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Abstract This paper introduces Attentive Robots: robots that attend to the parts
of their sensory input that are currently of most potential interest. The concept
of selecting the most promising parts is adopted from human perception where
selective attention allocates the brain resources to the most interesting parts of
the sensory input. We give an overview of current approaches to integrate compu-
tational attention into robotic systems, with a focus on biologically-inspired visual
attention methods. Example applications range from localization with salient land-
marks over object manipulation to the design of social robots. A brief outlook gives
an impression of how future ways to obtain attentive robots might look like.

Keywords

1 Introduction

Imagine you bought a new home robot, Dobby, at some point in the future. Dobby
is supposed to do most of the housework while you are at work or are meeting with
friends. It shall receive and unpack the groceries that come from the supermarket,
do the laundry, and tidy up the mess that the kids made when playing in the living
room. At every moment, Dobby has to process a large amount of sensory input and
the possibilities of what to do first easily become overwhelming. Since robots have
limited processing power as well as physical limitations such as a limited number
of sensors, arms, etc., a selection mechanism that determines where to concentrate
the resources is of high interest. In humans, the mechanism that determines which
part of the sensory input is currently most promising is called selective attention
[Pashler, 1997]. Accordingly, we call robots that attend to the most promising part
of their sensor data “Attentive Robots” (cf. Fig. 1).

The term “attention” is used in many contexts and many definitions exist. It is
a term of common language (William James: “Everyone knows what attention is...”
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Fig. 1 The scene visualizes the concept of an attentive robot: to tidy up the room, the robot
has to investigate the scene and therefore attend to the objects on the floor, one object at a
time. An attention module endows it with the capability to focus on regions of most potential
interest. This enables efficient processing and prioritizes the robot’s actions.

[James, 1890]), it is an active research area in psychophysics since many decades,
and it is frequently used in machine vision and robotics to refer to mechanisms that
focus further processing on regions of interest. The latter perspective of attention is
very broad, in principle, any pre-processing method of sensor data could be called
attentional since it focuses further processing on parts of the data. We believe that
closely mimicking the human system has the advantage that it results in human-
like behavior, which is beneficial for systems that should interact with humans in
a natural and intuitive manner. Therefore, in this article, we focus on methods
that are based on concepts of human perception. Following this direction, one of
the best fitting definitions of attention comes from Wikipedia: “Attention is the
cognitive process of selectively concentrating on one aspect of the environment
while ignoring other things” [1].

While the concept of attention exists for all senses, most research focuses on
the visual part of attention. This is true both for human visual attention, due to
the fact that vision is the most important sense in humans, and for computational
attention system. Thus, with a few exceptions the approaches mentioned in this
article focus on analyzing visual data.

During the last decade, attentional modules for autonomous robots have sig-
nificantly gained in popularity. The reasons are two-fold. First, adequate compu-
tational resources are now available to compute the focus of attention in real-time
[Frintrop et al., 2007, Xu et al., 2009] and the methods are robust enough to deal
with real-world conditions. Second, basic techniques such as localization and col-
lision avoidance have reached a quite mature level and interest has moved on to
higher level tasks and challenges. The more complex a system becomes, the more
urgent is the need for optimizing the visual processing. The high level of interest
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Fig. 2 (a) General structure of most visual attention systems. (b) Example of saliency com-
putation with the attention system VOCUS: bottom-up exploration (top-right) and top-down
search for the target “key fob” (bottom).

in such capabilities has led to a large number of EU projects on Cognitive Sys-
tems during the last decade. Many of the robots developed in these projects have
an attentional module, e.g., in the projects MACS, PACO-PLUS, RobotCub, and
GRASP.

In this paper, we will give an overview of the current state of the art in com-
putational attention systems for autonomous robots. While being far from an
exhaustive overview, we aim to give the reader an impression of what attention
systems can do for cognitive robots and which directions already exist. Finally,
we briefly discuss possible future ways to lead us closer to the dream of attentive
robots.

