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Abstract— In this paper, we introduce a cognitive approach
for person tracking on a mobile platform. The approach is
based on a biologically motivated attention system which is able
to detect regions of interest in images based on concepts of the
human visual system. A top-down guided visual search module
of the system enables to especially highlight features which fit
to a previously learned target object. Here, the appearance of
a person is learned ad-hoc within the first image in which
the person is detected. In subsequent images, the attention
system searches for the target features and builds a top-down,
target-related saliency map. This enables to focus on the most
relevant features of especially this person in especially this scene
without knowing anything about a particular person or scene in
advance. The system is able to operate in real-time and to cope
with the requirements of real-world tasks such as illumination
variations.

I. INTRODUCTION

The ability to accurately detect and keep track of people
is of large interest in machine vision as well as in mobile
robotics. In machine vision, example applications for people
tracking include surveillance systems which monitor the
behaviour of people in subway stations, in supermarkets or
in traffic scenes. In the field of mobile robotics, applications
include intelligent driver warning systems, following people
with a service robot or guiding people in a museum.

The requirements on the systems as well as the methods
which are applicable in a setting vary largely from task to
task. In systems with a static camera, it is possible to make
use of the fact that the background does not change and to
apply methods like background subtraction. If interest is for
example in counting people or other statistical investigations
which do not require immediate response, it is possible to
process the data offline which extends the range of applicable
algorithms considerably. On the other hand, systems which
shall operate on a mobile platform usually have to operate
in real-time and have to deal with more difficult settings.
The background changes, illumination conditions vary and
platforms are often equipped with low-resolution cameras.
All this restricts the methods which are applicable. On
the other hand, a mobile platform might be equipped with
additional sensors like laser range finders which can be
combined with the visual data to improve detection and
remove outliers.

Many systems do not have to keep track of individual
persons, for example if the task is to monitor people in traffic
to avoid accidents or to adapt the robot’s velocity to the
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walking speed of the people in its surrounding. For other
tasks like guiding or following individuals, it is essential
that the system is able to distinguish between persons and
does not interchange its client with someone else. Here, we
present a system for tracking people in indoor environments
which is able to distinguish individuals and which works on
a mobile platform.

The required steps in a visual tracking system are first,
the detection of the target of interest, second, the data
association, i.e. redetecting the same target in subsequent
frames whereas it should be able to deal with environment
changes and occlusions, and third, the tracking itself which
means the inference about the motion of the target given a
sequence of previous measurements. Here, we will focus on
the second aspect, the data association. The first aspect is
an important and difficult research topic on its own which
is not tackled here. We initialize manually by drawing a
rectangle around the person in the first frame in which it
occurs. When applied to a mobile platform, initialization can
be done for example by detecting legs of people in laser data
as in [1], [2] or by a visual detection front-end. The third
problem, i.e., inferring the motion of the tracked person, can
be solved efficiently with Kalman or Particle filters [3]. Note
however that in contrast to a tracker based on data from
radar or laser scanners, a visual tracker with perfect data
association might even be able to work completely without
motion inference. But usually, a Kalman or Particle filter
helps to reduce false detections and to deal with temporary
occlusions of the target. Here, we use a simple motion model
which assumes that the tracked person will appear in the next
frame in a close neighborhood of its current position. In the
future, we plan to integrate tracking with Particle filters.

As mentioned above, the focus of this paper is the data
association aspect of person tracking. We follow a feature-
based approach based on the biologically motivated attention
system VOCUS [4], [5]. The system first determines the
most salient region of the person to track. This might be the
pullover, the legs, or the head, depending on clothing and
background. From this region, VOCUS computes a feature
vector which describes the features of the region with respect
to the current background. This vector is utilized to search
for the person in a top-down manner within the subsequent
frames.

Currently, the system works on camera data from a
hand-held camera. Thus, it provides all conditions which
are necessary to use it on a mobile robot: it is real-time
capable and it is able to deal with background changes,
viewpoint changes and varying illuminations. Furthermore,
no complicated training phase is necessary, the appearance of



a person is learned ad-hoc from a single frame. This makes
the system flexible and also applicable to other objects than
people. If the robot shall follow not a person but another
robot or if an unknown vehicle in traffic shall be monitored, it
is essential to be able to initialize the system quickly without
training an object model. In the future, the system shall be
implemented on a mobile robot, enabling to use a laser-based
person detection for initializing the person tracking.

