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Abstract— In this paper, we introduce an approach to active number of landmarks in the map. Additionally, landmarks

camera control for visual SLAM. Features, detected by a should be well distributed over the environment.
biologically motivated attention system, are tracked oveiseveral Current approaches for landmark selection include arti-

frames to determine stable landmarks. Matching of featuredo ficial land ks 91 Harri 5 imallv stabl
database entries enables global loop closing. The focus d¢fis  ficial landmarks [9], Harris corners [5], maximally stable

paper is the active camera control module, which supports ta ~ €xtremal regions (MSERSs) [10], or a combination of attemtio
system with three behaviours: i) A tracking behaviour tracks regions with Harris corners [11]. In this paper we show

promising landmarks and prevents them from leaving the field  that attention regions alone can be used as landmarks which
of view. ii) A redetection behaviour directs the camera actiely simplifies and speeds up the system.

to regions where landmarks are expected and thus supports - . .
loop closing. iii) Finally, an exploration behaviour invedigates The focus of this paper is the extension of the SLAM sys-

regions without landmarks and enables a more uniform dis- t€M to active camera control. The strategy consists of three
tribution of landmarks. Several real-world experiments show  behaviours: daracking behaviour identifies the most promis-
that the active camera control outperforms the passive systh  ing landmarks and prevents them from leaving the field of
considerably. view. A redetection behaviour actively searches for expected
|. INTRODUCTION landmarks to support loop-closing. Finally, @sploration
Rehaviour investigates regions with no landmarks, leatting

SLAM (Simultaneous localization and mapping) has bee . L
a topic of significant interest in the robotic communitya more uniform landmark distribution. The advantage of the

over the last decade [1], [2], [3]. While being considere h a better basell taster | losi d a bett
widely solved for small indoor environments based on Iasé('j!.I ¢ .S t'e erf I asde mel,( a a}[a er foop ¢ oswt\g, and a better
range finders, current topics of active research inchasl Istribution of fandmarks in the enwronmen '

SLAM, based only on camera data [4], [5], [6], [7], [8]. The idea of active sensing is not new: Control of sensors

The use of cameras holds advantages as well as challen Sgednerall IS a m?ft]ure d|scu§hne ';_ha;[.dtat%s ba:jclg sevgral
and difficulties: on the one hand, cameras are low-cost, lo ecades. In vision, the concept was first introduced by Bajcs

power and lightweight sensors which may be used in ma 2], an_d made popular by Act|v_e Vision [1.3] and ACt'.Ve
8rcept|on [14]. In terms of sensing for active localizatio

applications where laser scanners are too expensive or i ) .
P P tI(\)/IaX|mum Information Systems are an early demonstration

heavy. In addition, the rich visual information allows the ¢ . d localizati 151 Acti fon 1o i

use of more complex feature models for position estimatioff S€"s!Ng and focalization [15]. ctive motion 1o Increase
and recognition. On the other hand, the high amount c(;fcogm_tmn performance and active exploration was intro-
data in images challenges real-time processing: choobing t uced in [16]. More recent work has demonstrated the use

relevant data for processing and storing is crucial. Se,con((?If S|m|Ia_r methods for exploration and mapping [17]. Active

depth estimation is difficult when performing bearing-onIy.e)qo'()r"ﬂIon by moving the robot to cover space was presented

SLAM with a single camera without manual initialization. " [18] and in [19] the uncertainty of the robot pose and

And third, different appearances of the same scene under i”feature locations were also taken into account.

mination and viewpoint changes make tracking and matchinr% In the field pf visual SLAM, most approaches use cameras
a challenge. ounted statically on a robot. Probably the most advanced

A key competence in visual SLAM is to choose usefuVvork in the field of active camera control for visual SLAM

landmarks which are easy to track, stable over several same presented by Davison and colleagues. In [20], [21],

and easily re-detectable when returning to a previous ney _presen.t a robot.ic system which.(.:hooses landmarks for
visited location. Thisloop closing is one of the important acking which best improve the position knowledgg O_f the
problems in SLAM since it decreases accumulated error ystem. In more recent work [7], [22], they apply their visua

Furthermore, there should be a limited amount of landmar LAM approach to a hand-held camera. Active movements

since the complexity of SLAM typically is a function of the are done by the user, according to instructions from user-

interface [7], or they use the active approach to choose the
This work was partially sponsored by the SSF through its @efar ~ best landmarks from the current scene without controlling

Autonomous Systems (CAS) and the EU as part of the projecy &6%-  the camera [22]_
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closing, and a more uniform distribution of landmarks in - ° h!"l' %
the environment. Experimental results are presented to sho

the performance of the system. Fig. 2. The visual attention system VOCUS detects regiontefest

In the following, we first give an overview over the WhOle(RC)lS) in images based on the features intensity, ori@mtaand color.

