
Active Gaze Control for Attentional Visual SLAM

Simone Frintrop and Patric Jensfelt

Abstract— In this paper, we introduce an approach to active
camera control for visual SLAM. Features, detected by a
biologically motivated attention system, are tracked overseveral
frames to determine stable landmarks. Matching of featuresto
database entries enables global loop closing. The focus of this
paper is the active camera control module, which supports the
system with three behaviours: i) A tracking behaviour tracks
promising landmarks and prevents them from leaving the field
of view. ii) A redetection behaviour directs the camera actively
to regions where landmarks are expected and thus supports
loop closing. iii) Finally, an exploration behaviour investigates
regions without landmarks and enables a more uniform dis-
tribution of landmarks. Several real-world experiments show
that the active camera control outperforms the passive system
considerably.

I. I NTRODUCTION

SLAM (Simultaneous localization and mapping) has been
a topic of significant interest in the robotic community
over the last decade [1], [2], [3]. While being considered
widely solved for small indoor environments based on laser
range finders, current topics of active research includevisual
SLAM, based only on camera data [4], [5], [6], [7], [8].

The use of cameras holds advantages as well as challenges
and difficulties: on the one hand, cameras are low-cost, low-
power and lightweight sensors which may be used in many
applications where laser scanners are too expensive or too
heavy. In addition, the rich visual information allows the
use of more complex feature models for position estimation
and recognition. On the other hand, the high amount of
data in images challenges real-time processing: choosing the
relevant data for processing and storing is crucial. Second,
depth estimation is difficult when performing bearing-only
SLAM with a single camera without manual initialization.
And third, different appearances of the same scene under illu-
mination and viewpoint changes make tracking and matching
a challenge.

A key competence in visual SLAM is to choose useful
landmarks which are easy to track, stable over several frames,
and easily re-detectable when returning to a previously
visited location. Thisloop closing is one of the important
problems in SLAM since it decreases accumulated errors.
Furthermore, there should be a limited amount of landmarks
since the complexity of SLAM typically is a function of the
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number of landmarks in the map. Additionally, landmarks
should be well distributed over the environment.

Current approaches for landmark selection include arti-
ficial landmarks [9], Harris corners [5], maximally stable
extremal regions (MSERs) [10], or a combination of attention
regions with Harris corners [11]. In this paper we show
that attention regions alone can be used as landmarks which
simplifies and speeds up the system.

The focus of this paper is the extension of the SLAM sys-
tem to active camera control. The strategy consists of three
behaviours: atracking behaviour identifies the most promis-
ing landmarks and prevents them from leaving the field of
view. A redetection behaviour actively searches for expected
landmarks to support loop-closing. Finally, anexploration
behaviour investigates regions with no landmarks, leadingto
a more uniform landmark distribution. The advantage of the
active gaze control is to obtain more informative landmarks
with a better baseline, a faster loop closing, and a better
distribution of landmarks in the environment.

The idea of active sensing is not new: Control of sensors
in general is a mature discipline that dates back several
decades. In vision, the concept was first introduced by Bajcsy
[12], and made popular by Active Vision [13] and Active
Perception [14]. In terms of sensing for active localization,
Maximum Information Systems are an early demonstration
of sensing and localization [15]. Active motion to increase
recognition performance and active exploration was intro-
duced in [16]. More recent work has demonstrated the use
of similar methods for exploration and mapping [17]. Active
exploration by moving the robot to cover space was presented
in [18] and in [19] the uncertainty of the robot pose and
feature locations were also taken into account.

In the field of visual SLAM, most approaches use cameras
mounted statically on a robot. Probably the most advanced
work in the field of active camera control for visual SLAM
is presented by Davison and colleagues. In [20], [21],
they present a robotic system which chooses landmarks for
tracking which best improve the position knowledge of the
system. In more recent work [7], [22], they apply their visual
SLAM approach to a hand-held camera. Active movements
are done by the user, according to instructions from user-
interface [7], or they use the active approach to choose the
best landmarks from the current scene without controlling
the camera [22].

