing related work

in Section 2, we introduce the component-based descriptor in Section 3. In Section 4,

we explain the visual tracking system. Section 5 briefly explains how the approach is

integrated into a prototypical person following application and presents experimental

results. We finally conclude in Section 6.

2 Related work

In mobile robotics, researchers have developed person tracking techniques for different

sensors. A frequently used approach is to use laser range finders, as these sensors

are available on many robots for collision avoidance purposes. Because laser sensors

usually only provide distance information to objects in the environment, most laser-

based approaches only keep track of the motion of people and do not try to distinguish

between individuals [25,31]. However, several techniques have been developed that

utilize the appearance of a person’s legs in the data, to reduce the risk of track loss or
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the confusion of tracks of different persons. For example, Arras et al. [2] use AdaBoost to

train a detector for the legs of persons in laser range profiles and in more recent work [3]

they suggest a two-leg constraint in combination with a specialized occlusion handling

technique to increase the robustness against track loss. Taylor and Kleeman [34] use a

switched dynamic model to even track the repetitive leg motion for this purpose.

Other authors improve the robustness of laser-based tracking by additionally taking

camera information into account. Using this combination of sensors, the spatial track-

ing can still be performed on the laser data, while the camera immediately provides

informative appearance information to distinguish between persons. For example, Ben-

newitz et al. [5] and Bellotto and Hu [4] use color histograms to discriminate between

the persons being tracked. Schulz [30] uses a shape matching approach to distinguish

between persons; a probabilistic exemplar approach is applied to track characteristic

silhouettes of individuals over time. However, this requires a time-consuming learning

process for the exemplar model of each new person.

In machine vision, people tracking is a well-studied problem. Two main approaches

can be distinguished: model-based and feature-based methods. In model-based tracking,

a model of the object is learned in advance, usually from a large set of training images

which show the object from different viewpoints and in different poses [29]. Learn-

ing a model of a human is difficult because of the dimensionality of the human body

and the variability in human motion. Current approaches include simplified human

body models, e.g. stick, ellipsoidal, cylindric or skeleton models [8,37,24], or shape-

from-silhouettes models [9]. While these approaches have reached good performance in

laboratory settings with static cameras, they are usually not applicable in real-world

environments on a mobile system. They usually do not operate in real-time and often

rely on a static, uniform background. A model-based approach that works from mov-

ing cameras is shape matching. For example, Gavrila [17] suggests an exemplar-based

technique that employs fast Chamfer matching to detect the shapes of pedestrians in

images in real-time. The technique has been adopted for a particle filter tracking algo-

rithm by Toyama and Blake [36]. However, it is not possible to adapt the rather large

exemplar models on-line and, thus, the approach is not capable of distinguishing be-

tween persons during tracking. A modeling technique related to exemplars are implicit

shape models [22] which, in comparison to pure exemplar approaches, improve the ro-

bustness against partial occlusions of objects. However, these models can also not be

adapted online and are generally also not suitable to distinguish individual people. The

final model-based technique, we want to mention, is tracking-by-detection, which has

become increasingly popular over the last years. Typically, these approaches learn clas-

sifiers based on feature descriptors in order to detect and track humans in images [12,

1,38]. Due to carefully chosen object specific feature sets, very reliable detections are

achieved that can directly be used as observations within a tracking algorithm. The

combination of part detectors even allows for partial occlusions. However, the classi-

fiers generally require an off-line learning phase on a rather large training set. Our

descriptor, in contrast, does not allow to detect people, but is used to acquire a robust

observation model for individual objects from a single image for tracking. On-line su-

pervised learning techiques can be applied to train classifiers for a similar purpose [18,

32], but need a larger image sequence to acquire the models.

Feature-based tracking approaches on the other hand do not learn a model but

track an object based on simple features such as color cues or corners. One approach

for feature-based tracking is the Mean Shift algorithm [10,11] which characterizes ob-

jects by their color distribution. The algorithm tracks objects by carrying out a gradient
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descent in the image that minimizes the dissimilarity between the local color statis-

tics in the image and the object’s color histogram. An extension of this method is the

CamShift algorithm [7]. Other groups integrate color histograms into a particle tracker

[27,28]. In previous work, we have used a cognitive observation model for visual track-

ing that was based on features inspired by human visual perception [14,16]. Several

ideas from this work have been integrated into the current approach. Over the last

years, techniques which use interest points, like colored Harris corners [23] or SIFT

features [33] for object tracking have been introduced. Note that these approaches usu-

ally rely on textured objects and a certain image resolution and quality to work well.

While these feature-based techniques are not especially designed for person tracking,

they are commonly applied in this area.

Some people have also suggested to store different representations for different

parts of the objects. For example, Pérez et al. determine different color histograms

for different, rigidly linked parts of the target [27,28]. Beuter et al. train a top-down

attention model to learn the face and the torso of a person separately [6]. We are

however not aware of any work that determines the number and kinds of components

of a target automatically to obtain a flexible descriptor as we will present in this work.

3 A Multi-Component Target Descriptor

In this section, we introduce the multi-component descriptor that represents a target.

The computation consists of two steps. First, six intensity and color feature maps are

computed (sec. 3.1), second, components are determined within the feature maps and

combined to form the descriptor (sec. 3.2). Finally, we describe how the descriptor is

matched to a region in a new frame to test if the target is present (sec. 3.3).

3.1 Feature map computations

In this section, we describe the computation of six intensity and color maps as a basis

for the component-based descriptor. The computation of these feature maps is based

on concepts from the human visual system in which color opponent cells determine the

contrast of a center region and its surround [26]. The computation is the same as in

the visual attention system VOCUS [13,15] and similar to Itti’s attention system NVT

[21].1 An overview of the processing is displayed in Fig. 1.

First, the input image is converted to an image in the CIELAB color space (also

L∗a∗b∗), smoothed with a Gaussian filter and subsampled twice to reduce the influence

of image noise. We call the resulting image ILab. The CIELAB space has the dimension

L for lightness and a and b for the color-opponent dimensions; it is perceptually uniform,

which means that a change of a certain amount in a color value is perceived as a change

of about the same amount in human visual perception. Furthermore, the space suits

our purpose especially well since the four main colors red, green, blue and yellow are

at the end of the axes a and b. This will show to be useful for our computations. Each

of the 6 ends of the axes that confine the color space serves as one prototype color,

resulting in two intensity prototypes for white and black and four color prototypes for

red, green, blue, and yellow (cf. Fig. 1, left, top right corner).

1 Differences to NVT include the use of a different color space and of integral images to
speed up processing; more differences outlined in [13].
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Fig. 1 Left: The feature computations: from an input image, 6 feature maps are computed,
showing bright-dark, dark-bright, red-green, green-red, blue-yellow, and yellow-blue contrasts.
Right, top: An illustration of the template MR∗ for the target region R∗ . The three colored
rectangles denote the mi,j ; the different colors illustrate the feature maps they result from.
Right, bottom: the template MR′ adapted to region R′ .

Then, the computation of feature maps is started. We treat intensity and color com-

putations separately since this results in a higher illumination invariance. The intensity

computations can be performed directly from the L channel IL. The color computa-

tions are performed on the color layer Iab spanned by a and b. Now, we determine four

color specific maps Ci that represent the four colors red, green, blue and yellow.

For each of the color maps Ci, there is one prototype color Pi (cf. Fig. 1, left, top

right corner) and each pixel Ci(x, y) in a color map stores the Euclidean distance to

the corresponding prototype color Pi:

Ci(x, y) = Vmax − ||Iab(x, y) − Pi|| i ∈ {1, ..., 4}, (1)

where Vmax = 255 is the maximal pixel value and the prototypes Pi are the ends of the

a and b axes with coordinates (0, 127), (127, 0), (255, 127), (127, 255) in an 8-bit Iab.

Next, image pyramids with 3 levels are determined from IL and Ci. This enables

flexibility to scale changes. On each of these scale maps in the pyramids we perform

center-surround mechanisms. These are filters that detect image contrasts between a

center c and a surround region s. Applied to our scale maps, the filters detect intensity

and color contrasts. On the color maps, the filters react especially strong to red-green,

green-red, blue-yellow, and yellow-blue contrasts. We use surround regions of two dif-

ferent sizes (radius 3 and 7 pixels, center 1 pixel), resulting in six center-surround maps

Si,j , j ∈ {1, ..., 6} for each color/intensity (details in [13]). Note that center surround

applied to the intensity scale maps detects only bright-dark contrast. To additionally

determine dark-bright contrasts, we compute the opposite difference s − c. To speed

up processing, all center-surround filters are computed with integral images [15].
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Fig. 2 The initial frames used for the experiments in sec. 5.1 and corresponding feature maps.

Finally, we sum up the 36 center-surround scale maps to obtain 6 feature maps Fi:

Fi =
∑6

j=1 Si,j . The feature maps for some example images are displayed in Fig. 2.

3.2 Determining a target descriptor

The target descriptor consists of components that have a strong contrast within a

certain feature dimension. It is derived from the feature maps. A component is a peak

in one of the feature maps within the target region R∗ = (x∗, y∗, w∗, h∗). The peaks

are detected by first detecting local intensity maxima and then segmenting the region

around the maxima with region growing. For easier computations, the regions are

approximated by rectangular bounding boxes that we call mi,j , where i denotes the

feature map and j the different maxima in a map. Hereby, the number of components

per map is flexible and depends on the appearance of the object. Additionally, we add

the whole target region as one of the mi,j to make the descriptor more robust.

The positions of the regions mi,j are stored relative to the center of R∗ and rep-

resent a template MR∗ = {mi,j |i ∈ {1, .., 6}, j ∈ {1, .., li}} (cf. Fig. 1, right top, and

Fig. 5). Now, we compute a descriptor vector from the mi,j . For each mi,j , we compute

the ratio of the mean intensity value within mi,j and the mean value of the background:

ρi,j =
mean(mi,j)

mean(Fi\mi,j)
(2)

The mean is computed with integral images, to speed up processing and enable

constant computation times for each region, independent of the size of the region.

Thus, the target descriptor that we obtain is d∗ = {ρi,j |i ∈ {1, .., 6}, j ∈ {1, .., li}}.

3.3 Matching the descriptor to an image region

In order to match the target descriptor d∗ to an image region R′ of arbitrary size

and dimensions, we first determine the factors fw and fh that represent the difference
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in size between the target region R∗ and R′: fw = R′

w/R∗

w, fh = R′

h/R∗

h, where

R′

w, R∗

w denote the width and R′

h, R∗

h the height of the regions. Now, an adapted

template MR′ is computed by extending or compressing all mi,j ∈ MR∗ with fw and

fh: m′

w = fw ∗ m∗

w, m′

h = fh ∗ m∗

h, ∀m′ ∈ MR′ , m∗ ∈ MR∗ (cf. Fig. 1, right

bottom). MR′ is now used to compute a descriptor d′ equivalently as in eq. 2.

Finally, the descriptors d∗ and d′ are matched by computing the similarity of the

vectors. As similarity measure, we use the Tanimoto coefficient:

T (d∗,d′) =
d∗ · d′

||d∗||2 + ||d′||2 − d∗ · d′
. (3)

The Tanimoto coefficient produces values in the interval [0, 1], the higher the value

the higher the similarity. If the two vectors are identical, the coefficient is 1.

4 The Visual Tracking System

The tracking system we present uses the component-based descriptor from Sec. 3 for

the observation model of a particle filter. It employs the standard Condensation al-

gorithm [20] which maintains a set of weighted particles over time using a recursive

procedure based on three steps: First, the system draws particles randomly from the

particle set of the previous time step, where each particle is drawn with a probability

proportional to the associated weight of the particle. Second, the particles are trans-

formed (predicted) according to a motion model. Finally, all particles are assigned new

weights according to an observation model and the object state is estimated.

Let us first introduce the notation. At each point in time t ∈ {1, .., T}, the par-

ticle filter recursively computes an estimate of the probability density of the person’s

location within the image using a set of J (here J = 500) particles Φt = {φ1
t , ...φJ

t }

with φj
t = (sj

t , π
j
t ,dj

t ), j ∈ {1, ..., J}. Here, s
j
t = (x, y, vx, vy, w, h) is the state vec-

tor that specifies the particle’s region with center (x, y), width w and height h – in

the following, the region is also denoted as R
j
t = (x, y, w, h). vx and vy specify the

current velocity of the particle in x and y directions. Each particle additionally has a

weight πj
t determining the relevance of the particle with respect to the target, and the

component-based descriptor d
j
t that describes the appearance of the particle region.

In the following, we first mention how the system is initialized (sec. 4.1), second

describe the motion model (sec. 4.2), and finally, specify the observation model as core

of the system (sec. 4.3).

4.1 Initialization

To start the tracking process, the initial target region R∗ has to be specified in the

first frame. This can be carried out manually or automatically with a separate detec-

tion module. Here, we initialize manually. Based on the initial target region R∗, the

component-based descriptor d∗ is computed that describes the appearance of the per-

son. The initial particle set Φ0 = {(sj
0, πj

0,dj
0) | j = 1, ..., J} is generated by randomly

distributing the initial target location around the region’s center (x∗, y∗). The velocity

components vx and vy are initially set to 0 and the region dimensions of each particle

are initialized with the dimensions of R∗. The particle weights πj
0 are set to 1/J .
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4.2 Motion model

The object’s motion is modeled by a simple first order autoregressive process in which

the state s
j
t of a particle depends only on the state of the particle in the previous frame:

s
j
t = M · sj

t−1 + Q. (4)

Here, M is a state transition matrix of a constant velocity model and Q is a random

variable that denotes some white Gaussian noise. This enables a flexible adaption of

position and size of the particle region as well as of its velocity.2 Thus the system is

able to quickly react to velocity changes of the object.

4.3 Observation model

In visual tracking, the choice of the observation model is the most crucial step since it

decides which particles will survive. It therefore has the strongest influence on the esti-

mated position of the target. Here, we use the component-based descriptor to determine

the feature description for the target and for each particle, enabling the comparison

and weighting of particles.

First, we compute a descriptor d
j
t for each of the particles according to sec. 3.2.