SLAM architecture (sec. Il), then we describe the modules of
the system in detail (sec. lll-sec. VII). Finally, we illuste

in sec. VIl the operation of the method on a real robot and

with the attention system VOCUS (Visual Object detection

with a CompUtational attention System) [23], [24]. VOCUS
Il. SYSTEM OVERVIEW is based on concepts of the human visual system, namely on
the ability to quickly focus on salient regions of interdsis
The visual SLAM architecture is displayed in Fig. 1. Thegrounded on psychological work like the feature integratio
main components arerabot which provides camera imagestheory [25] and neurobiological findings [26]. The system
and odometry information, #eature detector which finds  consists of a bottom-up part which computes saliency purely
regions of interest (ROIs) in the imagesfeature tracker  pased on the content of the current image and a top-down
which tracks ROIs over several frames and builds Iandmarkgart which considers pre-knowledge and target information
a triangulator which identifies useful landmarks, 8LAM  to perform visual search. Here, we consider only the bottom-
module which builds a map of the environmentiaop closer  yp part of VOCUS, a first approach for integrating top-down
which matches current ROIs to the database and, as main pgfgcesses into the SLAM system is described in [27].
of the current paper, gaze control module which determines  The saliency is computed for 3 features: intensity, color,
where to direct the camera to. and orientations. For each feature, the contrast of a region
When a new frame from the camera is available, it ists background is computed menter-surround mechanisms
provided to thefeature detector, which finds ROIs based on [23]. For each feature, sever@hture types are determined,
a visual attention system. Next, the features are provided &.g. bright-dark (on-off) as well as dark-bright (off-orgre
the feature tracker which stores the last frames, performs trasts for the feature intensity. Before the features asedu
matching of ROIs in these frames and creates landmarks. Timgo a single saliency map, they are weighted according to
purpose of this buffer is to identify features which are Eab their uniqueness: a feature which occurs seldomly in a scene
over several frames and have enough parallax information fig assigned a higher saliency than a frequently occurring
3D initialization. These computations are performed by th&ature. This is a mechanism which enables humans to
triangulator. Selected landmarks are stored in a database afigstantly detect outliers like a black sheep in a white herd.
provided to the EKF-based SLAM module which computesrom the saliency map, the brightest regions are extracted a
an estimate of the position of landmarks and integrates thegions of interest (ROIs).
position estimate into the map. Details about the robot and For each ROI, a feature vectorwith 13 entries is deter-
the SLAM architecture can be found in [5]. mined, which describes how much each feature contributes
The task of theloop closer is to detect if a scene hasto the ROI. (cf. Fig. 3). The last three entries describe the
been seen before. Therefore, the features from the curr@@mbination of the feature types, i.e., the valueifdgensity
frame are compared with the features from the landmarks tfetermines the combination of on-off and off-on intensitie
the database. Thgaze control module actively controls the (cf. [23]).
camera. It decides whether to track currently seen landsnark Additionally to v, a SIFT descriptor is determined for each
to actively look for predicted landmarks, or to explore werse ROI [28]. It is a4 x 4 x 8 = 128 dimensional descriptor
areas. It computes a new camera position which is providegctor which results from placing4x 4 grid on a point and
to the robot. calculating a pixel gradient magnitude 4i° intervals for

Ill. FEATURE DETECTION



Feature vector v

intensity on-off 0.11 C(oj) ]

intensity off-on 7.92 p(0;) = 6)+ £(6,) Vje{l.t} (1)
orientation0 ° 2.36 e\ J

orientation45° 6.82 wherec(6;) and f(6;) denote the number of correct and
orientation90 ~ 7.32 false matches for a given descriptor distance threshpld
orientation135 8.48 -

color green 532 Hereby, the correct and false matches are classified mgnuall
color blue 2.97 to obtain ground truth. The distribution is one-dimenslona
color red 0.73 if a single descriptor type is used and multi-dimensional fo
color yellow 0.19 several different descriptor types.