The contributions of this paper are first, presenting a
landmark selection scheme based on a biologically motivated
attention system, second, a precision-based matching proce-
dure, and finally, an active gaze control strategy to obtain
a better baseline for landmark estimations, a faster loop



Fig. 1. The active visual SLAM system

closing, and a more uniform distribution of landmarks in
the environment. Experimental results are presented to show
the performance of the system.

In the following, we first give an overview over the whole
SLAM architecture (sec. II), then we describe the modules of
the system in detail (sec. III–sec. VII). Finally, we illustrate
in sec. VIII the operation of the method on a real robot and
show the advantages of active camera control.

II. SYSTEM OVERVIEW

The visual SLAM architecture is displayed in Fig. 1. The
main components are arobot which provides camera images
and odometry information, afeature detector which finds
regions of interest (ROIs) in the images, afeature tracker
which tracks ROIs over several frames and builds landmarks,
a triangulator which identifies useful landmarks, aSLAM
module which builds a map of the environment, aloop closer
which matches current ROIs to the database and, as main part
of the current paper, agaze control module which determines
where to direct the camera to.

When a new frame from the camera is available, it is
provided to thefeature detector, which finds ROIs based on
a visual attention system. Next, the features are provided to
the feature tracker which stores the lastn frames, performs
matching of ROIs in these frames and creates landmarks. The
purpose of this buffer is to identify features which are stable
over several frames and have enough parallax information for
3D initialization. These computations are performed by the
triangulator. Selected landmarks are stored in a database and
provided to the EKF-based SLAM module which computes
an estimate of the position of landmarks and integrates the
position estimate into the map. Details about the robot and
the SLAM architecture can be found in [5].

The task of theloop closer is to detect if a scene has
been seen before. Therefore, the features from the current
frame are compared with the features from the landmarks in
the database. Thegaze control module actively controls the
camera. It decides whether to track currently seen landmarks,
to actively look for predicted landmarks, or to explore unseen
areas. It computes a new camera position which is provided
to the robot.

Fig. 2. The visual attention system VOCUS detects regions ofinterest
(ROIs) in images based on the features intensity, orientation, and color.

III. F EATURE DETECTION

The detection of regions of interest (ROIs) is performed
with the attention system VOCUS (Visual Object detection
with a CompUtational attention System) [23], [24]. VOCUS
is based on concepts of the human visual system, namely on
the ability to quickly focus on salient regions of interest.It is
grounded on psychological work like the feature integration
theory [25] and neurobiological findings [26]. The system
consists of a bottom-up part which computes saliency purely
based on the content of the current image and a top-down
part which considers pre-knowledge and target information
to perform visual search. Here, we consider only the bottom-
up part of VOCUS, a first approach for integrating top-down
processes into the SLAM system is described in [27].

The saliency is computed for 3 features: intensity, color,
and orientations. For each feature, the contrast of a regionto
its background is computed bycenter-surround mechanisms
[23]. For each feature, severalfeature types are determined,
e.g. bright-dark (on-off) as well as dark-bright (off-on) con-
trasts for the feature intensity. Before the features are fused
into a single saliency map, they are weighted according to
their uniqueness: a feature which occurs seldomly in a scene
is assigned a higher saliency than a frequently occurring
feature. This is a mechanism which enables humans to
instantly detect outliers like a black sheep in a white herd.
From the saliency map, the brightest regions are extracted as
regions of interest (ROIs).

For each ROI, a feature vector~v with 13 entries is deter-
mined, which describes how much each feature contributes
to the ROI. (cf. Fig. 3). The last three entries describe the
combination of the feature types, i.e., the value forintensity
determines the combination of on-off and off-on intensities
(cf. [23]).