That means, the target template MR∗ is adapted to the size of the current particle

and the descriptor d
j
t is computed for the resulting template M

j
t. Then, the weight of

a particle is computed based on the Tanimoto coefficient as

πj
t = c · eλ·T (d∗,d

j

t
). (5)

This function prioritizes particles which are very similar to d∗ by assigning an

especially high weight. A value of λ = 14 has shown to be useful in our experiments.

The parameter c is a normalization factor which is chosen so that
∑J

j=1 πj
t = 1.

Finally, the current target state, including target position and size, can be estimated

as a weighted average of the particles by

xt =

J∑

j=1

πj
t · sj

t . (6)

5 Experiments and Results

The experiments were carried out using a RWI B21 robot equipped with a simple

USB web camera mounted on a pantilt unit (see Fig. 3, left). The camera captures

15 frames/sec, with a resolution of 320 × 240. The software runs on a 2GHz dual core

PC onboard the robot. For the experiments, the tracking application was implemented

within the software framework RoSe developed at FKIE [35]. This framework consists

of roughly 30 modules which exchange information over a UDP-based communication

infrastructure. It is specifically designed to allow for the easy assembly of multi-robot

applications, which extensively use wireless ad-hoc communication. However, here we

only required two modules on a single robot:

2 The size of the region is not adapted by M but only by Q.
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Fig. 3 Left: the RWI B21 robot Blücher. The images were taken using the small pantilt
mounted webcam on top of the robot. Middle: An outline of the FKIE hallway environment.
The red arrows indicate the corridors. Right: Experiments in our robot experimentation hall
and in the corridors.

1) A visual tracking module, which captures the images and employs the tracking

algorithm for tracking a single person within the image. Based on the pixel location

of the person computed by the vision-based tracker, the module computes a heading

direction relative to the robot, steers the pantilt unit in order to center the person

within the image and commands the robot to follow the person. This is achieved by

continuously instructing the reactive collision avoidance component of the robot to

drive to a goal location a few meters ahead, in the direction of the moving person.

2) The collision avoidance component of the robot. It is specifically designed for the

task of following moving persons based on motion tracking information. It does so by

applying an expansive spaces tree algorithm, which carries out a search for admissible

paths in time and space, based on information about static obstacles provided by a

laser range scanner, as well as motion information, i.e. position and velocity vectors

of moving obstacles and the person being followed, provided by the external tracking

component [19].

We performed three series of experiments with this system within the robot ex-

perimentation hall and the hallways of the FKIE building (cf. Fig. 3). The first series

evaluates the robustness of the component-based tracker compared to simpler feature-

based techniques. In the second series, the robot autonomously controls the camera to

track a target person while other persons are moving around in the field of view of the

robot and try to distract it. In the third series, the robot uses the people tracker to

autonomously follow a person.

All series were performed during normal working hours with people walking around.

The lighting conditions varied strongly during the experiments: some areas show nat-

ural daylight, others artificial light. In some parts, the light was switched off resulting

in poorly illuminated areas. These conditions resulted in several images with very poor

quality. Furthermore, after quick camera movements the camera was out of focus for

some frames and capturing images was sometimes delayed resulting in large changes

between consecutive frames. To evaluate the tracking, we counted the number of detec-
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Fig. 4 Some tracking results. Green points: particles that matched to target; cyan points:
particles that didn’t match. Rectangles show estimated target state. Yellow rectangle: more
than 30% of particles match, otherwise the rectangle is blue.

tions manually. A detection occurs if the center of the target state was on the person3.

In Fig. 4 we display some of the tracking results.

5.1 Experiment 1: Comparison with Other Feature-based Techniques

Most similar to the here presented approach are color-based trackers. Here, we compare

our approach to three other color-based tracking methods. The first is the Camshift

tracker [7] based on the MeanShift algorithm [11]. It is a statistical method of finding

the peak of a probability distribution, usually obtained with a color histogram. Addi-

tionally to the implementation based on the HSV color space that is available from the

OpenCV library4, we used it with two other color spaces: RG chromaticity space and

LAB space.

The second and the third method are both based on particle filters. The second

approach is a standard method based on color histograms and was implemented ac-

cording to [27]. The third approach that we call ROI (region of interest) tracking is a

simplified version of the here presented method. It uses the same feature maps as in

sec. 3.1 but no components. Instead, it considers the whole target region and computes

a descriptor based on the ratio of the mean of the target region and the mean of the

background as in eq. 2. Thus, it computes a 6-dimensional target descriptor.5

To be able to compare the approaches on the same data, several image sequences

were acquired by tele-operating the robot and processed offline. We tested 5 different

runs, each covering one circle through the hallways (approx. 160 m per run). Each run

was performed with a different person as target, with different clothing (cf. Fig. 5).

The runs consisted of 1000–1600 frames each. The results are displayed in Tab. 1. In

all cases, the component-based tracker performed best, with an average detection rate

of 90%. The simpler ROI tracking achieved 77% on average. The approaches based on

color histograms (Camshift and histogram with particles) approaches perform consid-

erably worse (33, 45, 40%, and 37%). This is mainly due to problems with illumination

changes. For all approaches it turned out that the clothing of the person made a strong

3 This approximation is actually too optimistic since the region might include a part of the
background and still have its center on the target. It is reasonable here anyway since the center
is the point the robot uses as target direction.

4 OpenCV library: http://opencvlibrary.sourceforge.net/ For Camshift, it is usually neces-
sary to adapt the parameters newly for each object. This is difficult for targets like persons
which vary strongly in appearance due to different clothing. Since our tracker is applicable
to different objects without adapting parameters, we used the Camshift algorithm with the
standard parameter set of the OpenCV implementation for all test sequences to make the
approaches comparable.

5 We used almost the same method in [16], but omitted here the orientation features to
make the approach comparable to the other methods which are purely color-based.
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Fig. 5 Experiment 1: Top: initial frames and target regions R∗ (yellow rectangles) used to
learn the appearance of the 5 persons. Bottom: the templates MR∗ that are determined for
each of the targets. Each rectangle represents an mi,j , its color represents the feature map it
was extracted from.

# Frames correct detections [%]
Cam (HSV) Cam (RG) Cam (LAB) Hist. ROI component

1 1477 51 88 39 42 85 95
2 1158 53 62 54 73 98 94
3 1596 5 28 50 17 60 85
4 1392 13 1 10 15 61 90
5 1519 46 47 46 38 80 84

Average 33 45 40 37 77 90

Table 1 Experiment 1: Comparison of Camshift tracking with three different color spaces
(HSV, RG, LAB), color histogram tracking with particles, ROI tracking, and our new
component-based tracking. The rows show the results for the 5 persons in Fig. 5.

difference in performance: the larger the contrast and difference to the background, the

easier the tracking.

5.2 Experiment 2: Tracking with Autonomous Camera Control

In the 2nd series of experiments, the robot was not moving itself, but autonomously

controlled its camera to keep the target person in the center of the frame. We performed

4 runs with 4 different target persons. During all runs other persons were walking in

the same area, occasionally occluding the target (cf. Fig. 3, 3rd col., and Fig. 4, a,b).

This experiment demonstrates the robustness of the tracking mechanism and espe-

cially the ability to discriminate individual persons. The results are shown in Tab. 2.

Images in which the target was not visible were not considered for the detection rate

but are mentioned in col. 4. It shows that the tracking works generally very well, the

average detection rate is 91%. Most difficulties occurred in example 4, since here two

people were sometimes confused.

5.3 Experiment 3: Autonomous Person Tracking

In the 3rd series of experiments, the robot followed a person autonomously. Three runs

were performed in the robot experimentation hall and another four in the hallways of

FKIE (cf. Fig. 3 and Fig. 4, c-e). The robot estimated the position of the person in each
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# Frames detections [%] # frames without target
1 278 91 0
2 509 92 9
3 437 99 0
4 491 82 0

Average 429 91 2.25

Table 2 Experiment 2: Results of component-based tracking on a stationary robot with au-
tonomous camera control and several people walking around.

# Frames detections [%] # frames without target
1 431 93 1
2 472 96 0
3 560 96 75
4 1533 88 13
5 1199 94 0
6 1612 95 8
7 1116 99 0

Average 989 94 14

Table 3 Experiment 3: Component-based tracking in online experiments used to au-
tonomously drive a robot.

frame and drove autonomously into the direction of the estimated target state.6 The

camera was again controlled to center the target in the frame. The results are displayed

in Tab. 3. In all of the runs, the detection rate was above 80%. The robot managed

to keep the target person in its field of view very well. If the person was lost by the

tracker, an audible signal told the person that it should wait for the robot to catch up

again. One example in which the person was lost since it was too far away from the

robot is displayed in Fig. 4 e. On the four runs through the hallways the sharp corners

were the biggest challenge for the system. The 5th run was aborted on such a corner,

because the robot lost the person and then was not sure enough if it detected the right

person again. The average detection rate was 94%, showing that a robot equipped with

the component-based tracker is able to follow a person autonomously.

6 Conclusion

In this paper, we have presented a component-based approach for visual tracking. We

have applied the method to person tracking on a mobile platform which is especially

challenging due to real-time constraints, a moving camera, and strong illumination and

viewpoint changes. The appearance of a person is learned from an initially provided

target region and the resulting target descriptor is used to search for the target in

subsequent frames. Advantages of the system are that it determines automatically the

most descriminative parts of a target, that it considers not only the appearance of the

target but also of the background, and that it is quickly adaptable to a new target

without a time-consuming learning phase.

6 Here, control of the distance to the person is left to the laser-based collision avoidance.
The robot approaches the person until a certain minimal distance is achieved.
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We showed that the system is able to distinguish individuals and can follow a

person autonomously through an environment. However, the task of person tracking in

natural conditions is very challenging and there are still settings in which the system has

difficulties. Persons with clothing similar to the background (especially camouflage),

bright sunlight, and crowded environments are settings in which most systems fail.

Adding additional features, e.g. motion cues, and asking for feedback from the target

person in cases of ambiguity might help to tackle such problems. There are also cases in

which the current approach has difficulties if the appearance of target and background

change strongly, e.g. due to strong illumination changes. We are currently working on

automatically detecting such changes and adapting the target descriptor accordingly.
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Visual Landmark Generation and Redetection with a Single Feature

Per Frame

S. Frintrop and A. B. Cremers

Abstract— In this paper we show that visual landmark
generation and redetection is possible with a single feature per
frame. The approach is based on the assumption that highly
discriminative regions are easily redetectable in subsequent
frames as well as in frames visited from different viewpoints.
We investigate which feature detectors fit for this purpose
and under which conditions the discriminability applies. The
approach is tested in a topological localization scenario in
which the best feature is tracked over several frames to build
landmarks. We show that we can represent a large environment
with a few salient landmarks and that a large percentage
of these landmarks is robustly redetectable from different
viewpoints.

I. INTRODUCTION

Self localization and navigation belong to the key compe-

tences of mobile robots and have been a topic of intensive

research during the last decades. Vision-based approaches are

of special interest in many applications, since cameras are

light-weight, low-cost, passive sensors, that additionally offer

rich information about the environment [1], [2], [3]. Visual

localization and navigation is often based on landmarks,

that means on objects or regions in the environment that

serve as reference points for the robot. Ideally, they shall be

easily redetectable from different viewpoints, under changing

illumination conditions, and in the presence of disturbances

such as walking people.

The first step of visual landmark detection is usually

the feature detection. However, not all detected features

are useful landmark candidates. Especially corner features

are often detected at intersections of objects and thus not

stable [4]. Furthermore, most feature detectors obtain a

feature repeatability of 50 – 80%, depending on the scene

and the transformation between frames [5]. That means, a

large amount of the detected features is not redetected in a

following frame. Only a few of the features are stable enough

to survive the tracking over several frames. To find stable

landmarks, a common approach is to extract a large amount

of features (usually several hundred per frame), track them

over several frames and keep only the most stable ones [4].

However, detecting, matching and storing of hundreds of

features per frame and the comparison to a large image

database is costly. Robots usually have to operate in real-

time and additionally have to share resources between dif-

ferent modules and tasks. While there have been successful

approaches to deal even with large amount of features [6],

[7], it is certainly preferable if it is possible to solve the task

The authors are with the Institute of Computer Sci-
ence III, University of Bonn, 53117 Bonn, Germany
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Fig. 1. Repeatability depending on number of features per frame. Features
are selected by their quality as defined in sec. II-A.4. Examples determined
on data sets 1 and 5 of Fig. 3 for 4 different viewpoints (after 50, 100, 150,
and 200 frames) for Harris-affine regions, MSERs, and bottom-up salient
regions (VOCUS bu). Two typical cases occur: either the best feature is
very poor or extremely stable.

with less features. Desirable would be to know in advance

which features will turn out to be stable and thus will be

good candidates for landmarks.

When investigating sparse sets of features (1–20 features

per frame, features selected by their quality as defined in

sec. II-A.4), we found two typical cases for the distribution

of the repeatability values: Before converging to stable

repeatability values, the repeatability of the best feature was

either very poor or extremely high, often reaching 100%

repeatability (cf. Fig. 1). This behaviour depended on the

scene and was observed for all the investigated detectors. The

proportion of poor versus high performance cases however

differed among the detectors.

Outgoing from this observation, we pose the following

questions: is it possible to exploit the fact that the best feature

often is extremely stable? Is it possible to generate landmarks

and redetect them reliably with only one feature per frame?

For topological localization, it is in principle enough to

have one landmark every few meters. The robot does not

have to know its exact position and it is not necessary

to see a landmark in each frame, as long as the scene is

recognized reliably from time to time. A certain redundancy

is necessary anyway since some landmarks may be occluded

or removed upon revisiting that place, but as long as a few

stable landmarks per environment remain, this is sufficient.

In this paper, we show that topological localization is

possible with a single feature per frame. First, we inves-

tigate which feature detectors are suitable to be restricted

to a sparse set and which quality measure suits to deter-

mine the best feature. We investigate Harris-affine regions

[5], maximally stable extremal regions (MSERs) [8] and

a saliency detector [9]; we finally chose the last one for



further investigations and show that it is possible to build

stable landmarks from the most salient feature. In a scene

classification experiment, we show that a reliable redetection

of landmarks from different viewpoints is possible and that

a test sequence can be reliable allocated to the correct scene.