Intensity 4.99 Matching is now performed depending on a threshold
orientation 5.70 L . . .

color 252 on the precision instead directly on the descriptor distanc

Here, we use a precision threshold of 0.98: if the estimated
Fig. 3. Left: image with region of interest (ROI). Right: faee vectors for ~ precision is above the threshold, the ROIs are considered to

ROI. The values ofi show that the region is dark on a bright backgroundmatch. We chose a high threshold because an EKF SLAM
(intensity off-on), that the vertical orientation is stgan than the horizontal system is sensitive to outliers.

one, and that generally intensity and orientation are momgoirtant than
color. The presented approach has several advantages over the

usual thresholding. First, it is possible to choose an fivii
threshold like “98% matching precision”. Second, linear
each of the grid cells. Usually, SIFT descriptors are comgut changes on the threshold result in linear changes on the
for corner features such as Harris corners [29] or intensitynatching precision. Finally, for every match a precisioluga
extrema in scale space [28]. Here, we calculate one descripis obtained. Since this corresponds to a probability estima
for each ROI. The center of the ROI provides the positiotion, this value can be directly used by other components
and the size of the ROI determines the size of the descriptof the system to treat a match according to the probability
grid. The grid should be larger than the ROI to allow catchingstimate that it is correct. For example, a SLAM subsystem
information about the surround but should also be not to@hich can deal with more uncertain associations could use
large to stay within the image borders. We chose a grid sizhese values. We consider the exploitation of this value for
of 1.5 times the maximum of width and height of the ROI.future work.
As mentioned above, different descriptor types can be
IV. FEATURE MATCHING used. We investigated two approaches. The first uses a com-
o ) ) bination of an attentional descriptor and the SIFT desaoript
Feature matching is performed in two of the visual SLAMrne gitentional descriptor is the previously introducectoe

modules: in the feature tracker and in the loop closer. 1§ The distanced (7, 7,) between two attention vectors
the feature tracker, features are matched between congeculy ¢ajculated according to an equation similar to the Eu-

frames to build landmarks and to enable structure from MQidean distance. details in [11]. The distande of two

tion computations. In the loop closer, matching is perfameg =1 gescriptors is calculated as their Euclidean distance
between features from the current frame and features o getermine the two-dimensional distribution of matching
the database to detect if this scene has been seen beforeprecision depending odi, andds, 378 correct matches and
Matching of interest regions is usually based on a similais35 fajse matches were classified manually. The experiments
ity comparison depending on the distankg;, ») between j this paper were based on this method.
two descriptorst; (different descriptor types may be used, Recently, we investigated a second method: matching
or a combination of them. This will be discussed later)pased on only the SIFT descriptor. This resulted even in
If d is below a threshold, the regions are considered tgjghtly better matching results, i.e., for the same amount
match. However, thresholding on a distance is a bit trickysf fajse detections more correct matches were found. While
Setting the threshold is unintuitive and requires exp@een g rprising at first, this can be explained as follows: a negio
wi_th the system. Furthermore, small changes_on the thrds_hqhay be described by two descriptor types, the perfect de-
might have unexpected effects on the detection qualityesingcriptors, and the weaker descriptés. &; detects all correct
the dependence of distance and matching precision is ngktches and rejects all possible false matches. Combiiing
linear. Therefore, we suggest a slightly modified thresingld \yith 5, cannot improve the process, it can only reduce the

approach. We learn from training data how the matchingetection rate by rejecting correct matches. Correspandin
precision depends on the descriptor distance threshoid. Thywperiments will be published in [30].

enables to directly set a threshold for the matching preisi

and let the system calculate the required corresponding V. FEATURE TRACKING

distance threshold automatically. In the feature trackerlandmarks are built from ROls
For a large amount of image data, we gathered statistics gy tracking the ROIs over several frames. That means, a

garding the distribution of the matching precision depegdi landmarks is a list of tracked ROIs and thength of a

on the descriptor threshold. Fedistinct distance threshold landmark is the number of elements in the list, which is

values, we compute thgrecision p as equivalent to the number of frames the ROI was detected in.



To compute the landmarks, we store the lasrames in / \

a buffer (here:n = 30). This buffer enables to determine
which landmarks are stable over time and therefore good
candidates for the map. The output from the buffer is thus
delayed byn frames but in return quality assessment can be
utilized before using the data.