Additionally to~v, a SIFT descriptor is determined for each
ROI [28]. It is a 4 × 4 × 8 = 128 dimensional descriptor
vector which results from placing a4×4 grid on a point and
calculating a pixel gradient magnitude at45◦ intervals for



Feature vector~v
intensity on-off 0.11
intensity off-on 7.92
orientation0

◦ 2.36
orientation45

◦ 6.82
orientation90

◦ 7.32
orientation135

◦ 8.48
color green 5.32
color blue 2.97
color red 0.73
color yellow 0.19
intensity 4.99
orientation 5.70
color 2.52

Fig. 3. Left: image with region of interest (ROI). Right: feature vector~v for
ROI. The values of~v show that the region is dark on a bright background
(intensity off-on), that the vertical orientation is stronger than the horizontal
one, and that generally intensity and orientation are more important than
color.

each of the grid cells. Usually, SIFT descriptors are computed
for corner features such as Harris corners [29] or intensity
extrema in scale space [28]. Here, we calculate one descriptor
for each ROI. The center of the ROI provides the position
and the size of the ROI determines the size of the descriptor
grid. The grid should be larger than the ROI to allow catching
information about the surround but should also be not too
large to stay within the image borders. We chose a grid size
of 1.5 times the maximum of width and height of the ROI.

IV. FEATURE MATCHING

Feature matching is performed in two of the visual SLAM
modules: in the feature tracker and in the loop closer. In
the feature tracker, features are matched between consecutive
frames to build landmarks and to enable structure from mo-
tion computations. In the loop closer, matching is performed
between features from the current frame and features from
the database to detect if this scene has been seen before.

Matching of interest regions is usually based on a similar-
ity comparison depending on the distanced(ξ1, ξ2) between
two descriptorsξi (different descriptor types may be used,
or a combination of them. This will be discussed later).
If d is below a threshold, the regions are considered to
match. However, thresholding on a distance is a bit tricky.
Setting the threshold is unintuitive and requires experience
with the system. Furthermore, small changes on the threshold
might have unexpected effects on the detection quality since
the dependence of distance and matching precision is not
linear. Therefore, we suggest a slightly modified thresholding
approach. We learn from training data how the matching
precision depends on the descriptor distance threshold. This
enables to directly set a threshold for the matching precision
and let the system calculate the required corresponding
distance threshold automatically.

For a large amount of image data, we gathered statistics re-
garding the distribution of the matching precision depending
on the descriptor threshold. Fort distinct distance threshold
values, we compute theprecision p as

p(θj) =
c(θj)

c(θj) + f(θj)
, ∀ j ∈ {1..t} (1)

wherec(θj) andf(θj) denote the number of correct and
false matches for a given descriptor distance thresholdθj .
Hereby, the correct and false matches are classified manually
to obtain ground truth. The distribution is one-dimensional
if a single descriptor type is used and multi-dimensional for
several different descriptor types.

Matching is now performed depending on a threshold
on the precision instead directly on the descriptor distance.
Here, we use a precision threshold of 0.98: if the estimated
precision is above the threshold, the ROIs are considered to
match. We chose a high threshold because an EKF SLAM
system is sensitive to outliers.

The presented approach has several advantages over the
usual thresholding. First, it is possible to choose an intuitive
threshold like “98% matching precision”. Second, linear
changes on the threshold result in linear changes on the
matching precision. Finally, for every match a precision value
is obtained. Since this corresponds to a probability estima-
tion, this value can be directly used by other components
of the system to treat a match according to the probability
estimate that it is correct. For example, a SLAM subsystem
which can deal with more uncertain associations could use
these values. We consider the exploitation of this value for
future work.

As mentioned above, different descriptor types can be
used. We investigated two approaches. The first uses a com-
bination of an attentional descriptor and the SIFT descriptor.
The attentional descriptor is the previously introduced vector
~v. The distancedA(~v1, ~v2) between two attention vectors
is calculated according to an equation similar to the Eu-
clidean distance, details in [11]. The distancedS of two
SIFT descriptors is calculated as their Euclidean distance.
To determine the two-dimensional distribution of matching
precision depending ondA anddS , 378 correct matches and
535 false matches were classified manually. The experiments
in this paper were based on this method.

Recently, we investigated a second method: matching
based on only the SIFT descriptor. This resulted even in
slightly better matching results, i.e., for the same amount
of false detections more correct matches were found. While
surprising at first, this can be explained as follows: a region
may be described by two descriptor types, the perfect de-
scriptorδ1 and the weaker descriptorδ2. δ1 detects all correct
matches and rejects all possible false matches. Combiningδ1

with δ2 cannot improve the process, it can only reduce the
detection rate by rejecting correct matches. Corresponding
experiments will be published in [30].