Feature selection has been investigated before in several

ways. In applications in which training data is available,

machine learning methods often determine the best features

for a class of objects from a pool of training images [10],

[11]. The reduced set however contains usually still several

dozens of features per frame or object and reduces only

the features in the database, not the ones obtained during

testing. Other approaches compare descriptors applied to the

detected regions and keep only the most discriminative ones

[12]. The main difference in our approach is that we start

much earlier with the preselection, namely already during

feature selection. In applications in which no training data is

available, e.g. visual SLAM (simultaneous localization and

mapping), some people use thresholds to reduce the number

of features. E.g., [2] only add features to their map if the

number of features visible in the robot view is below a

threshold and [3] keep only landmarks that perform well

over a sequence of frames. Preliminary investigations on the

repeatability of a single stable feature have been made in

[13]. Here, we extend this study by using detectors that

are known to perform well in other applications (Harris-

affine, MSERs), by introducing a more adequate repeatability

measure, and by performing more detailed experiments.

Completely new in this paper is the integration of the single-

feature approach into a topological localization scenario.

II. FEATURE DETECTION

In this section, we discuss and evaluate the feature detec-

tion. First, we describe the investigated feature detectors and

the quality measure to determine the best feature (sec. II-A).

Second, we present the performance measure repeatability

and extend the definition to image sequences (sec. II-B).

Finally, we investigate in several experiments which feature

detector provides the most stable feature in tracking and

redetection situations (sec. IV-A).

A. Feature Detectors

1) Harris-Affine Regions: Harris-affine regions are com-

puted by detecting interest points with the Harris detector

in scale-space and determining an elliptical region for each

point based on the second moment matrix of the intensity

gradient [5].1 For each pixel !x = (x, y), the Harris detector

determines its cornerness c(!x) (also strength or Harris re-

sponse) as c(!x) = det(M) − αtrace2(M), where M is the

second moment matrix describing the local neighborhood

of !x. This detector is applied to multiple scales and the

characteristic scale is chosen to obtain scale-invariance.

Finally, the affine region is determined according to [14].

If the cornerness exceeds a certain threshold, the pixel is

defined as a corner.

1We used the detector from http://www.robots.ox.ac.uk/∼vgg/research/affine

2) MSERs: Maximally Stable Extremal Regions (MSERs)

were introduced in [8] and have shown high repeatability

results under various image transformations [5].2 The MSER

algorithm first detects several nested sets of extremal regions

Q1, ..., Qk. Each Qi is a region such that for all pixels

p ∈ Qi, q ∈ ∂Qi : I(p) > I(q) (MSER+) or I(p) < I(q)
(MSER-), where ∂Qi is the boundary of Qi, consisting of

pixels that are adjacent but do not belong to Qi, and I(p) is

the intensity value of p. A region Qi is maximally stable

iff the stability q(i) = |Qi+∆ − Qi−∆|/|Qi| has a local

minimum at i. Usually, a fixed ∆ is used. This however

results often in a set of regions with the same stability value

(e.g. q(i) = 0) making it impossible to determine a single

best MSER. Increasing ∆ results in fewer regions with higher

repeatability but usually lower q(i), while a too large ∆
might result in no MSERs in certain images. In our approach,

we increase the ∆ automatically until the MSER with the

lowest q(i) is non-ambiguous.

3) Biologically-inspired salient regions: Biologically-

inspired attention systems compute the saliency of regions

based on concepts of the human visual system [15]. They

have shown to outperform other methods such as intensity

contrasts, local oriented edge density, or entropy in terms

of predicting human eye movements [16]. Here, we use the

attention system VOCUS [9] that is real-time capable (20 ms

for a 320×240 pixel image, on a 2.5 GHz PC [17]) and has

a top-down part to search for targets.

VOCUS creates a saliency map by computing image

contrasts and uniqueness of a feature. The feature com-

putations for the features intensity, orientation, and color

are performed on 3 different scales with image pyramids.

Two intensity feature maps, for on-off and off-on contrasts,

are computed by center-surround mechanisms. Similarly,

4 orientation maps (0 ◦, 45 ◦, 90 ◦, 135 ◦) and 4 color maps

(green, blue, red, yellow) are computed (cf. [9]).

The core of the saliency detector is the uniqueness weight

that is applied before feature channels are fused: a feature

which occurs seldomly in a scene is assigned a higher

saliency than a frequently occurring feature. This is a mech-

anism which enables humans to instantly detect outliers. The

uniqueness W of map X is computed as W(X) = X/
√

m,

where m is the number of local maxima that exceed a

threshold. Note that this weighting, together with the parallel

investigation of different feature channels, distinguishes this

detector from standard detectors such as Harris corners or

MSERs because it considers the global instead of the local

discriminability of a region.

The weighted feature maps are summed up to 3 conspicu-

ity maps I (intensity), O (orientation) and C (color) and

combined to the saliency map: Sbu = W(I) + W(O) +
W(C). The salient regions, the VOCUS-ROIs, are the local

maxima in S above a threshold, extended to a region with a

region growing approach [18].

4) Sorting features: To determine the best features, we

need a measure for the quality. This depends on the detector,

2We used the MSER code from the VLFeat library: http://www.vlfeat.org



for Harris-affine regions we chose the cornerness, for MSERs

the stability, for VOCUS-ROIs the saliency. This results for

each detector in an ordered list of features Fi = (F1, ..., Fn),
where F1 is the best feature and Fj has a higher quality than

Fj+1.

B. Performance Measure: Repeatability

The performance measure to compare the stability of

features is the repeatability that is defined as follows:

R(Ij , Ik) =
# features in Ij with correspondence in Ik

# features in Ij

.

for parts of the scene visible in both frames Ij and Ik.

To be a valid correspondence, about 50% of the regions

have to overlap. This allows a relatively large overlap error

but a powerful descriptor is still able to match such regions

successfully (cf. [5]). A symmetric measure can be obtained

as follows:3

Rsym(Ij , Ik) = (R(Ij , Ik) + R(Ik, Ij))/2 .

To extend the repeatability definition to image sequences

or sets, we distinguish two different versions: we define the

tracking repeatability as the average repeatability between

consecutive frames:

RT (I1:t) =

∑t

i=2
Rsym(Ii−1, Ii)

(t − 1)
.

for an image sequence I1:t = I1, ..., It. It is called tracking

repeatability because it is mainly of interest when features

are tracked over frames. The viewpoint repeatability on the

other hand is defined as the average repeatability between a

frame Ii and the remaining images of the sequence or set:

RV (Ii, I1:t) =

∑t

j=1,Ij #=Ii Rsym(Ii, Ij)

(t − 1)
.

It is called viewpoint repeatability because, in contrast to

tracking, the viewpoint between considered frames might

change strongly, usually the more the longer the sequence.

III. LANDMARK GENERATION

While a feature is a 2D region in an image, a landmark is

a region in the 3D world that can be observed from different

viewpoints. To create landmarks, the detected feature is

tracked over several frames. The resulting list of features

represents a landmark. The length of a landmark is the

number of elements in the list, which is equivalent to the

number of frames the feature was detected in.

To compute the landmarks, we match new features to

features from previous frames whereas we allow gaps of

up to 2 frames. We finally consider only landmark with a

3The symmetric measure in [5] divides instead by the smaller of the
number of regions in both frames. This might however result in problems
if the number of features in the 1st frame is a subset of the features in the
2nd frame. The measure would report a repeatability of 100%, even if the
number of features in the 2nd frame is considerably larger. This is especially
a problem for small numbers of features.

length ≥ k (here: k = 5). This enables to determine which

landmarks are stable over time.

To match two features, we use the SIFT descriptor [12]

that has outperformed most other descriptors in terms of

matching performance [19]. Usually, SIFT descriptors are

computed at intensity extrema in scale space [12] or at

Harris-Laplacians [5]. Here, we calculate one SIFT descrip-

tor for each VOCUS-ROI. The center of the ROI provides

the position and the size of the ROI determines the size

of the descriptor grid. The grid should be larger than the

ROI to allow catching information about the surrounding but

should also not include too much background and stay within

the image borders4. The procedure to generate landmarks is

illustrated in Fig. 2.

IV. EXPERIMENTS

In our experiments, we investigate three questions. First:

Which is the best feature detector for our purpose? This ex-

periment investigates the repeatability in tracking situations

as well as under strong viewpoint changes. Second: Is it

possible to create stable landmarks from a single feature per

frame? And third: Can localization be performed based on

such a sparse landmark representation?

A. Which is the best feature detector for our purpose?

To test which feature detector suits best for our purpose,

we investigated the repeatability of features on 7 image

sequences of 200-400 frames of size 320× 240 (cf. Fig. 3).

In all sequences, strong viewpoint changes occur. Data sets

1–4 show natural scenes in an office environment and contain

objects which were especially designed to be salient for

humans: a green exit sign, a magnet clamp, a red circle

containing a warning remark, and, in data set 4, a fire

extinguisher and a red piece of paper at the wall. The

last 3 data sets show natural, cluttered office environment

scenes. We investigated the tracking repeatability as well as

the viewpoint repeatability on these data sets. The results

are displayed in Table I. As to be expected, the tracking

repeatability is almost always higher than the viewpoint

repeatability. Worth to note is also that the viewpoint repeata-

bility naturally goes down the more the viewpoint changes.

It turns out that the Harris regions as well as the

salient VOCUS-ROIs perform well in most cases, whereas

the MSERs show a considerably lower performance. The

VOCUS-ROIs outperform the Harris regions on average

since the attention system is able to capture the uniqueness of

features in more cases. The low performance of the MSERs

can be explained as follows: usually, MSERs are stable, if

all possible MSERs in a scene are considered (as in [5]).

But, since all MSERs have an equal stability value, it is

hard to determine a stable subset or even a best feature. So,

if reduction of the number of features is desired, the other

detectors seem to be the better choice.

We decided to use the salient VOCUS-ROIs for our appli-

cation, first, because they yielded the highest repeatability

4We chose a grid size of 1.5 times the maximum of width and height of
the ROI.



Fig. 2. The process to generate landmarks: For each feature (ROI, solid rectangle), a SIFT descriptor is computed (area in dashed rectangle). The
descriptors of the ROIs of consecutive frames are compared. If they match, a landmark is created. Gaps of up to 2 frames are allowed and only landmarks
of length ≥ k = 5 are considered.

Fig. 3. Data sets. 1st row: 1st frame, 2nd row: last frame of sequence

data Tracking repeatability [%] Viewpoint repeatability [%]
set # frames Harris MSER VOCUS-ROI Harris MSER VOCUS-ROI

1. 259 96 25 97 96 18 97
2. 210 76 80 100 78 89 100
3. 315 94 20 90 77 5 82
4. 254 95 33 83 92 21 29
5. 254 85 5 100 19 11 100
6. 209 76 13 82 61 1 14
7. 341 86 10 84 19 9 72

av. 87 27 91 63 22 71

TABLE I

THE TRACKING REPEATABILITY RT (I1:t) AND THE VIEWPOINT REPEATABILITY RV (I1, I2:t) OF THE BEST FEATURE F1 (SELECTED ACCORDING TO

SEC. II-A.4) ON THE DATA SETS OF FIG. 3.

and second, because it is possible to adapt the attention

system to search for expected regions in a top-down manner.

We plan to exploit this in future work.

B. Is it possible to create stable landmarks from a single

feature per frame?

In this section, we investigate whether the VOCUS-ROIs

can be used to create stable landmarks. A stable landmark

should be visible over several frames and should be rede-

tectable under viewpoint and illumination changes. We tested

our approach in 5 scenes of a typical office building: 3

corridors on different levels of the same building (scene

2,3,4) and two open areas (scene 1 and 5) (cf. Fig. 4).

The corridors, especially scene 3 and 4, are very similar,

resulting in matching ambiguities. The experiments were

performed during normal working hours, i.e. people walked

around, doors were opened or closed etc. In each of the

scenes, we recorded two image sequences (denoted a and b
in the following) with a mobile camera mounted on a moving

vehicle. Each track had a length of about 100 m, images had

a resolution of 320 × 240.

First, we test whether a single feature per frame is suf-

ficient at all to build landmarks. Remember that a feature

has to be seen and matched over at least 5 frames to

become a valid landmark. Thus, if repeatability is too low,

the system will not create any landmarks. The results are

shown in Table II. We obtained between 9 and 62 landmarks

per scene, depending on the length of the sequence. Each

landmark consists of 7 – 16 ROIs, on average 10 ROIs.

That means, a feature that was used to create a landmark

was on average visible over 10 frames. This shows that it is

possible to create landmarks even from a single feature per

frame. The approach can also be applied for tasks like visual

SLAM (simultaneous localization and mapping) in which no

previous training is possible.

Next, we investigate whether these landmarks can be rede-

tected under viewpoint and illumination changes. Especially

for a sparse landmark representation this is not obvious and

has to be investigated further.

To test the redetection of landmarks, we divided the image



Fig. 4. Example frames of the 5 scenes we investigated for scene recognition

TABLE II

LANDMARK GENERATION

Scene # Frames # landmarks av. # ROIs per LM

1.a 539 13 8
1.b 598 26 10
2.a 1194 31 7
2.b 1144 56 9
3.a 828 32 12
3.b 749 17 10
4.a 1720 62 16
4.b 1064 48 11
5.a 580 26 12
5.b 568 9 7

TABLE III

LANDMARK REDETECTION. LEFT COLUMN: Si/Sj MEANS THAT

LANDMARKS WERE OBTAINED FROM REFERENCE SEQUENCE Si AND

REDETECTED IN TEST SEQUENCE Sj .

Scene redetected LMs [%]

1.a/1.b 84
2.a/2.b 83
3.a/3.b 75
4.a/4.b 61
5.a/5.b 73
1.b/1.a 69
2.b/2.a 79
3.b/3.a 94
4.b/4.a 38
5.b/5.a 78

average 73

sequences into train and test sequences. In a first run, the

sequences denoted by a (1.a, 2.a, ..., 5.a) are used as training

data Si, i ∈ {1, .., 5}, the ones denoted by b as test sequences

Sj , j ∈ {1, .., 5}. In a second run, we applied the sequences

vice versa. The redetection ratio was determined by matching

the detected VOCUS-ROIs of each frame of test sequence

Sj to all landmarks obtained from the training sequences

Si, i &= j. (Remember that only one of these sequences is

from the same environment as Sj , the other sequences are

from different environments.) Some matching examples are

displayed in Fig. 5; the percentage of redetected landmarks is

shown in Tab. III. It shows that generally the majority of the

landmarks, on average 73%, is redetected in a test sequence.