II. RELATED WORK

In mobile robotics, person tracking can be performed with
different sensors. Several groups have investigated person
tracking with laser range finders [6], [7], [8]. These ap-
proaches usually only keep track of the motion of people
and do not try to distinguish individuals. One approach
which distinguishes different motion states in laser data is
presented in [9]. Combinations of laser and vision data are
presented in [1] and [2]. Both detect the position of people
in the laser scan and distinguish between persons based on
vision data. Bennewitz et al. [1] base the vision part on
color histograms whereas Schulz [2] learns silhouettes of
individuals from training data. This however requires a time-
consuming learning phase for each person which shall be
distinguished.

In machine vision, people tracking is a well-studied prob-
lem. Two main approaches can be distinguished: model-
based and feature-based methods. In model-based tracking
approaches, a model of the object is learned in advance,
usually from a large set of training images which show
the object from different viewpoints and in different poses
[10]. Learning a model of a human is made difficult by
the dimensionality of the human body and the variability
in human motion. Current approaches include simplified
human body models, e.g. stick, ellipsoidal, cylindric or
skeleton models [11], [12], [13], or shape-from-silhouettes
models [14]. When dealing with silhouettes, different closing
imposes additional challenges: a woman with a skirt does
not have the same silhouette as a person with trousers. An
approach which deals with different clothing of people is
presented in [15]. While these approaches have reached good
performance in laboratory settings with static cameras, they
are usually not applicable in real-world environments on a
mobile system. They usually do not operate in real-time and
rely often on a static, uniform background.

Feature-based tracking approaches on the other hand do
not learn a model but track an object based on simple features
such as color cues or edges. One approach for feature-
based tracking is the Mean Shift algorithm [16], [17] which
classifies objects according to a color distribution. Variations
of this method are presented in [18], [19]. An interesting
extension is presented in [20], in which the authors suggest
to on-line select the currently most discriminative features.
While most approaches are not especially designed for
person tracking, they might be applied in this area as well.
One limitation with the above methods is that they operate
only on color and are therefore dependent on colored objects.

Visual attention system are especially suited to automati-
cally determine the features which are relevant for a certain
object. These systems are motivated by mechanisms of the
human visual system and based on psychological theories
on visual attention [21], [22]. During the last decade, many
computational attention systems have been built [23], [24],
[25], [4]. Recently, some systems have been presented which
are able to operate in real-time [26], [27], [28]. Most of these
systems operate in a purely bottom-up, image-based manner,
that means they do not consider pre-knowledge about the
scene or a target. Some attention systems which are able to
perform visual search for a target in a top-down manner are
presented in [29], [30], [4].

Applications of visual attention systems range from object
recognition [31] over video compression [32], to robot local-
ization [33], [34]. However, they have rarely been applied
to visual tracking. Some approaches track static regions,
such as visual landmarks, from a mobile platform for robot
localization [33], [34]. This task is easier than tracking a
moving object since the environment of the target remains
stable. Another approach aims to track moving objects such
as fish in an aquarium [35]. In this case however, the camera
is static. Furthermore, all these approaches base on bottom-
up visual attention and do not include top-down cues to
explicitely search for a target. Concerning person detection,
we are not aware of any approach which uses a visual
attention system to solve the task.

III. COGNITIVE DATA ASSOCIATION

The detection of the features which are used for tracking is
performed with the attention system VOCUS (Visual Object
detection with a CompUtational attention System) [4], [5].
It is based on concepts of the human visual system [21],
[36] and detects the most salient regions in images. VOCUS
consists of a bottom-up part which computes saliency purely
based on the content of the current image and a top-down
part which considers pre-knowledge and target information
to perform visual search. The bottom-up part is similar to
the well-known approach of Itti et al. [23]. Here, mainly
the top-down part of VOCUS is used, but the bottom-up
computations are integrated in the learning mode.

To perform visual search, VOCUS first computes a target-
specific feature vector (learning mode, see sec. III-A) and,
second, uses this vector to adjust the saliency computations
according to the target (search mode, see sec. III-B). Here,
we introduce the main concepts of these mechanisms, more
details can be found in [4], [5].