2 The Basic Structure of Computational Attention Systems

Most biologically inspired attention systems have a similar structure, which is
depicted in Fig. 2 (a). This structure is originally adapted from psychological
theories like the Feature Integration Theory [Treisman and Gelade, 1980] and the
Guided Search model [Wolfe, 1994]. The main idea is to compute several feature
channels such as intensity, color, orientation or motion, in parallel and to fuse
their conspicuities in a saliency map. This map is a gray-level image with pixel
brightness proportional to the saliency (cf. Fig. 2 (b), top right). This approach is
adopted from the parallel processing of different features in the human brain; some
brain areas are mainly involved in processing color while others concentrate on
motion processing and so on [Palmer, 1999]. If top-down information is available,
e.g., prior knowledge on the context, the task, the searched object, etc., it can be
used to influence the processing. An example of top-down attention is shown in
Fig. 2 (b), bottom row. Here, knowledge about the target object “key fob” is fed
into the attention system as a feature descriptor, resulting in a top-down saliency
map (details in [Frintrop, 2006]).

The feature computations are usually based on contrast computations with
center-surround filters. Such filters are inspired by cells in the human visual sys-
tem (e.g. ganglion cells in the retina) that compute the contrast of a center and



a surround region [Palmer, 1999]. Computationally, they are usually modeled by
Difference-of-Gaussian or Gabor filters. The feature channels most frequently im-
plemented in computational attention systems are intensity, color, orientation, and
motion.

One of the most important capabilities of attention systems is their ability to
detect regions that differ from the rest of the image, a property that makes an
object “salient”. That means, the saliency of an object depends on the context. A
red ball on grass is salient, while it is not salient among other red balls. Therefore,
attention systems usually weight the feature maps according to the uniqueness of
the feature. Feature maps with much activation obtain a low weight while those
with few strong activation peaks obtain a high weight (details in [Frintrop, 2006]).

After obtaining a saliency map, the maxima in this map denote the regions
that are investigated by the focus of attention (FOA) in the order of decreasing
saliency. This trajectory of FOAs imitates human eye movements. Output of a
computational attention system is either the saliency map itself or a trajectory of
focused regions.

While most attention systems share this general structure, there are different
ways of implementing the details. One of the best known computational models
is the iNVT from the group around Itti [Itti et al., 1998]. In our group, we have
developed the VOCUS model [Frintrop, 2006, 2011], that has adopted and ex-
tended several ideas from the iNVT. It is real-time capable and has a top-down
mode to search for objects. Tsotsos and his group have developed the selective
tuning model. A full description of the model and an overview of attention theo-
ries are available in his recent book [Tsotsos, 2011]. During the last years, some
approaches came up that use information-theoretic concepts to determine visual
saliency [Bruce and Tsotsos, 2009, Gao et al., 2009]. A survey on the cognitive
foundations and state of the art of computational attention systems can be found
in [Frintrop et al., 2010], an introduction to the topic for students and people new
to the field is available in [Frintrop, 2011].

As mentioned in the introduction, this paper focuses on approaches that are
based on concepts of human perception and share the above structure. However,
it is worth noting that numerous approaches exist that compute saliency in ways
that are less or not at all biologically-motivated. For example, Hou and Zhang
[2007] compute the spectral residual of an image in the frequency domain and
Gould et al. [2007] and Liu et al. [2009] learn an optimal feature combination with
machine learning techniques.

3 Attentive Robots: The State of the Art

A future attentive robot is supposed to use attention for many tasks, on different
levels of abstraction. If Dobby shall tidy up the room, it must focus on objects
at unusual places and has to know where each object belongs. If it shall bring
you the salt shaker, it should focus on the cupboard where the shaker is usually
stored and should concentrate on features fitting to the appearance of the shaker.
If you give Dobby an order, it has to interpret your gestures, facial expressions,
and voice, e.g., it should follow your gaze and your pointing finger.

The tasks of the robot that involve visual attention might be classified roughly
into three categories. The first, most low-level category, uses attention to detect



salient landmarks that can be used for localization and scene recognition (sec. 3.1).
The second, mid-level category considers attention as a front-end for object recog-
nition (sec. 3.2). In the third, highest-level category, attention is used in a human-
like way to guide the actions of an autonomous system like a robot, i.e., to guide
object manipulation or human-robot interaction (sec. 3.3).