Thus, stable landmarks can be created from a single feature

per frame and reliably redetected.

C. Can we perform topological localization with such a

sparse landmark representation?

In this section, we show that the sparse landmark rep-

resentation that we obtained in the previous section can

be used to reliably localize a system in an office scenario.

We use the same sequences as in the previous section and

show that we can reliably assign the correct location to a

sequence of images. To show this, we cross-validated the

matching performance of all sequences to each other, i.e.

we considered one sequence Si as training data and another

sequence Sj as test data. For each sequence combination

(Si, Sj) we compute the confidence that the test sequence

Sj was obtained in the same environment as the reference

sequence Si:

C(Si, Sj) =
M(Si, Sj)

∑N

k=1,k #=j M(Sk, Sj)
, ∀i &= j

where N is the number of sequences, here N = 10, and

M(Si, Sj) denotes the number of ROI matches between Si

and Sj .

The confidence values are shown in Tab. IV. It can be seen

that the confidence values for test sequences from the same

environment as the reference sequences are considerably

higher (bold numbers). In most cases, they are between 95

and 100%. Only the matching confidences for scenes 3 and

4, two very similar corridors, are a little lower. The similarity

of the two scenes results in several false detections. Still, the

confidence for the correct sequence is always more than three

times as high as the confidence for each other sequence. The

final decision of the robot for a test sequence Sj is:

Estimated scene = argmaxi C(Si, Sj) (1)

Based on this decision rule, the system determines the

correct scene for all of the test sequences. Thus, we have

shown that it is possible to reliably localize a system based

on a single feature per frame. This is also applicable if no

training phase is possible as in visual SLAM.

V. DISCUSSION AND CONCLUSION

In this paper, we have shown that visual localization and

scene recognition is possible with a very sparse landmark

representation. Focusing on the most salient feature in a

frame enables to select the most discriminative regions in

an environment as landmark candidates. While this approach

does not detect landmarks in each part of the environment

(if there is nothing salient, no landmarks are found), it works

well as long as the environment contains some discriminative

parts. Especially human-made environments have plenty of

such salient objects: fire extinguishers, exit signs, doors or

posters can serve as valuable landmarks. The advantage

of such landmarks is that they are easily redetected from



TABLE IV

THE CONFIDENCE VALUES FOR THE LANDMARK MATCHING. ROWS DENOTE THE REFERENCE SEQUENCES Si , COLUMNS THE TEST SEQUENCES Sj .

BOLD NUMBERS HIGHLIGHT THE HIGHEST VALUE IN A COLUMN.

1.a 1.b 2.a 2.b 3.a 3.b 4.a 4.b 5.a 5.b

1.a 100 0 0 0 0 0 0 0 0

1.b 100 0 0 0 0 0 0 0 0

2.a 0 0 99 2 1 0 1 0 0

2.b 0 0 95 1 1 0 0 1 0

3.a 0 0 3 1 82 11 19 1 1

3.b 0 0 1 0 75 7 11 0 0

4.a 0 0 0 1 8 5 68 0 0

4.b 0 0 1 0 14 1 82 0 0

5.a 0 0 0 0 1 0 0 0 98

5.b 0 0 0 0 1 0 0 0 98

Fig. 5. Some examples of matching ROIs. Top: test sequence, bottom: reference sequence. Four successful matches and one false match (right) are shown.

different viewpoints. We show in several experiments that the

one-feature-per-frame approach is well suited for landmark

generation and redetection.

While the approach works well in the presented setting, it

could be even improved with active camera control and top-

down feature search. This would enable the robot to actively

search for salient landmarks. In future work, we plan to

integrate the one-feature approach to a SLAM setting with

active camera control as the one in [3]. We also plan to

investigate how the approach copes with long-term changes

in the environment.
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Attentional Landmarks and Active Gaze Control

for Visual SLAM
Simone Frintrop and Patric Jensfelt

Abstract—This paper is centered around landmark detection,
tracking and matching for visual SLAM (Simultaneous Localiza-
tion And Mapping) using a monocular vision system with active
gaze control. We present a system specialized in creating and
maintaining a sparse set of landmarks based on a biologically
motivated feature selection strategy. A visual attention system
detects salient features which are highly discriminative, ideal
candidates for visual landmarks which are easy to redetect.
Features are tracked over several frames to determine stable
landmarks and to estimate their 3D position in the environment.
Matching of current landmarks to database entries enables loop
closing. Active gaze control allows us to overcome some of the
limitations of using a monocular vision system with a relatively
small field of view. It supports (i) the tracking of landmarks which
enable a better pose estimation, (ii) the exploration of regions
without landmarks to obtain a better distribution of landmarks
in the environment, and (iii) the active redetection of landmarks
to enable loop closing in situations in which a fixed camera fails to
close the loop. Several real-world experiments show that accurate
pose estimation is obtained with the presented system and that
active camera control outperforms the passive approach.

Index Terms—Mobile robotics, visual SLAM, landmark selec-
tion, visual attention, saliency, active camera control

I. INTRODUCTION

WHAT do I see? This is one of the most important

questions for a robot that navigates and localizes itself

based on camera data. What is “seen” or “perceived” at a

certain moment in time is firstly determined by the images

acquired by the camera and secondly by the information ex-

tracted from the images. The first aspect is usually determined

by the hardware, but if a steerable camera is available, it is

possible to actively direct the camera to obtain useful data.

“Useful” refers here to data which supports improving the

current task, e.g. localization and map building. The second

aspect is especially important in tasks based on visual data

since the large amount of image data together with real-time

constraints make it impossible to process everything. Selecting

the most important data is one of the most challenging tasks

in this field.

SLAM is the task of simultaneously estimating a model

or map of the environment and the robot’s position in this

map. The map is not necessarily a 3D reconstruction of the

world, it is a representation that allows the robot to localize

itself. Based on range sensors such as laser scanners, SLAM

has reached a rather mature level [1], [2], [3], [4], [5]. Visual

S. Frintrop is with the Institute of Computer Science III,
Rheinische Friedrich-Wilhems-Universität, 53117 Bonn, Germany e-mail:
frintrop@iai.uni-bonn.de

P. Jensfelt is with the Centre for Autonomous Systems (CAS), Royal
Institute of Technology, 10044 Stockholm, Sweden patric@csc.kth.se

SLAM instead attempts to solve the problem with cameras as

external sensors [6], [7], [8], [9], [10], [11]. This is desirable

because cameras are low-cost, low-power and lightweight

sensors which may be used in many applications where laser

scanners are too expensive or too heavy. In addition, the rich

visual information allows the use of more complex feature

models for position estimation and recognition. On the other

hand, visual SLAM is considerably harder, for example for

the reasons given above.

A key competence in visual SLAM is to choose useful

landmarks which are easy to track, stable over several frames,

and easily re-detectable when returning to a previously visited

location. This loop closing is important in SLAM since it

decreases accumulated errors by distributing information from

areas with lower uncertainty to those with higher. Furthermore,

the number of landmarks should be kept under control since

the complexity of SLAM typically is a function of the number

of landmarks in the map. Landmarks should also be well dis-

tributed over the environment. Here, we suggest the application

of a biologically motivated attention system [12] to find salient

regions in images. Attention systems are designed to favor

regions with a high uniqueness such as a red fire extinguisher

on a white wall. Such regions are especially useful for visual

SLAM because they are discriminative by definition and easy

to track and redetect. We show that salient regions have a

considerably higher repeatability than Harris-Laplacians and

SIFT keypoints.

Another important part of our system is the gaze control

module. The strategy to steer the camera consists of three

behaviours: a tracking behaviour identifies the most promis-

ing landmarks and prevents them from leaving the field of

view. A redetection behaviour actively searches for expected

landmarks to support loop-closing. Finally, an exploration

behaviour investigates regions with no landmarks, leading to a

more uniform distribution of landmarks. The advantage of the

active gaze control is to obtain more informative landmarks

(e.g. with a better baseline), a faster loop closing, and a better

distribution of landmarks in the environment.

The contributions of this paper are first, a landmark selection

scheme which allows a reliable pose estimation with a sparse

set of especially discriminative landmarks, second, a precision-

based loop-closing procedure based on SIFT descriptors, and

finally, an active gaze control strategy to obtain a better

baseline for landmark estimations, a faster loop closing, and

a more uniform distribution of landmarks in the environment.

Experimental results are presented to show the performance of

the system. This paper builds on our previous work [8], [13],

[14] and combines all this knowledge into one system.
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In the following, we first give an overview over related

work (sec. II), then we introduce the SLAM architecture

(sec. III). Sec. IV, V, and VI describe the landmark selection

and matching processes and VII introduces the active camera

control. Sec. VIII shows the performance of the SLAM system

in several real-world scenarios and illustrates the advantages

of active camera control. Finally, we finish with a conclusion.

II. RELATED WORK

As mentioned in the introduction, there has been large

interest in solving the visual SLAM problem during the last

years [6], [7], [8], [9], [10], [11]. One of the most important

issues in this field are landmark selection and matching. These

mechanisms directly affect the ability of the system to reliably

track and redetect regions in a scene and to build a consistent

representation of the environment. Especially in loop closing

situations, matching of regions has to be largely invariant to

viewpoint and illumination changes.

The simplest kind of landmarks are artificial landmarks like

red squares or white circles on floor or walls [15], [16]. They

have the advantage that their appearance is known in advance

and the re-detection is easy. While a simple solution if the

main research focus is not on the visual processing, this ap-

proach has several obvious drawbacks. First, the environment

has to be prepared before the system is started. Apart from

the effort this requires, this is often not desired, especially

since visual landmarks are also visible for humans. Second,

landmarks with uniform appearance are difficult to tell apart

which makes loop closing hard. Another approach is to detect

frequently occurring objects like ceiling lights [17]. While this

approach does not require a preparation of the environment, it

is still dependent on the occurrence of this object.

Because of these drawbacks, current systems determine

landmarks which are based on ubiquitous features like lines,

corners, or blobs. Frequently used is the Harris corner detector

[18] which detects corner-like regions with a significant signal

change in two orthogonal directions. An extension to make the

detector scale-invariant, the Harris-Laplacian detector [19],

was used by Jensfelt et al. for visual SLAM [8]. Davison and

Murray [6] find regions with a version of the Harris detector

to large image patches (9× 9 to 15× 15) as suggested by Shi

and Tomasi [20]. Newman and Ho [21] used maximally stable

extremal regions (MSERs) [22] and in newer work [9] Harris

affine regions [23]. In previous work, we used a combination

of attention regions with Harris-Laplacian corners [13].

Here, we show that attention regions alone can be used as

landmarks which simplifies and speeds up the system. Many

attention systems have been developed during the last two

decades [24], [25], [12]. They are all based on principles of

visual attention in the human visual system and adopt many of

their ideas from psychophysical and neuro-biological theories

[26], [27], [28]. Here, we use the attention system VOCUS

[12], which is capable to operate in real-time [29].

Attention methods are well suited for selecting landmark

candidates since they favor especially discriminative regions

in a scene, nevertheless, their application to landmark selection

has rarely been studied. Nickerson et al. detect landmarks

in hand-coded maps [30], Ouerhani et al. built a topological

map based on attentional landmarks [31], and Siagian and Itti

use attentional landmarks in combination with the gist of a

scene for outdoor Monte-Carlo Localization [32]. The only

approach we are aware of which uses an approach similar to

a visual attention system for landmark detection for SLAM,

is presented in [33]. They use a saliency measure based

on entropy to define important regions in the environment

primarily for the loop closing detection in SLAM. However,

the map itself is built using a laser scanner.

Landmarks can only be detected and re-detected if they

are in the field of view of the robot’s sensor. By actively

controlling the viewing direction of the sensors much can

be gained. The idea of actively controlling the sensors is not

new. Control of sensors in general is a mature discipline that

dates back several decades. In vision, the concept was first

introduced by Bajcsy [34], and made popular by Active Vision

[35] and Active Perception [36]. In terms of sensing for active

localization, Maximum Information Systems are an early

demonstration of sensing and localization [37]. Active motion

to increase recognition performance and active exploration

was introduced in [38]. More recent work has demonstrated

the use of similar methods for exploration and mapping [39].

Active exploration by moving the robot to cover space was

presented in [40] and in [41] the uncertainty of the robot pose

and feature locations were also taken into account. In [42]

an approach for active sensing with ultrasound sensors and

laser-range finders in a localization context is presented. When

cameras are used as sensors, the matching problem becomes

more difficult but includes also a higher information content.

In the field of object recognition, [43] show how to improve the

recognition results by moving the camera actively to regions

which maximize discriminability.

In the field of visual SLAM, most approaches use cameras

mounted statically on a robot. Probably the most advanced

work in the field of active camera control for visual SLAM

is presented by Davison and colleagues. In [6], they present

a robotic system which chooses landmarks for tracking which

best improve the position knowledge of the system. In more

recent work [44], [11], they apply their visual SLAM approach

to a hand-held camera. Active movements are done by the user,

according to instructions from a user-interface [44], or they

use the active approach to choose the best landmarks from the

current scene without controlling the camera [11].

III. SYSTEM OVERVIEW

This paper describes a system for visual SLAM using an

attention-based landmark selection scheme and an active gaze

control strategy. This section gives an overview of the compo-

nents in the system. The visual SLAM architecture is displayed

in Fig. 1. Main components are a robot which provides camera

images and odometry information, a feature detector which

finds regions of interest (ROIs) in the images, a feature tracker

which tracks ROIs over several frames and builds landmarks,

a triangulator which identifies useful landmarks, a database

in which triangulated landmarks are stored, a SLAM module

which builds a map of the environment, a loop closer which
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Fig. 1. The active visual SLAM system estimates a map of the environment
from image data and odometry.

matches current ROIs to the database and a gaze control

module which determines where to direct the camera to. The

robot used in the experiments is an ActivMedia PowerBot

equipped with a Canon VC-C4 pan/tilt/zoom camera mounted

in the front of the robot at a height of about 0.35m above the

floor. The ability to zoom is not used in this work.