V. FEATURE TRACKING

In the feature tracker,landmarks are built from ROIs
by tracking the ROIs over several frames. That means, a
landmarks is a list of tracked ROIs and thelength of a
landmark is the number of elements in the list, which is
equivalent to the number of frames the ROI was detected in.



To compute the landmarks, we store the lastn frames in
a buffer (here:n = 30). This buffer enables to determine
which landmarks are stable over time and therefore good
candidates for the map. The output from the buffer is thus
delayed byn frames but in return quality assessment can be
utilized before using the data.

The matching of ROIs is performed not only between
consecutive frames, but allows for gaps of several (here: 2)
frames where a ROI is not found. We call frames which are at
most 3 frames behind the current frameclose frames. Since
a scene usually does not change strongly between such close
frames, it is possible to determine the approximate position
of a feature in the current frame from its position in the last
frame and the motion of the robot. This position estimation
makes the tracking more stable.

The procedure to create landmarks is the following: when
a new frame comes into the buffer, each of its ROIs is
matched to all existing landmarks of close frames. If the
matching is successful, the new ROI is appended to the end
of the best matching landmark. Additionally, the ROIs that
did not match any existing landmark are matched to the
unmatched ROIs of the previous frame. If two ROIs match,
a new landmark is created consisting of these two ROIs. At
the end of the buffer, we consider the length of the resulting
landmarks and filter out too short ones (here≤ 5).

The final quality check for a tentative landmark that is
long enough but has not yet been added to the map data is
made by the triangulator. It attempts to find an estimate for
the location of the landmark. In the triangulation process,
also outliers are detected and removed from the landmark.
By outlier we mean bearings that fall far away from the
estimated landmark location. These could be the result of
mismatches or a poorly localized landmark.

VI. L OOPCLOSING

In the loop closing module, it is detected if the robot has
seen the current scene before. This is done by matching the
ROIs from the current frame to landmarks from the database.
It is possible to use position prediction of landmarks to
determine which landmarks could be visible and thus prune
the search space, but since this prediction is usually not
precise when uncertainty grows after driving for a while, we
detect loop closing without using the SLAM pose estimate
as in [31]. That means, we match to all landmarks from the
database. Since our system usually focuses on few landmarks
(e.g. 57 for a162 m2 environment) it is possible to search
the whole database in each iteration. However, for larger
environments it would be necessary to perform global loop
closing less frequently and distribute the search over several
iterations.

A ROI r1 is said to match to a landmarkL, if there are
at leastj (here: j = 3) ROIsri, i ∈ 1..j in L for which
(i) the size difference ofr1 and ri is small enough, (ii) the
probability for a match (based on the attention vector and
SIFT descriptor similarities) is> 98% and (iii) if there is no
other ROI from the current frame with a higher matching
probability to ri. To prune the search space, the feature
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Fig. 4. Left: The three camera behavioursRedetection, Tracking, Explo-
ration. Right: The usefulness functionϕ(α).

vectors ofr1 andri have to pass a similarity threshold before
the match probability is computed in (ii).

When a match is detected, the coordinates of the matched
ROI in the current frame are fed to the SLAM system,
to update the coordinates of the corresponding landmark.
Additionally, the ROI is appended to the landmark in the
database.

VII. A CTIVE GAZE CONTROL

The active gaze control module controls the camera ac-
cording to three behaviours:

• Redetection of landmarks to close loops
• Tracking of landmarks
• Exploration of unknown areas

The strategy to decide which behaviour to choose is as
follows: Redetection has the highest priority, but it is only
chosen if there is an expected landmark in the possible field
of view (def. see below). If there is no expected landmark
for redetection, thetracking behaviour is activated. Tracking
should only be performed if more landmarks are desired
in this area. As soon as a certain amount of landmarks
is obtained in the field of view, theexploration behaviour
is activated. In this behaviour, the camera is moved to an
area without landmarks. Most times, the system alternates
between tracking and exploration, the redetection behaviour
is only activated every once in a while (see sec. VII-A
and cf. Fig. 5). An overview over the decision process
is displayed in Fig. 4. In the following, we describe the
respective behaviours in detail.