3.1 Salient Landmarks

A basic capability of autonomous mobile robots is to localize themselves in their
environment. Based on a known map of the surrounding, the robot has to de-
termine its position in this map by interpreting its sensor data. When based on
visual data, this is done by detecting visual landmarks with a known position.
A visual landmark can be anything that the robot can see: a blob on the wall,
a corner of an object, the edge of a door, or the door itself. One of the primary
requirements of a visual landmark is that it should be redetectable under chang-
ing illumination conditions and from new viewpoints. It should also be possible to
compute it quickly and to store it without much effort. Therefore complex object
descriptions are seldom used. Salient landmarks are excellent candidates for local-
ization since they have a high uniqueness. This makes them easy to redetect and
diminishes the risk of confusing them with other landmarks. This also enables a
landmark detection algorithm to concentrate on a sparse set of landmarks which
reduces computation complexity. We have shown that the repeatability of salient
regions in different scenes is significantly higher than the repeatability of standard
detectors [Frintrop, 2008].

An early project that used salient landmarks for localization was the ARK
project [Nickerson et al., 1998]. It relied on hand-coded maps, including the loca-
tions of known static obstacles as well as the locations of natural visual landmarks.
Siagian and Itti [2009] presented an approach for scene classification and global
localization based on salient landmarks. Additionally to the landmarks, the au-
thors use the “gist” of the scene, a feature vector which captures the appearance
of the scene, to obtain a coarse localization hypothesis.

In the above examples, a map of the environment is initially known. A more
difficult task is simultaneous localization and mapping (SLAM) in which a
robot has to build a map and localize itself inside it at the same time. We inves-
tigated the combination of visual attention and SLAM in [Frintrop and Jensfelt,
2008]. Salient regions are detected with the attention system VOCUS, tracked over
several frames to obtain a 3D position of the landmarks, and matched to database
entries of all previously seen landmarks. This enables the robot to detect if it
closed a loop (see Fig. 3 (a)). Active camera control facilitated the redetection of
landmarks.

3.2 Supporting Object Detection and Recognition

In addition to navigation, object detection and recognition are important tasks for
autonomous robots, especially for manipulating objects. The terms object detec-
tion, object localization, object recognition, and classification are closely related
and often used interchangeably. Let us therefore clarify our understanding of the
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Fig. 3 Three application scenarios for visual attention systems: (a) Simultaneous localization
and mapping (SLAM): robot Dumbo corrects its position estimate by redetecting a landmark
which it has seen before. Landmark detection is done with the attention system VOCUS. The
yellow rectangle shows the view of the robot: an image with a landmark and the correspond-
ing saliency map (Fig. from http://www.iai.uni-bonn.de/~frintrop/research.html) (b) Curious
George: attention regions are detected in a peripheral camera image and investigated in detail
by a foveal camera (Fig. from Forssén et al. [2008]). (c¢) Kismet is a social robot that interacts
with people. Its gaze is controlled by a visual attention system (Fig. from [Breazeal, 2000] ©
Sam Ogden).

terms. Object detection or localization tackles the problem of localizing objects in
images, e.g., by providing a bounding box around the object. Usually, the object
is comparably small in the scene which makes the task challenging. The object to
find might be a specific object (my favorite cup) or, as in the PASCAL VOC object
detection challenge [Everingham et al., 2010], any instance of a certain class (any
cup). In psychological literature on visual perception, the task to find an object
is usually called visual search. A candidate to solve the visual search problem is
top-down tuned visual attention [Frintrop, 2006]. Localizing an object often in-
volves recognizing it, but may also be restricted to providing location candidates
that are classified in a second step. The detection of any instance of an object
class in cluttered images is still largely unsolved. In the latest PASCAL VOC 2010
challenge [Everingham et al., 2010], the best methods for object detection achieved
only an average precision between 13% (potted plants) and 58.4% (aeroplanes).
Sometimes, object detection refers also to the task to find anything in the scene
that is an object (also called general object detection). Bottom-up attention is a
perfect candidate for this kind of task since it does not require any prior knowledge
on the objects.