The matching of ROIs is performed not only between
consecutive frames, but allows for gaps of several (here: 2 less than K landmarks?
frames where a ROI is not found. We call frames which are at =
most 3 frames behind the current fralese frames. Since \ / . .
a scene usually does not change strongly between such close Fnale degln the possibl fld oview
frames, it is possible to determine the approximate pasitio
of a feature in the current frame from its position in the lasfig- 4. Left: The three camera behaviouredetection, Tracking, Explo-
frame and the motion of the robot. This position estimatiofPio" Right: The usefulness functiop(c).
makes the tracking more stable.

The procedure to create landmarks is the follqwing: Whe_Oectors ofr; andr; have to pass a similarity threshold before
a new frame comes into the buffer, each of its ROIls i%e match probability is computed in (ii)

matched to all existing landmarks of close frames. If the When a match is detected, the coordinates of the matched

matching is succe_ssful, the new ROI.i_S appended to the e%l in the current frame are fed to the SLAM system,
of the best matching landmark. Additionally, the ROls tha{o update the coordinates of the corresponding landmark.

did not match any existing landmark are matched to th/ﬁ\dditionally, the ROI is appended to the landmark in the
unmatched ROIs of the previous frame. If two ROIs matChdatabase

a new landmark is created consisting of these two ROls. At

the end of the buffer, we consider the length of the resulting VII. AcTIVE GAZE CONTROL

landmarks and filter out too short ones (hefe). _ The active gaze control module controls the camera ac-
The final quality check for a tentative landmark that i%ording to three behaviours:

long enough but has not yet been added to the map data is .

X : . « Redetection of landmarks to close loops

made by the triangulator. It attempts to find an estimate for Tracking of landmarks

the location of the landmark. In the triangulation process, * Ex Ioragt]ion of UNKNOWN areas

also outliers are detected and removed from the landmark.® P ) i ) ]

By outlier we mean bearings that fall far away from the The strategy to decide which behaviour to choose is as

estimated landmark location. These could be the result &llows: Redetection has the highest priority, but it isyonl

Do we want more The usefulness of landmark as a function of angle

landmarks in field of view?

Is there a landmark
for tracking?
o

Is there an area with

Usefulness
o

mismatches or a poorly localized landmark. chosen if there is an expected landmark in the possible field
of view (def. see below). If there is no expected landmark
VI. LooPCLOSING for redetection, théracking behaviour is activated. Tracking

In the loop closing module, it is detected if the robot haghould only be performed if more landmarks are desired
seen the current scene before. This is done by matching tife this area. As soon as a certain amount of landmarks
ROIs from the current frame to landmarks from the databasl. OPtained in the field of view, thexploration behaviour
It is possible to use position prediction of landmarks tdS activated. In this behaviour, the camera is moved to an
determine which landmarks could be visible and thus prur@f®@ Wwithout landmarks. Most times, the system alternates
the search space, but since this prediction is usually nBgtween tracking and exploration, the redetection bebavio
precise when uncertainty grows after driving for a while, wdS Only activated every once in a while (see sec. VII-A
detect loop closing without using the SLAM pose estimat@d cf. Fig. 5). An overview over the decision process
as in [31]. That means, we match to all landmarks from thi$ displayed in Fig. 4. In the following, we describe the
database. Since our system usually focuses on few landmafR§Pective behaviours in detail.

(e.g. 57 for a162 m? gnvironm_ent) i.t is possible to search 5 ragetection of landmarks

the whole database in each iteration. However, for larger
environments it would be necessary to perform global IooP
closing less frequently and distribute the search overraéve a

In redetection mode, the camera is directed to expected
ndmarks Expected landmarks

iterations. () are in the potential field of view of the camera,
A ROI 7, is said to match to a landmark, if there are ~ (b) have low-enough uncertainties in the expected posi-
at leastj (here: j = 3) ROIsr;,i € 1..5 in L for which tions relative to the camera,

(i) the size difference of, andr; is small enough, (i) the () have not been seen recently,

probability for a match (based on the attention vector and(d) had no matching attempt recently.