A. Learning mode
Before the actual tracking can start, the target person has

to be detected. This can be done by an arbitrary people de-
tection front-end. Here, we initialize manually by providing
a rectangle which includes the person of interest (cf. Fig. 1).
Now, VOCUS first computes a bottom-up saliency map
(sec. III-A.1), second, determines the most salient region
within the rectangle (sec. III-A.2), and third computes a
feature vector for this region (sec. III-A.3). This way, the



Fig. 1. Learning mode of the attention system VOCUS. Based on strong
contrasts and uniqueness in the feature channels intensity, orientation, and
color, a bottom-up saliency map is computed. In this map, the most salient
region in the manually provided region of interest (yellow rectangle) is
determined and a feature vector w is computed which describes the region.

system focuses on the features which are most relevant for
particularly this person in particularly this surrounding. This
is a big advantage over other approaches which determine
the features of interest in advance and are therefore not as
flexible as the current approach. In the following, we describe
these three steps in more detail.

1) Bottom-up saliency map: First, the bottom-up saliency
map is determined by computing image contrasts and unique-
ness of a feature. The feature computations for the fea-
tures intensity, orientation, and color are performed on 3
different scales with image pyramids. The feature intensity
is computed by center-surround mechanisms; in contrast to
most other attention systems [23], [33], on-off and off-on
contrasts are computed separately. After summing up the
scales, this yields 2 intensity maps. Similarly, 4 orientation
maps (0 ◦, 45 ◦, 90 ◦, 135 ◦) are computed by Gabor filters
and 4 color maps (green, blue, red, yellow) which highlight
salient regions of a certain color. Details about the feature
computations can be found in [4].

Before the features are fused, they are weighted according
to their uniqueness: a feature which occurs seldomly in a
scene is assigned a higher saliency than a frequently occur-
ring feature. This is a mechanism which enables humans to
instantly detect outliers like a black sheep in a white herd.
The uniqueness W of map X is computed as

W(X) = X/
√

m, (1)

where m is the number of local maxima that exceed a
threshold and ’/’ is here the point-wise division of an image
with a scalar. The maps are summed up to 3 conspicuity maps
I (intensity), O (orientation) and C (color) and combined to
form the bottom-up saliency map:

Sbu = W(I) +W(O) +W(C) (2)

2) Extracting the most salient region: Since we are only
interested in the saliency of the target object, here a person,
the most salient region within the provided rectangle is
determined. First, the most salient (brightest) point in Sbu

is determined, and then with seeded region growing the
surrounding region. This method finds recursively all neigh-
bors with sufficient saliency. We call the resulting region
FOA (focus of attention). Although the region is irregularly
shaped, we display it for simplicity as an ellipse.

3) Determining a feature vector: From the FOA, a feature
vector ~w (descriptor) is determined from the values of the
10 feature and 3 conspicuity maps of VOCUS. It describes
how much each feature contributes to the FOA.

The value wi for map Xi is the ratio of the mean
saliency in the target region m(ROI) and in the background
m(image−ROI):

wi = m(ROI)/m(image−ROI). (3)

This computation does not only consider which features
are the strongest in the target region, it also regards which
features separate the region best from the rest of the image.

After the feature vector for the target person has been
computed, this vector can be used to search for the target in
other frames.

B. Search mode
In search mode, we determine a top-down, target-related

saliency map from which the most salient region is extracted
(cf. Fig. 2). This map is composed of an excitation and
an inhibition map. VOCUS uses the previously learned
feature vector ~w to weight the feature and conspicuity maps
according to the target. Depending on the values of the
weights wi, the maps are used to compute the excitation
or the inhibition map. The excitation map E is the weighted
sum of all feature and conspicuity maps Xi that are important
for the learned region, i.e., wi > 1:

E =
∑

i

(wi ∗ Xi) ∀ i ∈ {1..13} : wi > 1 (4)

The inhibition map I shows the features more present in
the background than in the target region, i.e., wi < 1:

I =
∑

i

((1/wi) ∗ Xi) ∀i ∈ {1..13} : wi < 1 (5)

Maps with wi = 1 are completely unimportant for the
target and are ignored. The top-down saliency map Std

results from the difference of E and I and a clipping of
negative values:

Std = E − I. (6)

After the computation of the top-down saliency map, the
FOA in Std is determined by region growing starting with the



Fig. 2. Search mode of the attention system VOCUS. The feature maps
are weighted according to values of the feature vector w which describes
the target person. A top-down saliency map is computed which highlights
the target-specific regions of interest and the most salient region determines
the position of the person.

maximum of S. The coordinates of the FOA determine the
position estimate of the person. Additionally, we use a simple
motion model to reduce outliers and search for an FOA only
within the local neighborhood (here 32 × 32 pixels) of the
FOA from the previous frame. In future work, this shall be
replaced by a Particle filter.