When a new frame from the camera is available, it is

provided to the feature detector, which finds ROIs based on

a visual attention system. Next, the features are provided to

the feature tracker which stores the last n frames, performs

matching of ROIs in these frames and creates landmarks. The

purpose of this buffer is to identify features which are stable

over several frames and have enough parallax information for

3D initialization. These computations are performed by the

triangulator. Selected landmarks are stored in a database and

provided to the EKF-based SLAM module which computes

an estimate of the position of landmarks and integrates the

position estimate into the map. Details about the robot and the

SLAM architecture can be found in [8]. Notice that the inverse

depth representation for landmarks [45] would have allowed

for an undelayed initialization of the landmarks. However the

main purpose of the buffer in this paper is for selecting what

landmarks are suitable for inclusion in the map and it would

thus still be used had another SLAM technique been applied.

The task of the loop closer is to detect if a scene has been

seen before. Therefore, the features from the current frame are

compared with the landmarks in the database. The gaze control

module actively controls the camera. It decides whether to

track currently seen landmarks, to actively look for predicted

landmarks, or to explore unseen areas. It computes a new

camera position which is provided to the robot.

IV. FEATURES AND LANDMARKS

As mentioned before, landmark selection and matching

belong to the most important issues in visual SLAM. A

landmark is a region in the world. It has a 3D location and

an appearance. A feature on the other hand is a region in

an image. It has only a 2D location in the image and an

appearance. The distance to the feature is initially not known

since we use a monocular vision system. To build landmarks,

features are detected in each frame, tracked over several frames

and finally, the 3D position of the landmark is estimated by

triangulation.

Feature selection is performed with a detector and the

matching with a descriptor. While these two mechanisms are

often not distinguished in the literature (people talk e.g. about

“SIFT-features”), it is important to distinguish between them.

A stable detector is necessary to redetect the same regions in

different views of a scene. In applications like visual SLAM

with time and memory constraints, it is also favorable to

restrict the amount of detected regions. A powerful descriptor

on the other hand has to capture the image properties at the

detected region of interest and enable a stable matching of

two regions with a high detection and low false detection

rate. It has to be able to cope with viewpoint variations as

well as with illumination changes. In this section, first the

feature detection is introduced which finds ROIs in images

(IV-A), then the descriptors which describe ROIs (IV-B), and

finally the strategy to match two ROIs based on the descriptors

(IV-C).

A. Attentional Feature Detection

An ideal candidate for selecting a few, discriminative re-

gions in an image is a visual attention system. Computational

attention systems select features motivated from mechanisms

of the human visual system: several feature channels are

considered independently and strong contrasts and the unique-

ness of features determine their overall saliency. The resulting

regions of interest have the advantage that they are highly dis-

criminative, since repeated structure is assigned low saliency

automatically. Another advantage is that there are usually only

few regions detected per image (on average between 5 to 20),

reducing the amount of features to be stored and matched

considerably.

The attention system we use is VOCUS (Visual Object de-

tection with a CompUtational attention System) [12]. VOCUS

consists of a bottom-up part which computes saliency purely

based on the content of the current image and a top-down

part which considers pre-knowledge and target information to

perform visual search. Here, we consider only the bottom-

up part of VOCUS, however, top-down search can be used

additionally if a target is specified.1 For the approach presented

here, any real-time capable attention system which computes

a feature vector for each region of interest could be used.

An overview of VOCUS is shown in Fig. 2. The bottom-

up part detects salient image regions by computing image

contrasts and the uniqueness of a feature. The computations for

the features intensity, orientation, and color are performed on

3 different scales with image pyramids. The feature intensity

is computed by center-surround mechanisms; in contrast to

most other attention systems [24], [31], on-off and off-on

contrasts are computed separately. After summing up the

scales, this yields 2 intensity maps. Similarly, 4 orientation

maps (0 ◦, 45 ◦, 90 ◦, 135 ◦) are computed by Gabor filters and

4 color maps (green, blue, red, yellow) which highlight salient

1In [46] we found that in tracking situations, bottom-up matching out-
performs top-down search, for loop-closing, top-down search is preferable.
But since using the top-down mechanism requires a target, rather precise
expectations about expected landmarks are necessary. If the system searches
for many expected landmarks in each frame this slows down the system
considerably since the top-down search has to be applied for each expectation.
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Fig. 2. Left: the visual attention system VOCUS detects regions of interest (ROIs) in images based on the features intensity, orientation, and color. For each
ROI, it computes a feature vector which describes the contribution of the features to the ROI. Right: The feature and conspicuity maps for the image on the
left. Top-left to bottom-right: intensity on-off, intensity off-on, color maps green, blue, red, yellow, orientation maps 0 ◦, 45 ◦, 90 ◦, 135 ◦ and conspicuity
maps I , C, O. Since the red region sticks out as a unique peak in the feature map red, this map is weighted strongly by the uniqueness weight function and
the corresponding region becomes the brightest in the saliency map (left, top).

regions of a certain color. Before the features are fused, they

are weighted according to their uniqueness: a feature which

occurs seldomly in a scene is assigned a higher saliency than

a frequently occurring feature. This is a mechanism which

enables humans to instantly detect outliers like a black sheep

in a white herd [26], [27]. The uniqueness W of map X is

defined as

W(X) = X/
√

m, (1)

where m is the number of local maxima that exceed a

threshold and ’/’ is here the point-wise division of an image

with a scalar. The maps are summed up to 3 conspicuity maps

I (intensity), O (orientation) and C (color) and combined to

form the saliency map:

S = W(I) + W(O) + W(C) (2)

From the saliency map, the brightest regions are extracted as

regions of interest (ROIs). This is done by first determining the

maxima (brightest points) in the map and then finding for each

maximum a surrounding region with seeded region growing.

This method finds recursively all neighbors with sufficient

saliency. For simpler storing of ROIs, we approximate the

region here by a rectangle.

The output of VOCUS for one image is a list of ROIs, each

defined by 2D location, size and a feature vector (see next

section). The feature and conspicuity maps for one example

image are displayed in Fig. 2, right.

Discussion on Feature Detection: The most common

feature detectors for visual SLAM are corner-like features as

SIFT keypoints [47] or Harris-Laplacian points [19]. These

approaches are usually based on the idea that many features

are extracted and a few of them show to be useful for tracking

and matching.2 Matching these features between frames to

find stable ones, matching to existing landmarks, storing

landmarks in the database, and matching current features to the

database requires considerable time. With intelligent database

management based on search trees, it is possible to store and

access a large amount of features in real-time [8], [48], [49].

Nevertheless, solving the task equally well with less features is

favorable and enables to use computational power and storage

for other processes. To enable the system to use only few

features, it is necessary to have a detector which computes

discriminative features and is able to prioritize them.

We claim that an attention system is especially well suited

to detect discriminative features and that the repeatability of

salient regions is higher than the repeatability of non-salient

regions and of features detected by standard detectors. The

repeatability is defined as the percentage of regions which

are redetected in a subsequent frame (cf. [23]). While an

exhaustive analysis is beyond the scope of this paper, a

2We obtained in average 400 – 500 Harris-Laplace features per frame.
Computing these features together with a SIFT descriptor required 250 ms
per frame.
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few experiments shall illustrate this.3 The precondition for

the following experiments is that one or a few object(s) or

region(s) in the scene are salient (a salient region differs from

the rest of the scene in at least one feature type).

In the experiment in Fig. 3, we compare an image sequence

showing many white and one green object. For humans, the

green object visually pops out of the scene, so it does for

VOCUS. We compared the performance of VOCUS with two

other detectors: Harris-Laplace corners and SIFT keypoints,

i.e. extrema in DoG scale space, since these are the most

commonly used detectors in visual SLAM scenarios.4 To make

the approaches comparable, we reduced the number of points

by sorting them according to their response value and using

only the points with the strongest response. We compared

whether this response can be used to obtain a similar result as

with salient regions.

We determined the repeatability of regions over 10 frames

for different amounts of detected features.5 The result of the

comparison is shown in Fig. 3. The highest repeatability is

naturally obtained for the most salient region: it is detected

in each frame. The strongest Harris-Laplace feature and the

strongest SIFT keypoint on the other hand are in a subsequent

frame only detected at the same position in 20% of the

images. We compared the repeatability up to 11 features per

frame since this is the average number of features detected

by the attention system in our experiments. It shows that the

repeatability of attentional ROIs is consistently higher than

the one of the other detectors. It remains to mention that

the repeatability of Harris-Laplace features and SIFT points

goes up when computing more features, repeatability rates

of about 60% have been reported for Harris-Laplacians in

[23]. Note that our point here is that with attentional ROIs

it is possible to select very few discriminative features with

high repeatability, which is not possible with the other, locally

operating detectors.

To show that the results in these simple experi-

ments also extend to longer image sequences and to

more natural settings, some videos showing qualita-

tive results can be found on http://www.informatik.uni-

bonn.de/∼frintrop/research/saliency.html. While these exper-

iments illustrate the advantages of salient regions for visual

SLAM, more detailed experiments will be necessary to in-

vestigate the differences of the different detectors in different

settings.

Another aspect to mention is the accuracy of the detectors.

The Harris-Laplace detector is known to be very precise and

to obtain sub-pixel accuracy. Attention regions on the other

hand are not as precise, their position varies sometimes a

few pixels from frame to frame. This is partially due to

3We did not compare the detectors on standard datasets as in [23] because
these have been designed for tasks like object recognition and do not contain
especially salient regions. Therefore, the advantages of salient regions cannot
be shown there.

4We used the publically available PYRA real-time vision library for both
detectors (http://www.csc.kth.se/∼celle/).

5For this comparison, VOCUS was adapted to compute all local maxima
from the saliency map to make it comparable to the Harris detector. In normal
usage it determines only regions which have a saliency of at least 50% of the
most salient region.
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Fig. 3. Comparison of the repeatability of attentional ROIs (red ellipses),
Harris-Laplace corners (blue crosses), and SIFT keypoints (green stars) on 10
frames of a sequence with a visually salient object (bottom: some example
frames with detected features. top left: saliency map of 1st frame). The most
salient attention region is detected in all frames (100% repeatability), the
strongest point of the other detectors reaches only 20% (see also videos on
http://www.informatik.uni-bonn.de/∼frintrop/research/saliency.html).

the segmentation process which determines the region. In

previous work, we therefore combined Harris-Laplace corners

and attention regions [13]. Tracking of landmarks with this

approach was accurate and the matching process based on

two descriptors resulted in a very low false detection rate. A

problem however was that the detection rate also was very

low: both detectors had to detect a feature in the same area

and both descriptors had to agree on the high reliability of a

match.

Using only attention regions with reasonable accuracy is

possible with an improved outlier rejection mechanism during

the triangulation process (cf. sec. V); this made the system

considerably simpler and about 8 times faster.

B. The Descriptors

To compare if two image regions belong to the same part

in the world, each region has to have a description vector. The

most simple vector is a vector consisting of the pixel values of

the region and possibly some surrounding. The similarity of

two vectors can then be computed by cross-correlation. How-

ever, this results in high-dimensional vectors and matching

does not perform well under image transformations.

An evaluation of more powerful descriptors is provided

in [50]. The best performance was obtained for the SIFT

descriptor (scale invariant feature transform [47]) and the

GLOH descriptor (gradient location-orientation histogram) –

an extension of the SIFT descriptor. The SIFT descriptor is

also probably the most used descriptor in visual tasks for

mobile robots [51], [7], [8], [10].

In this work, we use two kinds of descriptors: first, we

determine an attentional descriptor for tracking ROIs between

consecutive frames. The attentional descriptor can be obtained

almost without cost from the feature maps of VOCUS. Since it

is only an 13-element vector, matching is faster than with the
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SIFT descriptor. It is less powerful, but in tracking situations

sufficient. Second, we use the SIFT descriptor to match ROIs

in loop closing situations.

The attentional descriptor is determined from the values

of the 10 feature and 3 conspicuity maps of VOCUS. For

each ROI, a feature vector !v with 13 entries is determined,

which describes how much each feature contributes to the ROI

(cf. Fig. 2). The value vi for map Xi is the ratio of the mean

saliency in the target region m(ROI) and in the background

m(image−ROI):

vi = m(ROI)/m(image−ROI). (3)

This computation does not only consider which features are the

strongest in the target region but also which features separate

the region best from the rest of the image (details in [12]).

The SIFT descriptor is a 4 × 4 × 8 = 128 dimensional

descriptor vector which results from placing a 4 × 4 grid

on a point and calculating a pixel gradient magnitude at 45◦

intervals for each of the grid cells. Usually, SIFT descriptors

are computed at intensity extrema in scale space [47] or at

Harris-Laplacians [19]. Here, we calculate one SIFT descriptor

for each ROI. The center of the ROI provides the position

and the size of the ROI determines the size of the descriptor

grid. The grid should be larger than the ROI to allow catching

information about the surrounding but should also not include

too much background and stay within the image borders.6

C. Feature Matching

Feature matching is performed in two of the visual SLAM

modules: in the feature tracker and in the loop closer.

In the tracker, we apply simple matching based on at-

tentional descriptors. Two vectors !v and !w are matched by

calculating the similarity d(!v, !w) according to a distance

similar to the Euclidean distance [13]. This simple matching

is sufficient for the comparably easy matching task in tracking

situations.

In the loop closer, SIFT matching is applied to achieve a

higher matching stability. Usual approaches to perform match-

ing based on SIFT descriptors are threshold-based matching,

nearest neighbor-based matching and nearest neighbor dis-

tance ratio matching [50]. For each ROI in the image, we

use threshold-based matching to find a fitting ROI in the

database. Then, we apply nearest neighbor matching in the

other direction to verify this match.7

The distance dS of two SIFT descriptors is calculated as the

sum of squared differences (SSD) of the descriptor vectors.

Thresholding on the distance between two descriptors is a bit

tricky. Small changes on the threshold might have unexpected

effects on the detection quality since the dependence of

distance and matching precision is not linear (cf. Fig. 4).

Therefore, we suggest a slightly modified thresholding ap-

proach. By learning the dependence of distance and matching

6We chose a grid size of 1.5 times the maximum of width and height of
the ROI.

7Mikolajczyk and Schmid show that the nearest neighbor and nearest
neighbor distance ratio matching are more powerful than threshold-based
matching but also point out that they are difficult to apply when searching in
large databases [50].