SIFT descriptor similarities) is- 98% and (iii) if there is no To (a): The potential field of view of the camera is
other ROI from the current frame with a higher matchinget to +90° horizontally and7m distance. This prevents
probability to »;. To prune the search space, the featureonsidering landmarks which are too far away, since these ar



30/ wating pipisel ‘ x e pointed there for several (here 8) frames, until it is madche
nadpai —— Y u Note that redetection and matching are two independent
/ A J_L\
=0 Y, ] F mechanisms: active redetection only controls the camera,
3 ol — ] matching is permanently done in the loop closer, also ifeher
& 10 | s gisp y p
z:j i / exploration ST/ is no expected landmark.
e 4 ) I If no match is found after 8 frames, the system blocks
S _1ol \ ‘ this landmark and chooses the next expected landmark or
- continues with tracking or exploration.
= s
L/ B. Tracking of landmarks
-30f 1
i ‘ Tracking a landmark means to follow it with the camera
0 50 100 150

so that it stays longer within the field of view. This enables
better triangulation results. This behaviour is activafatie
preconditions for redetection do not apply.

First, one of the ROIs in the current frame has to be chosen
for tracking. There are several aspects which make a land-
mark useful for tracking. First, the length of a landmark is
probably not visible although they are in the right direotio an important factor for its usefulness since longer landtar
obstacles like walls are likely to block the view. In theare more likely to be triangulated soon. Second, an impbrtan
current implementation, there is no way to know whether thfactor is the horizontal angle of the landmark: points in
landmarks are in the same room, therefore landmarks frothe direction of motion result in a very small baseline over
different rooms might be considered. Of course, the restriceveral frames and hence often in poor triangulations.t®oin
tion to a certain distance is only a rough estimate whicht the side usually give much better triangulation resubiis,
is also dependent on the current environment. This modeh the other hand they are more likely to move outside the
causes problems primarily in environments where the robahage borders soon so that tracking is lost.
is actually able to detect landmarks that are further awag th  Therefore, the usefulness of a landmark is determined by
7m which means that not all available information is usedirst considering the length of the landmark and, second,
In smaller areas there is a slight increase in computationgde angle of the landmark in the potential field of view.
cost as more landmarks than necessary are considered. The length of the landmarks is considered by sorting out

To (b): Landmarks with a high pose uncertainty in pantandmarks below a certain size (here: 5). The usefulness of
or tilt-direction relative to the camera are not considessd the anglex of a ROl is determined by the following function:
expected landmarks, because matching is likely to fail when
directing the camera there. The uncertainty is considesed a
too high, if it exceeds the image size, i.e. if the uncertaint (@) = (k1 (LO+cos(da—))) + k2 (1.0 +cos(2))) (2)
of the landmark in pan-direction, projected to the image wherek; = 5 and k> = 1. The function is displayed in
plane, is larger than the width of the image, the Iandmar}gig_ 4 (right). It has the highest weight for pointsaat= 45°
is too uncertain. Note that these are actually the most Usefyhq, — _45° and has minima at — 0° and o — + 90°.
landmarks to redetect, but on the other hand the matchingdgnce points which are at the border of the field of view are
likely to fail. Passive ma?ching attempts for these Iandma_r likely to move out of view very soon, they are considered
are permanently done in the loop closer, only the activgyen worse than points in the center. Notice that we cannot
redetection is prevented. _ actively control the robot motion, only the camera’s, which

To (c): The redetection behaviour focuses on landmarkg, g otherwise allow us to make sure that points on the
which have not been visible for a while (here: 30 frames),qer stay in the image. The exact shape of the function is
to prevent switching the camera position constantly. Thgot crucial, functions with similar shape should do as well.

longer a landmark had not been visible, the more useful ithe sefulness of a landmarkis determined by:
redetection.

f To (d): If an expected landmark h_as_ bgen focuse_d fqr some U(L) = () Vi 3)

rames and is still not redetected, it is likely that it wilbtin

be redetectable in the near future. Therefore, the redettect wherel is the length of the landmark.

of these landmarks is blocked for a while (here: 30 frames). After determining the most useful landmark for tracking,

This behaviour prevents the system from repeatedly dirgcti the camera is directed into the direction of the landmarle Th

the camera at undetectable landmarks and allows the systeamera is moved slowly (hefel radians per step), since this

to continue with tracking and exploration, once it checkedhanges the appearance of the ROI less than large camera

all expected landmarks in the possible field of view. movements resulting in a higher matching rate and prevents
If there are several expected landmarks, the longest lani- loose other currently visible landmarks.

mark is chosen because the probability for a match is high. The tracking ends when the landmark is not visible any

Then, the camera is moved to focus this landmark anmiore (because it left the field of view or because the

Time [s]

Fig. 5. The pan angle as a function of time. The camera behaglternates
between tracking and exploration.