Object classification deals with finding all instances of a certain class in a scene,
e.g. faces. It is usually applied to pre-segmented objects or it uses a sliding windows
approach, in which subregions of the images are successively investigated by the
classifier. The term recognition is mostly used for the recognition of instances but
is sometimes also used as synonym for classification.

Visual attention methods are of special interest for all tasks in which the ob-
ject is comparably small in the image, as in object detection and localization or in
classification on non pre-segmented images. These tasks become considerably eas-
ier if an attentional mechanism first focuses the processing on regions of potential
interest. Thus is because of two reasons. First, this reduces the search space and
results in reduction in computational complexity. Second, most recognition and



classification methods work best if the object occupies a dominant portion of the
image.

Several approaches have been proposed to use visual attention as preprocess-
ing step for classification or object detection. Miau et al. [2001] present a
biologically motivated approach that combines an attentional front-end with the
biologically motivated object recognition system HMAX. The experiments are re-
stricted to recognize simple artificial objects like circles or rectangles. Alternatively,
the authors have used a support vector machine to detect pedestrians in natural
images. Walther [2006] combine their Saliency Toolbox, a Matlab implementation
of the iINVT, with an object recognizer based on SIFT features and show that the
recognition results are improved by the attentional front-end. Vogel and de Freitas
[2008] combine the iNVT with a classifier to perform gaze planning in complex
scenes. In the above mentioned approaches, the attentional part is separated from
the object recognition; both systems work independently. In human perception,
these processes are strongly intertwined. Accordingly, Walther and Koch [2007]
suggest a unifying framework for object recognition and attention. It is based on
the HMAX model and modulates the activity by spatial and feature modulation
functions which suppress or enhance locations or features due to spatial attention.

While the above approaches are not applied in a robotics context, some groups
have recently integrated attentive object detection on real robots. Two approaches
that determine regions of interest with visual attention in a peripheral vision
system, focus on these regions with a foveal vision system, and investigates these
high-resolution images with an object recognition method are presented in [Gould
et al., 2007] and [Meger et al., 2008]. The robot in the latter approach, curious
George, placed first in the robot league of the Semantic Robot Vision Challenge
(SRVC)! both in 2007 and 2008, and first in the software league for 2009 (see also
Fig. 3 (b)).

All of these systems rely only on bottom-up information and therefore on
the assumption that the objects of interest are sufficiently salient by themselves.
For some object classes like traffic signs or toys, which are intentionally designed
salient, this works quite well; for other applications, top-down information is
needed to enable the system to focus on the desired objects. A combination of
a top-down modulated computational attention system with a classifier is pre-
sented by Mitri et al. [2005]. Here, the attention system VOCUS generates object
hypotheses which are verified or falsified by a classifier. For the application of ball
detection in the robot soccer scenario RoboCup, the amount of false detections is
reduced significantly. Recently, Xu et al. [2010] have used visual bottom-up and
top-down attention to detect objects with the Autonomous City Explorer (ACE)
robot.

Some groups have used attentive object detection to support object manip-
ulation on robots or robot arms. One of the earliest works on this topic was
presented by Bollmann et al. [1999]: a Pioneerl robot used the active vision sys-
tem NAVIS to play at dominoes. The group around Tsotsos is working on a smart
wheelchair to support disabled children [Tsotsos et al., 1998, Rotenstein et al.,
2007]. The wheelchair has a display as easily accessible user interface which shows
pictures of places and toys. Once a task like “go to table, point to toy” is selected,
the system drives to the selected location and searches for the specified toy, us-

L http://www.semantic-robot-vision-challenge.org/



ing mechanisms based on a visual attention system. Rasolzadeh et al. [2010] use
bottom-up and top-down attention to control a KUKA arm for detecting, rec-
ognizing, and grasping objects on a table. In [Bjorkman and Kragic, 2010] and
[Johnson-Roberson et al., 2010] the FOAs from the same attention system were
used as seeds for 3D segmentation of objects from stereo data.