A. Redetection of landmarks

In redetection mode, the camera is directed to expected
landmarks.Expected landmarks

(a) are in the potential field of view of the camera,
(b) have low-enough uncertainties in the expected posi-

tions relative to the camera,
(c) have not been seen recently,
(d) had no matching attempt recently.

To (a): The potential field of view of the camera is
set to ± 90◦ horizontally and7m distance. This prevents
considering landmarks which are too far away, since these are



Fig. 5. The pan angle as a function of time. The camera behaviour alternates
between tracking and exploration.

probably not visible although they are in the right direction:
obstacles like walls are likely to block the view. In the
current implementation, there is no way to know whether the
landmarks are in the same room, therefore landmarks from
different rooms might be considered. Of course, the restric-
tion to a certain distance is only a rough estimate which
is also dependent on the current environment. This model
causes problems primarily in environments where the robot
is actually able to detect landmarks that are further away than
7m which means that not all available information is used.
In smaller areas there is a slight increase in computational
cost as more landmarks than necessary are considered.

To (b): Landmarks with a high pose uncertainty in pan-
or tilt-direction relative to the camera are not consideredas
expected landmarks, because matching is likely to fail when
directing the camera there. The uncertainty is considered as
too high, if it exceeds the image size, i.e. if the uncertainty
of the landmark in pan-direction, projected to the image
plane, is larger than the width of the image, the landmark
is too uncertain. Note that these are actually the most useful
landmarks to redetect, but on the other hand the matching is
likely to fail. Passive matching attempts for these landmarks
are permanently done in the loop closer, only the active
redetection is prevented.

To (c): The redetection behaviour focuses on landmarks
which have not been visible for a while (here: 30 frames)
to prevent switching the camera position constantly. The
longer a landmark had not been visible, the more useful its
redetection.

To (d): If an expected landmark has been focused for some
frames and is still not redetected, it is likely that it will not
be redetectable in the near future. Therefore, the redetection
of these landmarks is blocked for a while (here: 30 frames).
This behaviour prevents the system from repeatedly directing
the camera at undetectable landmarks and allows the system
to continue with tracking and exploration, once it checked
all expected landmarks in the possible field of view.

If there are several expected landmarks, the longest land-
mark is chosen because the probability for a match is high.
Then, the camera is moved to focus this landmark and

pointed there for several (here 8) frames, until it is matched.
Note that redetection and matching are two independent
mechanisms: active redetection only controls the camera,
matching is permanently done in the loop closer, also if there
is no expected landmark.

If no match is found after 8 frames, the system blocks
this landmark and chooses the next expected landmark or
continues with tracking or exploration.

B. Tracking of landmarks

Tracking a landmark means to follow it with the camera
so that it stays longer within the field of view. This enables
better triangulation results. This behaviour is activatedif the
preconditions for redetection do not apply.

First, one of the ROIs in the current frame has to be chosen
for tracking. There are several aspects which make a land-
mark useful for tracking. First, the length of a landmark is
an important factor for its usefulness since longer landmarks
are more likely to be triangulated soon. Second, an important
factor is the horizontal angle of the landmark: points in
the direction of motion result in a very small baseline over
several frames and hence often in poor triangulations. Points
at the side usually give much better triangulation results,but
on the other hand they are more likely to move outside the
image borders soon so that tracking is lost.

Therefore, the usefulness of a landmark is determined by
first considering the length of the landmark and, second,
the angle of the landmark in the potential field of view.
The length of the landmarks is considered by sorting out
landmarks below a certain size (here: 5). The usefulness of
the angleα of a ROI is determined by the following function:

ϕ(α) = (k1 (1.0+cos(4α−π)))+k2 (1.0+cos(2α))) (2)

wherek1 = 5 and k2 = 1. The function is displayed in
Fig. 4 (right). It has the highest weight for points atα = 45◦

andα = −45◦ and has minima atα = 0◦ and α = ± 90◦.
Since points which are at the border of the field of view are
likely to move out of view very soon, they are considered
even worse than points in the center. Notice that we cannot
actively control the robot motion, only the camera’s, which
would otherwise allow us to make sure that points on the
border stay in the image. The exact shape of the function is
not crucial, functions with similar shape should do as well.
The usefulness of a landmarkL is determined by:

U(L) = ϕ(α)
√

l (3)

wherel is the length of the landmark.
After determining the most useful landmark for tracking,

the camera is directed into the direction of the landmark. The
camera is moved slowly (here0.1 radians per step), since this
changes the appearance of the ROI less than large camera
movements resulting in a higher matching rate and prevents
to loose other currently visible landmarks.