- i # LMs mapped| # correct matcheg # false matchesg|
s pass.| act. pass. act. pass.| act.

I 9 i experiment 1 a (after 1st loop)] 9 21 0 5 0 0
experiment 1 a (after 2nd loop) 15 27 5 16 1 0

5 p experiment 1 b (after 1st loop)| 10 22 1 11 0 0
°°°°°°°°°°°°°°°°°°°° experiment 1 b (after 2nd loop) 16 28 8 18 1 0
experiment 2 26 57 0 21 0 4

TABLE |

LEFT: ROBOT PATH FOR EXPERIMENTL. RIGHT: COMPARISON OF NUMBER OF MAPPED LANDMARKS AND OF CORRECT AND AASE MATCHES FOR
PASSIVE AND FOR ACTIVE CAMERA MODE

matching failed) or when the landmark was successfullgf correct and false matches after 1 and after 2 loops. The
triangulated. If there is no other useful landmark to track oresults are shown in Tab. I. Col. 2 and 3 show that in active
there are already enough landmarks detected in this regianpde, considerably more landmarks are mapped than in
the exploration behaviour is activated. passive mode, usually about twice as many. This results from
the exploration mode: areas are investigated in active mode
) ) which are not visible to the camera in passive mode. Thus,
As soon as there are enough §) landmarks in the field 5 petter distribution of landmarks can be achieved. Col. 4-7
of view, the exploration behaviour is started, i.e., the €N show the number of matches in loop closing situations. We
is directed to an area within the possible field of view withouggynt only matches which appeared at most 30 frames after
landmarks. We favor regions with no landmarks over regionge |andmark had been visible for the last time. Matches
W|th feW |andmarkS Since feW |andmal’kS are a h|nt that Wﬁ) |andmarks Wh|Ch have been Visib'e more recently are
already looked there and did not find more landmarks.  aiso used to update the map data, but are not counted here
in two parts, one on each side of the current field of viewsn uncertainty reduction. The table shows that the number
Each of these regions is divided into parts which correspong matches also increases considerably in active mode. This
other is checked until one without landmarks is found. Thgecond, actively directing the camera to expected landsnark
order in which fields are checked is as follows: if the camergedetection), and third, directing the camera by chance to
the field directly on the left of the camera and vice versa. . . .
. A The result of experiment 1 is that by active camera control,
This enables a broader distribution of detected landmarks : o
: . : more landmarks are mapped with a better distribution in
in the environment. If there is no landmark, the camera i . )
. : o e environment and more landmark matches. However, in
moved there. Otherwise we switch to the opposite side an

: ; . is experiment, the robot pose uncertainty is similar ithbo
investigate the areas there. If no area without landmarks is . S . :

. o o cases. It drops slightly earlier in active mode if the camera
found, the camera is set to the initial position.

To enable building of landmarks over several frames, we directed to an expected landmark while the loop is not

. . et closed completely, but since exactly the same path is

let the camera focus one region for a while (here 10 frames). 4 i ;
L epeated, the system is also able to close the loops in passiv
As soon as a landmark for tracking is found, the system

will automatically switch behaviour and start tracking itmOde'

(cf. Fig. 5). In experiment 2, we show a case where loop closing is
not possible in passive but in active mode. Here, the robot
VIII. EXPERIMENTS AND RESULTS drove the path of an eight, as displayed in Fig. 6, once in
In this section, we compare the passive and the actiy@assive and once in active mode. 1803 (passive) resp. 1788
camera mode of the visual SLAM system. We show thafactive) images were processed during the path. Although
with active camera control, more landmarks are mapped withe first door is passed three times, the robot does not face
a better distribution in the environment and more databasxactly the same area in these three cases and is not able
matches are obtained (experiment 1). Finally, we show a cas® close a loop in passive mode (in the last part of the
in which a loop closing is not detected in passive mode bytath, no landmarks where detected during the first run, so
is in active mode (experiment 2). no matching is possible). In Fig. 6 (b), the resulting map is
In experiment 1, the robot drove two loops on the pathdisplayed. It can be seen that the final robot pose is wrong by
displayed in Tab. I, left. To show the repeatability of theabout 3m since the robot was not able to correct its pose by
results, the experiment was carried out twice: experimetdop closing. On the other hand, in active mode the camera
la was performed during the day and experiment 1b duririg directed to regions which had been seen before and the
night, with different lightning conditions. Each sequence&obot closes loops first after the first circle and again dfter
consists 0f~1200 images 320 x 240). We monitored the second circle (cf. Fig. 8, left). Fig. 6 (c) shows the resigti
number of landmarks which were mapped and the numberap, with matches displayed as larger, red dots. The number