3.3 Guiding Robot Action

A robot which has to act in a complex world faces the same problems as a human:
it has to decide what to do next. Such decisions include where to go (drive), what
to look at, what to grasp, and who to interact with. Thus, even if computational
power would allow it to find all correspondences, to recognize all objects in an
image, and process everything of interest, it would still be necessary to filter out
the relevant information to determine the next action [Mehta et al., 2000, Loach
et al., 2008]. This decision is based first, on the current sensor input and second,
on the internal state, for example the current tasks and goals.

A field in which the decision about the next action is intrinsically based on
visual data is active vision, i.e., the problem of where to look next [Bajcsy,
1985]. It deals with controlling “the geometric parameters of the sensory apparatus

. in order to improve the quality of the perceptual results” [Aloimonos et al.,
1988]. Thus, it directs the camera to regions of potential interest as the human
visual system directs the gaze, the head, and even the body of a person. Since
visual attention triggers this control in humans, it is also an intuitive candidate
for the active vision problem on machines. In Sec. 4, we discuss the relation of
visual attention and the active vision problem in more detail, let us here focus on
approaches that have used visual attention to perform active vision control.

One of the first active vision systems that integrated visual attention was
presented by Clark and Ferrier [1988]. They describe how to steer a binocular
robotic head with visual attention and perform simple experiments to fixate and
track the most salient region in artificial scenes composed of geometric shapes.
Vijayakumar et al. [2001] present an attention system which is used to guide the
gaze of a humanoid robot. The authors consider only one feature, visual flow,
which enables the system to attend to moving objects. To simulate the different
resolutions of the human eye, two cameras per eye are used: one wide-angle camera
for peripheral vision and one narrow-angle camera for foveal vision. In more recent
work, the humanoid robot iCub bases its decisions to move eyes and neck on
visual and acoustic saliency maps [Ruesch et al., 2008]. Additionally, all the object
manipulation approaches of the previous section include active vision to focus on
the detected objects.

In the future, we want to interact with robots as naturally and intuitively
as possible. Studies in the field of human-robot interaction have shown that
humans treat robots like people [Nass and Moon, 2000, Fong et al., 2003]. The
more human-like the robot acts, the easier the communication with a human. An
essential part for purposefully interacting with humans is to generate a joint focus
of attention. A computational attention system similar to the human one can help
a robot to focus on the same region as a human. According to this, Breazeal [1999]
introduced the social robot Kismet that interacts with humans in a natural and
intuitive way. Its gaze is controlled by a visual attention system (see Fig. 3 (c)).



For humans, following pointing gestures of other humans is an important abil-
ity to jointly focus their attention on objects of interest. Approaches to endow
robots with a similar capability were proposed by Heidemann et al. [2004] and
by Schauerte et al. [2010]. They analyze the direction of a pointing finger and
fuse this top-down information with the bottom-up saliency of objects. A robot
that learns visual scene exploration by imitating human gaze shifts is presented
by Belardinelli [2008]. Nagai [2009] developed an action learning model based on
spatial and temporal continuity of bottom-up features.

Finally, Muhl et al. [2007] presented an interesting sociological study in which
the interaction of a human with a robot simulation is investigated. A robot face
on a screen attends to objects, shown by a human, with help of a visual attention
system. If the robot was artificially diverted and directed its gaze away from the
object, humans tried to reobtain the robots attention by waving hands, making
noise, or approaching to the robot. This shows that people established a commu-
nicative space with the robot and accepted it as a social partner.