The tracking ends when the landmark is not visible any
more (because it left the field of view or because the



# LMs mapped # correct matches # false matches
pass. act. pass. act. pass. act.

experiment 1 a (after 1st loop) 9 21 0 5 0 0
experiment 1 a (after 2nd loop) 15 27 5 16 1 0
experiment 1 b (after 1st loop) 10 22 1 11 0 0
experiment 1 b (after 2nd loop) 16 28 8 18 1 0
experiment 2 26 57 0 21 0 4

TABLE I

LEFT: ROBOT PATH FOR EXPERIMENT1. RIGHT: COMPARISON OF NUMBER OF MAPPED LANDMARKS AND OF CORRECT AND FALSE MATCHES FOR

PASSIVE AND FOR ACTIVE CAMERA MODE.

matching failed) or when the landmark was successfully
triangulated. If there is no other useful landmark to track or
there are already enough landmarks detected in this region,
the exploration behaviour is activated.

C. Exploration of unknown areas

As soon as there are enough (≥ 5) landmarks in the field
of view, the exploration behaviour is started, i.e., the camera
is directed to an area within the possible field of view without
landmarks. We favor regions with no landmarks over regions
with few landmarks since few landmarks are a hint that we
already looked there and did not find more landmarks.

We proceed as follows: the possible field of view is divided
in two parts, one on each side of the current field of view.
Each of these regions is divided into parts which correspond
to the size of the field of view. Then one field after the
other is checked until one without landmarks is found. The
order in which fields are checked is as follows: if the camera
is currently pointing to the right, we start by investigating
the field directly on the left of the camera and vice versa.
This enables a broader distribution of detected landmarks
in the environment. If there is no landmark, the camera is
moved there. Otherwise we switch to the opposite side and
investigate the areas there. If no area without landmarks is
found, the camera is set to the initial position.

To enable building of landmarks over several frames, we
let the camera focus one region for a while (here 10 frames).
As soon as a landmark for tracking is found, the system
will automatically switch behaviour and start tracking it
(cf. Fig. 5).

VIII. E XPERIMENTS AND RESULTS

In this section, we compare the passive and the active
camera mode of the visual SLAM system. We show that
with active camera control, more landmarks are mapped with
a better distribution in the environment and more database
matches are obtained (experiment 1). Finally, we show a case
in which a loop closing is not detected in passive mode but
is in active mode (experiment 2).

In experiment 1, the robot drove two loops on the path
displayed in Tab. I, left. To show the repeatability of the
results, the experiment was carried out twice: experiment
1a was performed during the day and experiment 1b during
night, with different lightning conditions. Each sequence
consists of∼1200 images (320 × 240). We monitored the
number of landmarks which were mapped and the number

of correct and false matches after 1 and after 2 loops. The
results are shown in Tab. I. Col. 2 and 3 show that in active
mode, considerably more landmarks are mapped than in
passive mode, usually about twice as many. This results from
the exploration mode: areas are investigated in active mode
which are not visible to the camera in passive mode. Thus,
a better distribution of landmarks can be achieved. Col. 4–7
show the number of matches in loop closing situations. We
count only matches which appeared at most 30 frames after
the landmark had been visible for the last time. Matches
to landmarks which have been visible more recently are
also used to update the map data, but are not counted here
since we want to focus on matches with a higher impact
on uncertainty reduction. The table shows that the number
of matches also increases considerably in active mode. This
is due to first, having more landmarks in the database,
second, actively directing the camera to expected landmarks
(redetection), and third, directing the camera by chance to
previously visible landmarks (exploration).