Fig. 4. The dependence of the distance of two SIFT descriptors and their
matching precision (cf. eq. 4) determined from training data.

precision from training data, it is possible to set directly

a threshold for the precision from which the corresponding

distance threshold is determined.

This is done as follows: for a large amount of image data,

we gathered statistics regarding the distribution of correct and

false matches. 698 correct matches and 2253 false matches

were classified manually to obtain ground truth. We used data

from two different environments, one was the office envi-

ronment shown in Fig. 11, the other a different environment

not used in the experiments. The training data for the office

environment was obtained one year earlier than the test data

for the current experiments.8 Since the dS are real values,

we discretized the domain of dS into t = 20 values. For the t
distinct distance threshold values θj , we compute the precision

as

p(θj) =
c(θj)

c(θj) + f(θj)
, ∀ j ∈ {1..t} (4)

where c(θj) and f(θj) denote the number of correct and false

matches. The resulting distribution is displayed in Fig. 4.

To finally determine if two ROIs match, the distance of the

SIFT descriptors is computed and the corresponding matching

precision is determined according to the distribution in Fig. 4.

If the precision is above a threshold, the ROIs match.9

Discussion on Feature Matching: The precision-based

matching has several advantages over the usual thresholding.

First, it is possible to choose an intuitive threshold like “98%

matching precision”.10 Second, linear changes on the threshold

result in linear changes on the matching precision. Finally,

8Correct matches are naturally much more difficult to obtain than false
matches since there is a extremely large amount of possible false matches. To
enable a reasonable amount of correct matches, we considered only distances
below 1.2. As can be seen in Fig. 4, this does not affect the final matching
mechanism as long as a precision of at least 0.3 is desired.

9For our system, we chose a threshold of 0.98. We chose a high threshold
because an EKF SLAM system is sensitive to outliers.

10Note however that the precision value refers to the training data, so in
test data the obtained precision might be lower than the specified threshold.
However, the threshold gives a reasonable approximation of the precision on
test data.
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for every match a precision value is obtained. This value

can be directly used by other components of the system to

treat a match according to the precision that it is correct.

For example, a SLAM subsystem which can deal with more

uncertain associations could use these values.

The SIFT descriptor is currently one of the most powerful

descriptors, however, people have worked on improving the

performance, e.g. by combining it with other descriptors.

While intuitively a good idea, we suggest to be careful with

this approach. In previous work, we matched ROIs based on

the attentional and the SIFT descriptor [14]. While obtaining

good matching results, we found out that using only the

SIFT descriptor results in a higher detection rate for the same

amount of false detections. While surprising at first, this might

be explained as follows: a region may be described by two

descriptors, the perfect descriptor d1 and the weaker descriptor

d2. d1 detects all correct matches and rejects all possible false

matches. Combining d1 with d2 cannot improve the process, it

can only reduce the detection rate by rejecting correct matches.

V. THE FEATURE TRACKER

In the feature tracker, landmarks are built from ROIs by

tracking the ROIs over several frames. The length of a land-

mark is the number of elements in the list, which is equivalent

to the number of frames the ROI was detected in.

To compute the landmarks, we store the last n frames in

a buffer (here: n = 30). This buffer enables to determine

which landmarks are stable over time and therefore good

candidates for the map. The output from the buffer is thus

delayed by n frames but in return quality assessment can

be utilized before using the data. New ROIs are matched

with their attentional feature vector to previously detected

landmarks and to ROIs from the previous frame to build

new landmarks (details in [14]). At the end of the buffer, we

consider the length of the resulting landmarks and filter out

too short ones (here ≤ 3). Finally, the triangulator attempts

to find an estimate for the location of the landmark. In this

process, also outliers, i.e. bearings that fall far away from the

estimated landmark location, are detected and removed from

the landmark. These could be the result of mismatches or a

poorly localized landmark.

VI. LOOP CLOSING

In the loop closing module, it is detected if the robot has

returned to an area where it has been before. This is essential

to update the estimations of landmark and robot positions in

the map. Loop closing is done by matching the ROIs from the

current frame to landmarks from the database. It is possible

to use position prediction of landmarks to determine which

landmarks could be visible and thus prune the search space, but

since this prediction is usually not precise when uncertainty

grows after driving for a while, we perform “global loop

closing” instead without using the SLAM pose estimate, as

in [33]. That means, we match to all landmarks from the

database. For the environments in our test it is possible to

search the whole database in each iteration. However, for

Fig. 6. Falsely matched ROIs (rectangles): in both cases, lamps are matched
to a different lamp. Top: current frame. Bottom: frame from the database.

larger environments it would be necessary to use e.g. a tree-

structure to organize the database, perform global loop closing

less frequently or distribute the search over several iterations.

ROIs are matched to the landmarks from the database with

the precision matching based on SIFT descriptors described

in sec. IV-C. When a match is detected, the coordinates of

the matched ROI in the current frame are provided to the

SLAM system, to update the coordinates of the corresponding

landmark. Additionally, the ROI is appended to the landmark

in the database. Some examples of correct matches in loop

closing situations are displayed in Fig. 5. False matches occur

seldomly with this approach. If they do, the ROIs usually

correspond to almost identical objects. Two examples are

shown in Fig. 6.

VII. ACTIVE GAZE CONTROL

The active gaze control module controls the camera accord-

ing to three behaviours:

• Redetection of landmarks to close loops

• Tracking of landmarks

• Exploration of unknown areas

The strategy to decide which behaviour to choose is as

follows: Redetection has the highest priority, but it is only

chosen if there is an expected landmark in the possible field

of view (def. see below). If there is no expected landmark

for redetection, the tracking behaviour is activated. Tracking

should only be performed if more landmarks are desired

in this area. As soon as a certain amount of landmarks is

obtained in the field of view, the exploration behaviour is

activated. In this behaviour, the camera is moved to an area

without landmarks. Most times, the system alternates between

tracking and exploration, the redetection behaviour is only

activated every once in a while (see sec. VII-A and Fig. 8). An

overview over the decision process is displayed in Fig. 7. In

the following, we describe the respective behaviours in more

detail.
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Fig. 5. Some examples of correctly matched ROIs, displayed as rectangles. Top: current frame. Bottom: frame from the database.

Fig. 7. The three camera behaviours Redetection, Tracking, Exploration.

A. Redetection of Landmarks

In redetection mode, the camera is directed to expected

landmarks. Expected landmarks

(a) are in the potential field of view of the camera,11

(b) have low-enough uncertainty in the expected positions

relative to the camera,12

(c) have not been seen recently, 13

(d) had no matching attempt recently.

If there are several expected landmarks, the most promising

one is chosen. Currently, we use a simple approach: the

longest landmark is chosen because a landmark which has

been observed frequently is more likely to be redetected than a

seldomly observed one. In future work, we consider integrating

11The potential field of view of the camera is set to ± 90◦ horizontally and
7m distance. This prevents considering landmarks which are too far away,
since these are probably not visible although they are in the right direction.

12The uncertainty is considered as too high if it exceeds the image size,
i.e. if the uncertainty of the landmark in pan-direction, projected to the image
plane, is larger than the width of the image. Note, that these are actually the
most useful landmarks to redetect, but on the other hand the matching is likely
to fail. Passive matching attempts for these landmarks are permanently done
in the loop closer, only the active redetection is prevented.

13The redetection behaviour focuses on landmarks which have not been
visible for a while (here: 30 frames) to prevent switching the camera position
constantly. The longer a landmark had not been visible, the more useful is
usually its redetection.

Fig. 8. The camera pan angle as a function of time. The camera behaviour
alternates here between tracking and exploration.

information theory to choose the landmark that will result in

the largest information gain, as e.g. in [44].

When a landmark has been chosen, the camera is moved

to focus it and pointed there for several (here 8) frames, until

it is matched. Note, that redetection and matching are two

independent mechanisms: active redetection only controls the

camera, matching is permanently done in the loop closer, also

if there is no expected landmark.

If no match is found after 8 frames, the system blocks this

landmark and chooses the next expected landmark or continues

with tracking or exploration.

B. Tracking of Landmarks

Tracking a landmark means to follow it with the camera

so that it stays longer within the field of view. This enables

better triangulation results. This behaviour is activated if the

preconditions for redetection do not apply.

First, one of the ROIs in the current frame has to be

chosen for tracking. There are several aspects which make

a landmark useful for tracking. First, the length of a landmark

is an important factor for its usefulness since longer landmarks

are more likely to be triangulated soon. Second, an important

factor is the horizontal angle of the landmark: points in the

direction of motion result in a very small baseline over several
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Fig. 9. Left: function ψ(α) with k1 = 5 and k2 = 1. Right: One test image
with two (almost) identical ROIs, differing only by their position in the image.
The center ROI has the angle α1 = 0.04 resulting in ψ(α1) = 2.06. The
left ROI has a larger angle α2 = 0.3 resulting in ψ(α2) = 5.09 (> ψ(α1)).
The tracking behaviour selects the left ROI for tracking and prevents it from
moving out of the image.

frames and hence often in poor triangulations. Points at the

side usually give much better triangulation results, but on the

other hand they are more likely to move outside the image

borders soon so that tracking is lost.

We define a usefulness function capturing the length l of

the landmark and the angle α of the landmark in the potential

field of view as

U(L) = ψ(α)
√

l (5)

where

ψ(α) = k1 (1.0 + cos(4α − 180)) + k2 (1.0 + cos(2α)). (6)

The function is displayed in Fig. 9, left, and an example is

shown in Fig. 9, right. Like in redetection mode, integrating

the information gain could improve this estimation. After

determining the most useful landmark for tracking, the camera

is directed into the direction of the landmark.14 The tracking

stops when the landmark is not visible any more or when it

was successfully triangulated.

C. Exploration of Unknown Areas

As soon as there are enough (here more than 5) landmarks in

the field of view, the exploration behaviour is started, i.e., the

camera is directed to an area within the possible field of view

without landmarks. We favor regions with no landmarks over

regions with few landmarks since few landmarks are a hint that

we already looked there and did not find more landmarks.

We look for a region which corresponds to the size of

the field of view. If the camera is currently pointing to the

right, we start by investigating the field directly on the left

of the camera and vice versa. We continue the search in that

direction, in steps corresponding to the field of view. If there is

no landmark, the camera is moved there. Otherwise we switch

to the opposite side and investigate the regions there. If no area

without landmarks is found, the camera is set to the initial

position.

14The camera is moved slowly (here 0.1 radians per step), since this
changes the appearance of the ROI less than large camera movements. This
results in a higher matching rate and prevents to loose other currently visible
landmarks.

To enable building of landmarks over several frames, we

let the camera focus one region for a while (here 10 frames).

As soon as a landmark for tracking is found, the system will

automatically switch behaviour and start tracking it (cf. Fig. 8).

VIII. EXPERIMENTS AND RESULTS

We tested the system in two different environments: an

office environment and an atrium area at the Royal Institute

of Technology (KTH) in Stockholm. In both environments,

several test runs were performed, some at day, some at

night to test differing lighting conditions. Test runs were

performed during normal work days, therefore they include

normal occlusions like people moving around. The matching

examples in Fig. 5 show that loop closing is possible anyway.

For each run, the same parameter set was used. During each

test run, between 1200 and 1800 images with 320×240 pixels

were processed. In the office environment, the robot drove the

same loop several times. This has the advantage that there

are many occasions in which loop closing can take place.

Therefore, this is a good setting to investigate the matching

capability of the system. On the other hand, the advantage of

the active camera control is not obvious here since loop closing

is already easy in passive mode. To test the advantages of the

active camera mode, the atrium sequence fits especially well.

Here, the robot drove an “eight”, making loop closing difficult

in passive mode because the robot approaches the same area

from three different directions. Active camera motion makes

it possible to close the loop even in such difficult settings.

The current system allows real-time performance. Currently,

it runs on average at ∼ 90 ms/frame on a Pentium IV 2 GHz

machine. Since the code is not yet optimized, a higher frame

rate should be easily achievable by standard optimizations.

Although VOCUS is relatively fast with ∼ 50 ms/frame since

it is based on integral images [29], this part requires about half

of the processing time. If a faster system is required, a GPU

implementation of VOCUS is possible, as realized in [52].

The experiments section has two parts. First, we investigate

the quality of the attentional landmarks. Second, we compare

active and passive camera control.

A. Visual SLAM with Attentional Landmarks

In this section, we investigate the quality of landmark

detection, of data association in loop closing situations, and

the effect on the resulting maps and robot trajectories. We

show that we obtain a high performance with a low number

of landmarks. Loop closing is obtained easily even if only few

landmarks are visible and if they are seen from very different

viewpoints.

In the first experiment, the same trajectory was driven three

times in the office environment. Fig. 10 shows the robot

trajectory which was determined from pure odometry (left) and

from the SLAM process (right). Although the environment is

small compared to other scenarios of the literature, it is well

visible that the odometry estimation becomes wrong quickly.

The estimated end position differs considerably from the real

end position. The SLAM estimate on the other hand (right),

is much more accurate. During this run, the robot acquired 17
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Fig. 10. A test run in the office environment. The robot trajectory was
estimated once from only odometry (left) and once from the SLAM system
(right).

Fig. 11. Estimated robot trajectory with final robot position (the “first” robot
is the real robot, whereas the robot behind visualizes the robot position at the
end of the buffer. The latter is used for trajectory and landmark estimation).
Green dots are landmarks, red dots are landmarks which were redetected in
loop-closing situations.

landmarks, found 21 matches to the database (one landmark

can be detected several times) and all of the matches were

correct (cf. Tab. I, row 1). The estimated landmark positions

and the matches are displayed in Fig. 11. Notice that more

than half of the landmarks are redetected when revisiting an

area. More results from the office environment are shown in

row 2–5 of Tab. I. The three occurring false matches belong

always to the same object in the world: the lamp in Fig. 6 left.

More experiments were performed in the atrium environ-

ment. A comparison between the estimated robot trajectory

from odometry data and from the SLAM system is visualized

in Fig. 12. In this example, the system operated in active

camera mode (cf. sec. VIII-B). Also here, the big difference in

accuracy of the robot trajectory is visible. The corresponding

number of landmark detections and matches is shown in Tab. I,

row 6. Results from additional runs are shown in rows 7-

9. Note that the percentage of matches with respect to the

number of all landmarks is smaller in the atrium area than

in the office environment since a loop can be only closed at

a few places. Also in this environment, all the false matches

belong to identical lamps (cf. Fig. 6 right).