IV. EXPERIMENTS AND RESULTS

To test the cognitive person tracker, we have performed
two kinds of experiments. In the first experiment, we have
tested the system on a publically available image sequence
which was also used for other person tracking experiments.
In the second experiment, we have recorded several image
sequences ourselves in an office environment. In both ex-
periments, images had a resolution of 320× 240. In the first
frame of each image sequence, the target person was marked
manually and a feature vector was computed for the target.
With this feature vector, VOCUS searched for the person in

Fig. 3. Person tracking with cognitive data association on a standard test
sequence1 [37]. Top: the top-down saliency map. Bottom: the corresponding
input image with the resulting FOA (focus of attention) displayed as red
ellipse.

the subsequent frames.
First, the system was applied to a standard test sequence1

which is usually used to test model-based person trackers
[37], [38]. The sequence was recorded with a static camera
and consists of 124 images which show a person walking
from the right to the left through the image. Our system
determines the white shirt as most salient part in this setting
and easily tracks the person through the whole sequence
without any learned model of a human. Three example
images are displayed in Fig. 3, on top the top-down saliency
map, below the input image with the FOA displayed as red
ellipse.

In a second experiment, we tested the person tracker on
several image sequences obtained with a hand-held camera in
the corridor of our lab environment. The camera was moved
to follow the person and each sequence consists of about 300
images. The results of two of the sequences are displayed
in Fig. 4 and 5. On the top, the top-down saliency map is
displayed, below the image in which the FOA is shown as a
red ellipse. In the first image sequence (Fig. 4), the tracking is
easy since the red pullover of the person differs considerably
from the surrounding. The top-down saliency map shows a
single bright peak which is tracked successfully in all frames.
In the second sequence (Fig. 5), the task is more difficult. The
clothing of the person is black, a color which is not unique in
the setting. The top-down saliency map shows several other
black regions as salient. During most of the sequence, the
person is tracked successfully anyway. Only during the last
part of the sequence, when the person goes through the door
on the right, the system confuses the person with the black
part of the door. This example shows that it would be useful
to verify the current tracking hypothesis from time to time
with a person detection module to make sure that the person
has not been lost and, if it is lost, to re-initialize the system.

V. CONCLUSION

In this paper, we have presented a cognitive approach
for data association for a visual person tracking system.
The appearance of a person of interest is learned from an
initially provided target region and the resulting target feature

1The sequence is available at www.nada.kth.se/∼hedvig/data.html.



Fig. 4. Person tracking with cognitive data association. Top: the top-down saliency map. Bottom: the corresponding input image with the resulting FOA
(focus of attention) displayed as red ellipse. The person is tracked successfully in all frames.

Fig. 5. Person tracking with cognitive data association. Top: the top-down saliency map. Bottom: the corresponding input image with the resulting FOA
(focus of attention) displayed as red ellipse. The person is tracked successfully, until it goes through the door on the right. Here, the system confuses the
person with the black stripe of the door.

vector is used to search for the target in subsequent frames.
The main advantage of the system is that it determines
autonomously the most relevant target features in a current
setting. If this is a red pullover as in Fig. 1, it mainly focuses
on red, if it is the intensity contrast of the head to a white
wall, the intensity contrast is highlighted.

Other advantages of the approach are that the system is
quickly adaptable to a new target without a time-consuming
learning phase, that it works on a mobile platform and does
not rely on a static background, and that it works in real-
time and under varying illumination conditions. Since the
system does not rely on a model of a human, it is able to
cope with differences in appearance like a woman with a
skirt or a person which is carrying a large object. The system
might however currently have difficulties to deal with people
with the same appearance (same clothing etc.), if they cross
their way. Integrating a Particle filter to estimate the motion
trajectory of the people will help to resolve such ambiguities.

This paper focuses on the data association aspect of
tracking. To complete a visual person tracker on a mobile
robot, several important aspects still have to be done: first and
most important, the manual initialization of the system which
provides the target region to the learning mode has to be

automatized. We plan to apply a laser-based person detection
as in [2]. Second, the current system sometimes confuses
the target person with a similar region of the surrounding
as in Fig. 5. Several extensions could help to resolve these
ambiguities, e.g. integrating a motion channel into VOCUS,
considering several salient regions for a person in parallel
(e.g. the pullover as well as the shoes), or re-initializing with
a person detector from time to time. Finally, as mentioned
before, we plan to integrate a Particle filter to distinguish
persons with similar appearance and to deal with temporary
occlusions of people. Testing the system for longer sequences
and with more people will also be a topic for future work.
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