C. Exploration of unknown areas
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Fig. 6. Experiment 2: comparison of passive and active carnentrol. Green, small dots are landmarks (b,c), red, ldaje are database matches (c).
(d): the robot pose uncertainty computed as the tracB.pf(covariance of robot pose) for passive and active cameramfdideo showing the trajectory
of the robot in active camera mode is available on the CD mdiogs of ICRA 2008.

Trajectory of the robot Trajectory of the robot

{— stam oo [~ sLAMm
--- odom '.\ --- odom

10 -5 10

Fig. 7. Trajectory of robot path estimated from odometryuéhldashed)
and SLAM (red, solid) for passive (left) and active (righgneera mode.

of matches is shown in the last row of Tab. I: 21 correct and
4 false matches. Most false matches result from confusing
some of the lamps with identical appearance (cf. Fig. 8,
right). Considering the geometric arrangement of landmark
would help to prevent such false matches. Also visible from
Z::%u?agz)i:ggtisz tﬁat:?r: the fl_nal robot POSE 1S much mor(\?v%y to immediately, that means already when the features

passive mode. This can also be SSe computed, determine which regions in an image are
in Fig. 7, in which the trajectory of the robot, estimated enc '

. Co useful. This results in few landmarks compared to correr-li
directly from odomeiry and once from SLAM, is OIISpIayeqfeatures what is helpful for an EKF-based SLAM system that

for passive and for active camera mode. When comparng les with the number of landmarks. The precision-based

It with the path in Fig. 6 (a), it can be seen that first, thematchin rocedure provides a powerful way to achieve a
SLAM estimation is much more accurate than the odometrféI 9p P P Y

estimate and second, that the actively estimated SLAM pa ertqln Qetecnon ra_te. Another ad_\{antage of this apprﬂaach
) . at it directly provides a probability value that a match is
is more accurate than the passive one.

In Fia. 6 (d). th bot taint ted correct. With a different SLAM subsystem than the current
n Fig. 6 (d), the robot pose uncertainty, compute agne, one that can deal with more uncertain associatiorse the
the trace of P.. (covariance of robot pose) is displayed

f : qf " de. It sh learlv h thmatching probability could be used.
Or passive ang for active mode. 1t Snows ciearly NOw € o system seems to generalize well to new environments:

two loop closing situations in active mode reduce the poss?stem development and all parameter tuning was performed

uncertainty (at meter 21 and meter 44), resulting at the en environment 1, testing the system in environment 2

; o i
?rfethu?lsgg;ii?;?nIr;;s\,/iig;\(l)v(?g:h is about 80% lower tham another building was only done after the sys_tem was
' complete. As shown, good performance was obtained here.
However, it would be interesting to investigate how robbst t
system behaves in completely different environments sach a
This paper presents an active visual SLAM system baseditdoor environments. This is subject to future work.
on attentional landmarks. The attention regions provide The computation of the attention regions is relatively fast
useful landmarks for visual SLAM since they provide a(~50 ms/frame) since it is based on integral images [32]. The

Fig. 8. Left: correct loop closing match. Right: false match

IX. CONCLUSION



rest of the system allows real-time performance. Currently1o]
it runs on average at 90 ms/frame on a Pentium IV 2 GHz
macMne.Smcethecodeisnotyetopmnued,atﬂgherﬂaﬂ%ﬂ
rate should be easily achievable by standard optimizations

The main contribution of the paper is the active gaz&€?
control module with the behaviours tracking, redetectand
exploration. Experimental results showed that about taice [13]
many landmarks are mapped in active camera mode and
least twice as many database matches are obtained, usu
much more. In some cases, loop closing is only possible by
actively controlling the camera.

Needless to say, much could be done to further improve thg;
system. False detections could be eliminated by consiglerin
the spatial organization of several landmarks. Extendir@”
the system to larger environments could be achieved by
removing landmarks which are not redetected to keep i8]
number of landmarks low, and by using hierarchical map
as in [22], in which many local maps are built which do no
exceed a certain size.
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