In the presented examples, the few false matches did

not lead to problems, the trajectory was estimated correctly

anyway. Only the falsely matched landmarks are assigned a

wrong position. But note that more false matches might cause

problems for the SLAM process. The detection quality could

environment camera # landmarks # correct # false
control matches matches

office passive 17 21 0
office active 36 31 2
office passive 18 23 1
office passive 21 21 0
office active 34 16 1
atrium active 57 14 1
atrium active 61 15 3
atrium active 50 8 2
atrium passive 19 1 1

TABLE I
MATCHING QUALITY FOR DIFFERENT TEST RUNS IN TWO ENVIRONMENTS.

2ND COLUMN: PASSIVE/ACTIVE CAMERA CONTROL. 3RD COLUMN: THE

NUMBER OF MAPPED LANDMARKS. 4TH/5TH COLUMN: THE NUMBER OF

TIMES A CURRENT LANDMARK WAS MATCHED TO AN ENTRY IN THE

DATABASE. MATCHES ARE ONLY COUNTED, IF THE CORRESPONDING

LANDMARK HAD NOT BEEN SEEN FOR AT LEAST 30 FRAMES. NOTE THAT

A LANDMARK CAN ALSO BE MATCHED SEVERAL TIMES.

Fig. 12. A test run in the atrium area. The robot trajectory was estimated
once from only odometry (left) and once from the SLAM system (right).

be improved by collecting evidence for a match from several

landmarks.

B. Passive versus Active Camera Control

In this section, we compare the passive and the active

camera mode of the visual SLAM system. We show that with

active camera control, more landmarks are mapped with a

better distribution in the environment, more database matches

are obtained, and that loop closing occurs earlier and even in

situations where no loop closing is possible in passive mode.

From Tab. I, it can be seen that the test runs with active

camera control result in more mapped landmarks than the

runs with passive camera. Although this is not necessarily an

advantage — we claim actually that the sparseness of the map

is an advantage — it is favorable if the larger number results

from a better distribution of landmarks. That this is the case

here can be seen e.g. in the example in Fig. 13: landmarks

show up in active mode (right), where there are no landmarks

in passive mode (left).

Loop closing occurs usually earlier in active mode. For

example in Fig. 11, the robot is already able to close the loop

when it enters the doorway (position of front robot in figure)
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Fig. 13. Atrium environment: the estimated robot trajectory in passive (left,
cf. Tab. I row 9) and active (right, cf. Tab. I row 8) camera mode (the 1st
robot is the real robot, the 2nd a virtual robot at the end of the buffer).
Landmarks are displayed as green dots. In passive mode, the robot is not able
to close the loop. In active mode, loop closing is clearly visible and results
in an accurate pose estimation (see also videos on http://www.informatik.uni-
bonn.de/∼frintrop/research/aslam.html).
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Fig. 14. The robot pose uncertainty computed as the trace of Prr (covariance
of robot pose) for passive and active camera mode.

by directing the camera to the landmark area on its left. In

passive mode, loop closing only occurs when the robot itself

moved to face this area. An earlier loop closing leads to an

earlier correction of measurements and provides time to earlier

go back to other behaviours like exploration.

In active mode, the robot closed a loop several times in the

atrium. This is visible from the small jumps in the estimated

trajectory in Fig. 13 right. The final pose estimate is much

more accurate here than in passive mode. Fig. 14 displays a

comparison of the robot pose uncertainty in passive and active

mode, computed as the trace of Prr (covariance of robot pose).

The two loop closing situations in active mode around meter

30 and 50 reduce the pose uncertainty considerably, resulting

at the end of the sequence in a value which is much lower

than the uncertainty in passive mode.

IX. DISCUSSION AND CONCLUSION

In this paper, we have presented a complete visual SLAM

system, which includes feature detection, tracking, loop clos-

ing and active camera control. Landmarks are selected based

on biological mechanisms which favor salient regions, an

approach which enables focusing on a sparse landmark rep-

resentation. We have shown that the repeatability of salient

regions is considerably higher than the one of regions from

standard detectors. Additionally, we presented a precision-

based matching strategy, which enables to intuitively choose a

matching threshold to obtain a preferred matching precision.

The active gaze control module presented here enabled to

obtain a better distribution of landmarks in the map and to re-

detect considerably more landmarks in loop closing situations

than in passive camera mode. In some cases, loop closing is

actually only possible by actively controlling the camera.

While we obtain a good pose estimation and a high

matching rate, further improvements are always possible and

planned for future work. For example, we plan to collect

evidence for a match from several landmarks together with

their spatial organization as already done in other systems.

Also determining the salience of a landmark not only in the

image but in the whole environment would help to focus

on even more discriminative landmarks. Using the precision

value of a match could be very helpful to improve the system

performance too. Adapting the system to deal with really large

environments could be achieved by removing landmarks which

are not redetected to keep the number of landmarks low, by

database management based on search trees, indexing [53],

[49], and by using hierarchical maps as in [11]. Also testing

the system in outdoor environments is an interesting challenge

for future work.
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Top-down Attention Supports Visual Loop Closing
Simone Frintrop Armin B. Cremers

Institute of Computer Science III,

Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

Abstract— In this paper, we present a method to improve the
loop closing behaviour for visual SLAM. Landmarks consist of
a combination of attention regions and Harris-Laplace corners.
The attention regions are detected by a visual attention system
which combines image-based, bottom-up and target-related, top-
down information. The ability to perform target-directed search
is used to search for expected landmarks.

We analyze the amount of correct and false matches for
bottom-up and top-down matching depending on different match-
ing thresholds. It shows that whereas bottom-up matching is
useful for situations in which the scene changes only slightly
like during tracking, top-down matching has advantages in loop
closing situations by detecting a much higher amount of correctly
matched landmarks.

Index Terms— Visual SLAM, loop closing, saliency, visual
attention

I. INTRODUCTION

An essential task of mobile robots which explore unknown

environments is SLAM (Simultaneous localization and map-

ping), the task of building a map and staying localized within it

at the same time [3, 4, 18]. Special interest during the last years

has been on visual SLAM, which uses cameras as main sensors

[1, 10, 12, 17]. In contrast to laser-scanners, cameras are low-

cost, low-power, and lightweight sensors which may be used

in many applications where laser scanners are too expensive or

too heavy. Additionally, the rich visual information of camera

images holds potential for better data association and more

accurate 3D representations of the environment. Challenges

in this field are the high amount of data which requires

intelligent landmark selection strategies and the sensitivity

of image data to illumination and viewpoint changes which

requires robust tracking and matching methods. Additionally,

when performing bearing-only SLAM with a single camera,

depth estimation is difficult because it has to be estimated by

triangulation from several frames.

One of the most challenging problems in SLAM is the data

association, the task of associating current observations with

map elements. In visual SLAM, this means to match currently

detected visual landmarks to landmarks from a database. For

consecutive frames, this problem is relatively easy, especially

if additional odometry information is used, since usually

images change only slightly between frames and since the

odometry provides the system with rather accurate position

estimates. The problem becomes much more difficult when

the robot revisits a location after some time. This loop closing

has to deal with illumination variations and viewpoint changes,

and since the odometry estimation is much less accurate, large

areas have to be considered for matching.

The choice of the feature detector is important to obtain

useful landmarks which are on the one hand robust and easy

to redetect and which have, on the other hand, high positional

stability to obtain precise depth estimations when triangulat-

ing. Often, the landmarks are selected by a human expert or

the kind of landmark is determined in advance, e.g., ceiling

lights [17], artificial landmarks [2], Harris corners [12], SIFT

features [13], or maximally stable extremal regions (MSERs)

[15]. As pointed out by [19], there is a need for methods which

enable a robot to choose landmarks autonomously. A good

method should pick the landmarks which are most suitable for

the current situation. An especially useful method to find land-

marks autonomously depending on the current surrounding are

visual attention systems [20, 11, 5]. They select regions that

“pop out” in a scene due to strong contrasts and uniqueness.

The advantage of these methods is that they determine globally

which regions in the image are discriminative instead of locally

detecting predefined properties. In previous work, we have

shown that a combination of attention regions with Harris-

Laplace corners is especially useful to obtain both, positional

stability and good discrimination for loop closing [7, 6].

In this paper, we focus on an improvement of the loop

closing module of our visual SLAM system. All approaches

we are aware of match landmarks in a bottom-up manner,

i.e., the same feature detection methods are applied to two

frames and the detected features are compared afterwards

[16, 15, 12, 8]. In contrast to this, we change the feature

computations depending on the kind of landmarks we currently

expect: we use the ability of the attention system to search

in a top-down, target-directed manner for expected landmarks

by explicitly supporting expected features. Information about

which landmarks are expected is provided by the SLAM

module, based on the estimate robot pose and the map.

We compare in real-world experiments the new top-down

matching with the conventional bottom-up matching. It turns

out that whereas the bottom-up matching shows advantages in

easy matching situations like tracking, the top-down matching

outperforms the bottom-up matching clearly in difficult match-

ing situations with changing viewpoints. Therefore, the new

method is more useful for loop-closing situations.

In the following, we first give an overview over the whole

visual SLAM system (sec. II). Then, we describe the feature

detection (sec. III), the feature matching (sec. IV), the feature

tracking (sec. V), and the loop closing (sec. VI). Finally, we

present several experiments on real-world data in sec. VII

before we conclude (sec. VIII).

II. SYSTEM OVERVIEW

The visual SLAM architecture is displayed in Fig. 1. The

main components are a robot which provides camera images
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Fig. 1. The visual SLAM system

and odometry information, a feature detector which finds

regions of interest (ROIs) in the images, a feature tracker

which tracks ROIs over several frames and builds landmarks,

a triangulator which identifies useful landmarks, a SLAM

module which builds a map of the environment, a loop closer

which matches current ROIs to the database and, as main part

of the current paper, a gaze control module which determines

where to direct the camera to.

When a new frame from the camera is available, it is

provided to the feature detector, which finds ROIs based on a

visual attention system and Harris-Laplace corners inside the

ROIs. Next, the features are provided to the feature tracker

which stores the last n frames, performs matching of ROIs

and Harris corners in these frames and creates landmarks. The

purpose of this buffer is to identify features which are stable

over several frames and have enough parallax information for

3D initialization. These computations are performed by the

triangulator. Selected landmarks are stored in a database and

provided to the SLAM module which computes an estimate

of the position of landmarks and integrates the position es-

timate into the map. Details about the robot and the SLAM

architecture can be found in [12].

The task of the loop closer is to detect if a scene has been

seen before. Therefore, the features from the current frame

are compared with the features from the landmarks in the

database. To narrow down the search space, the SLAM module

provides the loop closer with expected landmark positions.

Only landmarks that should be currently visible are considered

for matching.

Finally, the gaze control module actively controls the cam-

era. It decides whether to track currently seen landmarks, to

actively look for predicted landmarks, or to explore unseen

areas. It computes a new camera position which is provided

to the robot. Details on this module can be found in [8].

III. THE FEATURE DETECTOR

The feature selection is based on two different kinds of fea-

tures: attentional ROIs and Harris-Laplace corners. In [7] we

have shown that this combination is useful, since it combines

the advantages of both approaches: the attentional ROIs focus

the processing on salient image regions which are thereby

well redetectable. The corners on the other hand provide well

localized points as required for precise depth estimation for

structure from motion with a small baseline. Additionally, the

combination improves the matching of landmarks (cf. sec. IV).

Fig. 2. ROI detection: The visual attention system VOCUS.

A. ROI Detection

The ROIs are detected with the attention system VOCUS

(Visual Object detection with a CompUtational attention Sys-

tem) [5] (Fig. 2). It consists of a bottom-up part similar to

[11], and a top-down part enabling goal-directed search; global

saliency is determined from both cues.

1) Bottom-up computations: The bottom-up part detects

salient image regions by computing image contrasts and

uniqueness of a feature. The feature computations for the

features intensity, orientation, and color are performed on 3

different scales with image pyramids. The feature intensity

is computed by center-surround mechanisms; on-off and off-

on contrasts are computed separately. After summing up the

scales, this yields 2 intensity maps. Similarly, 4 orientation

maps (0 ◦, 45 ◦, 90 ◦, 135 ◦) are computed by Gabor filters and

4 color maps (green, blue, red, yellow) which highlight salient

regions of a certain color. Each feature map i is weighted with

a uniqueness weight W(i) = i/
√

m, where m is the number

of local maxima that exceed a threshold. This promotes pop-

out features. The maps are summed up to 3 conspicuity maps

I (intensity), O (orientation) and C (color) and combined to

form the bottom-up saliency map Sbu = W(I) + W(O) +
W(C). Details on the feature computations in [5].

To achieve real-time performance, the feature computations

in VOCUS are efficiently performed on integral images [21].

After once creating an integral image in linear time with

respect to the number of pixels, a rectangular feature value of

arbitrary size is computed with only 4 references. This results

in a fast computation (50ms for a 400 × 300 pixel image,

2.8GHz) that enables real-time performance (details in [9]).

If no top-down information is available, Sbu corresponds

to the global saliency map S. In S, the most salient regions

(MSRs) are determined: first the local maxima (seeds) in S
are found and second all neighboring pixels over a saliency

threshold (here: 25% of the seed) are detected recursively with

region growing. A ROI is defined as the smallest rectangle

including the MSR. It is an approximation, to allow easier

storing of features.

For each MSR, a bottom-up feature vector !vbu with (2 +
4 + 4 + 3 = 13) entries (one for each feature and conspicuity

map) is determined. The feature value vi for map i is the ratio
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Fig. 3. Procedure to create a top-down vector !vtd: First, the bottom-up
saliency Map Sbu is created from the input image. Then, for each MSR in
Sbu the corresponding bottom-up vector !vbu is created. This vector is used
to apply top-down search to the input image, yielding in a top-down saliency
map Std. The feature vector describing the corresponding MSR in Std is
the vector !vtd. The values in the vectors stand for the feature maps intensity
on-off, intensity off-on, orientations 0

◦, 45
◦, 90

◦, 135
◦, colors green, blue,

red, yellow and for the conspicuity maps I, O, C.

of the mean saliency in the target region m(MSR) and in the

background m(image−MSR): vi = m(MSR)/m(image−MSR).