The result of experiment 1 is that by active camera control,
more landmarks are mapped with a better distribution in
the environment and more landmark matches. However, in
this experiment, the robot pose uncertainty is similar in both
cases. It drops slightly earlier in active mode if the camera
is directed to an expected landmark while the loop is not
yet closed completely, but since exactly the same path is
repeated, the system is also able to close the loops in passive
mode.

In experiment 2, we show a case where loop closing is
not possible in passive but in active mode. Here, the robot
drove the path of an eight, as displayed in Fig. 6, once in
passive and once in active mode. 1803 (passive) resp. 1788
(active) images were processed during the path. Although
the first door is passed three times, the robot does not face
exactly the same area in these three cases and is not able
to close a loop in passive mode (in the last part of the
path, no landmarks where detected during the first run, so
no matching is possible). In Fig. 6 (b), the resulting map is
displayed. It can be seen that the final robot pose is wrong by
about 3m since the robot was not able to correct its pose by
loop closing. On the other hand, in active mode the camera
is directed to regions which had been seen before and the
robot closes loops first after the first circle and again afterthe
second circle (cf. Fig. 8, left). Fig. 6 (c) shows the resulting
map, with matches displayed as larger, red dots. The number



(a) Robot path in experiment 2 (b) Resulting map, passive (c) Resulting map, active
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of matches is shown in the last row of Tab. I: 21 correct and
4 false matches. Most false matches result from confusing
some of the lamps with identical appearance (cf. Fig. 8,
right). Considering the geometric arrangement of landmarks
would help to prevent such false matches. Also visible from
Fig. 6 (b) and (c) is that the final robot pose is much more
accurate in active than in passive mode. This can also be seen
in Fig. 7, in which the trajectory of the robot, estimated once
directly from odometry and once from SLAM, is displayed
for passive and for active camera mode. When comparing
it with the path in Fig. 6 (a), it can be seen that first, the
SLAM estimation is much more accurate than the odometry
estimate and second, that the actively estimated SLAM path
is more accurate than the passive one.

In Fig. 6 (d), the robot pose uncertainty, computed as
the trace ofPrr (covariance of robot pose) is displayed
for passive and for active mode. It shows clearly how the
two loop closing situations in active mode reduce the pose
uncertainty (at meter 21 and meter 44), resulting at the end
of the sequence in a value which is about 80% lower than
the uncertainty in passive mode.

IX. CONCLUSION

This paper presents an active visual SLAM system based
on attentional landmarks. The attention regions provide
useful landmarks for visual SLAM since they provide a

Fig. 8. Left: correct loop closing match. Right: false match.

way to immediately, that means already when the features
are computed, determine which regions in an image are
useful. This results in few landmarks compared to corner-like
features what is helpful for an EKF-based SLAM system that
scales with the number of landmarks. The precision-based
matching procedure provides a powerful way to achieve a
certain detection rate. Another advantage of this approachis
that it directly provides a probability value that a match is
correct. With a different SLAM subsystem than the current
one, one that can deal with more uncertain associations, these
matching probability could be used.

The system seems to generalize well to new environments:
system development and all parameter tuning was performed
in environment 1, testing the system in environment 2
in another building was only done after the system was
complete. As shown, good performance was obtained here.
However, it would be interesting to investigate how robust the
system behaves in completely different environments such as
outdoor environments. This is subject to future work.

The computation of the attention regions is relatively fast
(∼50 ms/frame) since it is based on integral images [32]. The



rest of the system allows real-time performance. Currently,
it runs on average at∼ 90 ms/frame on a Pentium IV 2 GHz
machine. Since the code is not yet optimized, a higher frame
rate should be easily achievable by standard optimizations.

The main contribution of the paper is the active gaze
control module with the behaviours tracking, redetection,and
exploration. Experimental results showed that about twiceas
many landmarks are mapped in active camera mode and at
least twice as many database matches are obtained, usually
much more. In some cases, loop closing is only possible by
actively controlling the camera.

Needless to say, much could be done to further improve the
system. False detections could be eliminated by considering
the spatial organization of several landmarks. Extending
the system to larger environments could be achieved by
removing landmarks which are not redetected to keep the
number of landmarks low, and by using hierarchical maps
as in [22], in which many local maps are built which do not
exceed a certain size.
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