This computation does not only consider which features are

the strongest in the target region, it also regards which

features separate the region best from the rest of the image.

Fig. 3 shows the feature vector !vbu which corresponds to the

wastebin. It tells us, e.g., that the region is dark on a bright

background, since the highest value is the 2nd value of the

vector, which represents the off-on intensity.

2) Top-down computations: In top-down mode, VOCUS

aims to detect a target, i.e., input to the system is the image

and some target information, provided as feature vector !v. In

search mode, VOCUS multiplies the feature and conspicuity

maps with the corresponding weights of !v. The resulting maps

are summed up, yielding the top-down saliency map Std.

Finally, Sbu and Std are combined by: S = (1−t)∗Sbu+t∗Std,

where t determines the contributions of bottom-up and top-

down (details in [5]). Here, we use t = 0 for bottom-up and

t = 1 for top-down computations.

Fig. 3 shows a bottom-up and a top-down saliency map: the

bottom-up saliency map highlights all regions which might be

of interest, regardless of a certain target. The top-down map

highlights especially the target region (the black wastebin) and

suppresses regions which do not look similar.

If the similarity of two ROIs shall be compared (see sec. IV),

we cannot compare a top-down ROI with a bottom-up ROI

because the feature values result from different computations.

Instead, we additionally compute a top-down vector !vtd for

each bottom-up ROI. This is done by using the bottom-up

vector !vbu as target information and search for this region

within the same image. This results in a top-down saliency

map in which the top-down MSR within the target region,

defined by the bottom-up ROI, is determined. Fig. 3 shows

the procedure to create such a top-down vector !vtd.

B. Harris-Laplace detector:

To detect features with high position stability inside the

ROIs, we used the Harris-Laplace feature detector [14] – an

extension of the Harris corner detector to Laplacian pyramids

which enables scale invariance. For convenience, we talk

briefly about Harris corners in the following. The method finds

a few (av. 1.6) points per ROI. To allow matching of points,

a SIFT descriptor is computed for each detected corner [13].

IV. FEATURE MATCHING

Feature matching is performed between consecutive frames

(in the feature tracker) and with features from the database (in

the loop closer). The general matching procedure is the same

in both modules. It is based on two criteria: proximity and

similarity. First, the features in the new frame have to be close

enough to the predicted position. Second, the similarity of the

features is determined. This is done differently for attentional

ROIs and for Harris corners: the matching of Harris corners

is based on the SIFT descriptor by determining the Euclidean

distance between the descriptors. When the distance is below

a threshold, the points match.

For the attentional ROIs, we consider the size of the ROIs

and the similarity of the feature values. We set the allowed

deviation in width and height of the ROI to 10 pixels to

allow some variations. This is required, because the ROIs

might differ slightly in shape depending on image noise and

illumination variations.

The similarity of two feature vectors !v and !w is determined

by eq. 1; the smaller the distance d(!v, !w), the higher the

similarity of the ROIs. If d(!v, !w) is below a certain threshold

δ, the ROIs match (see sec. VII for the choice of δ). The

computation is similar to the Euclidean distance of the vectors,

but it treats the feature map values (v1,..,v10) differently than

the conspicuity map values (v11,..., v13). The reason is as

follows: the conspicuity values provide information about how

important the respective feature maps are. For example, a low

value for the color conspicuity map v13 means the values

of the color feature maps (v7,...,v10) are not discriminative

and should be assigned less weight than the other values.

Therefore, we use the conspicuity values to weight the feature

values. We found out that this matching procedure outperforms

the simple Euclidean distance of the feature vectors.

We distinguish two matching approaches: bottom-up and

top-down matching. They differ in the kind of vectors which

are used to determine the similarity. We describe both in the

following.

A. Bottom-up matching

For bottom-up matching, each ROI from a frame f1 is

compared to each ROI from a frame f2. If the matching

distance d(!v, !w) for the vectors !v and !w of two ROIs is below

the matching threshold δ, the ROIs are considered as a match.

If several ROIs from f2 match to the same ROI from f1, the

best match with the smallest distance is chosen. The bottom-up

matching procedure is illustrated in Fig. 4, left.

The bottom-up matching works especially well, if the two

frames differ only slightly. This is the case for tracking. For

loop-closing, the bottom-up matching works well if the view-

point of the landmark differs only slightly to the viewpoint

it had when seeing the landmark for the first time. For more

different viewpoints, the top-down matching is preferable.
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d(!v, !w) =

√

√

√

√

√

v11w11

∑

i=1,2

(vi − wi)
2 + v12w12

∑

i=3,..,6

(vi − wi)
2 + v13w13

∑

i=7,..,10

(vi − wi)
2

v11w11 + v12w12 + v13w13
(1)

(a) bottom-up matching (b) top-down matching

Fig. 4. Left: bottom-up matching. To find a match for a ROI from frame 1,
it is compared to each ROI from frame 2. Right: top-down matching. To find
a match for a ROI from frame 1, its top-down feature vector vtd is used as
target information to search for this ROI in frame 2. The resulting ROIs all
look similar to the ROI from frame 1.

B. Top-down matching

For top-down matching, we determine for each ROI a top-

down feature vector !vtd, as described in sec. III-A.2. These

vectors are later used for comparison.

To find a match for ROI r1 from frame f1 in frame f2,

the vector !vtd which describes r1 is used to apply top-down

search to f2. From the resulting top-down saliency map, the

most salient ROIs are extracted and their top-down feature

vectors are compared to !vtd. As for the bottom-up matching,

the ROIs are considered as a match if the matching distance

d is below the matching threshold δ, and if several ROIs from

f2 match to r1, the best match with the smallest d is chosen.

The top-down matching procedure is illustrated in Fig. 4, right.

The colors and the shape of the ROIs illustrate their similarity.

Top-down matching compares a ROI only to similar regions,

whereas the bottom-up matching compares it with all salient

regions.

Top-down matching pays off especially if the appearance of

two frames differs strongly. Since this is usually the case in

loop closing situations, we apply the top-down matching for

loop-closing. To search for an expected ROI does not mean

that all computations of VOCUS have to be repeated for each

expected ROI. The most time consuming computations, the

computations of the feature maps, do not have to be done

again. They are the same for the bottom-up computations and

for each expected ROI. Therefore, these computations are still

possible in real-time.

V. THE FEATURE TRACKER

In the feature tracker, the frames are stored in a buffer

with length n (here: n = 30) and features are tracked over

several frames. This buffer provides a way to determine which

landmarks are stable over time and thus good candidates to use

in the map. The output from the buffer is thus delayed by n
frames but in return quality assessment can be utilized before

using the data. The matching is performed not only between

consecutive frames, but allows for gaps of several (here: 2)

frames where a ROI is not found. We call frames which are

at most 3 frames behind the current frame close frames.

A landmark is a list of tracked features. Features can be

ROIs (ROI-landmark) or Harris corners (Harris-landmark).

The length of a landmark is the number of elements in the

list, which is equivalent to the number of frames the feature

was detected in. The procedure to create landmarks is the

following: when a new frame comes into the buffer, each

of its ROIs is matched to all existing landmarks of close

frames. We apply bottom-up matching here. If the matching

is successful, the new ROI is appended to the end of the best

matching landmark. Additionally, the ROIs that did not match

any existing landmarks are matched to the unmatched ROIs

of the previous frame. If two ROIs match, a new landmark is

created consisting of these two ROIs. The same procedure is

used to create the Harris-landmarks.

At the end of the buffer, the landmarks are transferred to

the triangulator, which first checks whether the landmarks are

long enough (≥ 5). Then, the Harris corners inside of ROIs

are determined, and it is checked whether the corresponding

Harris-landmarks are long enough and stable enough. Finally,

the Harris-landmarks which survive the process are reported

to the SLAM module.

VI. THE LOOP CLOSER

The loop closer obtains landmark predictions from the

SLAM module and checks if these landmarks are visible in

the current frame. In bottom-up matching mode, it compares

each ROI from the expected landmarks to each ROI of the

current frame. In top-down mode, it takes each ROI from each

expected landmark, uses it as target information, and searches

for it with top-down attention within the current frame. Then,

the resulting top-down ROIs are compared to the ROIs from

the expected landmarks with top-down matching. If there are

several matches in the current frame, the best match is taken.

If there is a ROI-match, all of the Harris corners within the

matching ROIs are compared based on their SIFT descriptor. If

there is also a match, the corresponding landmark is reported

to the SLAM module, to update the map. The combination

of ROI and Harris matching enables a reliable matching with

almost no false positives.

VII. EXPERIMENTS AND RESULTS

In this section, we illustrate the differences between bottom-

up and top-down matching and the advantages of the top-

down matching for loop closing. We investigated the system

behaviour twice for the same data obtained from the trajectory

displayed in Fig. 5. The robot drove through a room, left the

room, drove through the corridor, and entered the room again

through a different door. After entering the room, it faced the

same region as in the beginning. At this point, it should be
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Fig. 5. The robot environment and the driven trajectory.

able to detect that it closed a loop. Although the loop is very

small compared to some other SLAM-scenarios, it is sufficient

here to show that top-down matching outperforms bottom-up

matching in loop-closing situations. The effect of larger loops

would be a higher uncertainty of robot and landmark positions,

resulting in larger search areas in the images, in the worst case

the whole image. In these cases, the advantage of top-down

matching is expected to be even more important.

The visual SLAM system runs online in real-time, but for

our experiments we needed offline data to enable experiments

on the same data for both matching methods. Therefore, we

stored the image sequence, consisting of 283 images, as well

as the odometry information. We ran the system twice on this

sequence, once the loop closing was implemented with the

bottom-up matching and once with the top-down matching.

Note, that in offline mode the gaze control module cannot

be used. But since gaze control and top-down matching are

two largely independent mechanisms (gaze control controls

the camera actively whereas top-down matching focuses the

processing actively to regions of interest within the current

image), this does not affect the current experiments.

Each ROI of each expected landmark was considered for

matching. Fig. 6 shows the matching results for different

thresholds δ. It shows, that the increase of false matches (red,

dashed line) for increasing thresholds is about the same for

bottom-up and top-down matching, whereas the increase of

correct matches (blue, solid line) is steeper for the top-down

matching. That means, more correct matches are obtained in

top-down mode.

To illustrate the correspondence between false and correct

matches in more detail, Fig. 7 displays the correct matches

depending on the number of false matches. This figure is

similar to a ROC (receiver operating characteristic) curve, but

note that here the axes denote numbers of matches instead of

ratios. This is sufficient here, because in contrast to recognition

tasks, where the ratio of correct matches is important, we are

not interested in detecting all possible matches; some matches

are sufficient to close the loop. However, a higher detection

rate is still preferable, because it speeds up the loop closing

process and makes it more stable.

We expected the top-down matching to outperform the

bottom-up matching. Interestingly, this was not always the

case. For low thresholds which accept only very few or no

false detections at all, the bottom-up matching showed to be

better and provided more correct matches. The turning point

is between 8 and 15 false matches, where both bottom-up

and top-down matching perform equally. For higher thresholds

which accept more false matches, the top-down matching out-

performed the bottom-up matching, resulting in a considerably

higher number of correct matches: for 50 false matches, the

bottom-up matching detected 183 correct matches whereas the

top-down matching achieved 261 correct matches, which is an

increase of 42%.

Note that this number of false ROI matches is not the

number of false landmark matches which is reported to

SLAM. First, several of the matched ROIs belong to the

same landmark, since each ROI from an expected landmark is

matched to current ROIs. For example, the 50 false matches

of the top-down matching belonged to only 5 different ROI-

landmarks with 10 matches on average and the 261 correct

matches belonged to 9 ROI-landmarks with 29 matches on

average. Since there are usually considerably more matches

from correctly matching landmarks then from not-matching

landmarks, the number of matching ROIs per landmark is an

additional hint whether a landmark is redetected. We plan to

consider this for future work. Second, since we additionally

use the sift matching of the Harris corners, we are able to get

rid of almost all of the remaining false ROI-landmark matches.

In this example, only one Harris-landmark was classified

wrongly with the top-down matching. Interestingly, this false

match does not result from a false ROI match but from a

wrong association of a Harris corner in the top-right corner of

a ROI to one in the bottom-right corner.

To investigate the difference between the cases in which the

bottom-up matching performed better and the ones in which

top-down matching performed better, we had a closer look

at the matches. It turned out that “easy” matches are better

redetected with bottom-up matching. Easy matches are those

in which ROIs are seen under almost the same conditions (i.e.

from almost the same viewpoint and under almost the same

lightning conditions) as when they were detected the first time.

One example of such an easy match is displayed in Fig. 8, left.

More difficult matches are better redetected with top-down

matching. In some of these examples, the ROI is seen from

a quite different viewpoint as the example in Fig. 8, right.

These examples are of course more interesting, since usually

the robot does not face a landmark from exactly the same

position as before, so a viewpoint tolerance is necessary.

Since the matches in tracking situations are usually easy

matches, we suggest to use the bottom-up matching in the

feature tracker and top-down matching in the loop closer.

VIII. CONCLUSIONS

In this paper, we have presented a method to improve the

loop closing behaviour for visual SLAM. The visual attention

system, which detects regions of interest in a frame, is tuned

in a top-down manner to search for expected landmarks.

Whereas in easy matching situations the bottom-up matching

is preferable, the top-down matching outperforms the bottom-

up approach clearly in difficult matching situations: especially

when the viewpoint changes, the top-down matching enables a
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Fig. 6. Correct and false ROI matches for bottom-up (top) and top-down
matching (bottom) depending on the matching threshold δ.

Fig. 7. Correct matches for bottom-up and top-down matching depending
on the error rate: For a low number of false detections, bottom-up matching
results in more correct matches. If more false matches are acceptable, top-
down matching provides more correct matches.

more stable redetection with a considerably higher amount of

correct matches. Remaining false detections are removed with

an additional SIFT matching of Harris corners. This makes the

method useful for loop closing situations. In future work, we

plan to make the matching even more robust by considering the

matching stability of features over time and the constellation

of landmarks to each other within frames. Another topic of

research will be to investigate the limits of the method, i.e.,

to check how strongly the viewpoint may differ to still enable

redetection.
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