4 Discussion and Outlook

This paper gives an overview of the state of the art in the field of computational
visual attention for mobile robots. Several fields are related to the computation
of attention and we will briefly discuss the similarities and differences to some of
them. First, the computation of visual saliency clearly has some similarities to
the computation of interest points or regions. Both approaches compute a local
contrast within some feature dimension, some use even the same methods, e.g.,
Difference of Gaussians [Lowe, 2004]. The main difference is that standard interest
points are local methods that are only influenced by a small local neighborhood,
while salient regions are defined by the context. They “stick out of the scene” and
thus, the whole scene or at least a large neighborhood influences the saliency of a
region. Both methods are usually computed on several scales, but interest points
use smaller scales than visual saliency, leading to smaller regions that influence
the point and usually to a large amount of points per image (usually several hun-
dreds or even thousands). This is reasonable and useful for tasks such as object
recognition or image registration but less so for controlling the camera. Salient
regions on the other hand are usually computed on larger scales to consider con-
text information. Additionally, the uniqueness of features is computed that takes
into consideration the global (or large local) surround of the region and is usually
implemented as a non-linear weighting on top of the center-surround feature com-
putations [Itti et al., 1998, Frintrop, 2006]. This method favors regions that occur
seldom in the scene, an essential aspect of visual saliency. Additionally, classical
interest points are usually restricted to one feature dimension (e.g. intensity or
color contrast), while visual attention systems integrate the results from several
feature channels. Finally, a strength of visual attention systems is that top-down
information can be integrated easily into the system.

As mentioned in Sec. 3, there is also a strong relation of visual attention to
the active vision problem. To distinguish the two, it is worth clarifying that visual
attention is a method that can be applied to different problems while the active
vision problem is a problem that looks for a method to solve it. Visual attention
claims to focus the processing resources to regions of most potential interest. That
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makes it a perfect candidate to solve the active vision problem. It is however nei-
ther the only method that can be used to solve this problem, nor is the active
vision problem the only problem that can be solved with visual attention. While
the first point is obvious — there are dozens of methods that tackle the active
vision problem which are not related to visual attention — the second point is less
clear. What can be done with attention except directing the camera? Well, human
selective attention is well known to be separated into covert and overt attention.
Overt attention corresponds to controlling eye movements and is therefore directly
related to the active vision problem. Covert attention stands for processing parts
of the sensory input without looking at them with the fovea. While covert atten-
tion usually precedes eye movements, this is not always the case. For example,
Johansson et al. [2001] show that simple manipulation tasks can be done without
overt attention. Equally, it makes perfect sense for a robot to process some parts of
the sensory input directly without steering the camera explicitly into this direction
or zooming in. Here, one can also take advantage of the fact that robot sensory
input is different from the human one: while the human eye produces data that
has high resolution in the center and low resolution in the periphery, most cam-
eras can capture high resolution images in the entire field of view. These images
are often artificially sub-sampled to reduce the amount of data that needs to be
processed. This makes it possible to perform object recognition and many other
tasks directly on the input data, without controlling the camera. Active vision can
be left to occasions in which this data is not sufficient, e.g. if new viewpoints of
an object have to be gathered.

Let us now discuss how far we are from attentive robots such as Dobby and
which parts are still missing. In the field of attention systems themselves there are
still several open issues. Among these are questions like “which are the optimal
features for a robot?”, “how are these features integrated best?”, and “how do
bottom-up and top-down cues interact?”. While the bottom-up part is already
quite well investigated and many good solutions exist, less is known about top-
down attention and existing approaches are limited to some aspects. Up to now,
the prior knowledge that has been used as top-down information has mainly con-
centrated on two aspects of this area. First, people have used object information
to search for simple objects, e.g., highlighting red regions to find fire extinguishers,
[Frintrop, 2006, Navalpakkam and Itti, 2006]. Second, context information about
the scene has been investigated to guide the gaze, e.g., people are likely to be on
the street level of an image rather than on the sky area [Torralba et al., 2006].
However, many other cues and memories influence human perception and should
also be used for attentive robots. Thus, more sophisticated knowledge about ob-
jects, people, and the situation, knowledge about typical locations of objects, as
well as action cues from human interactors will strongly support the selection of
regions of most potential interest.

Additionally, while this review and most existing research focuses on visual
attention, other sensors can be an important source of useful information that
should be exploited. Some work in this direction is our previous work on saliency
detection in laser data [Frintrop et al., 2005] and the combination of visual and
acoustic saliency cues for the humanoid robot iCub [Ruesch et al., 2008]. It is
also important to consider that robots and humans differ considerably and that
concepts that are optimized for the human brain are not necessarily optimal for a
machine. While most current approaches directly transfer concepts, an important
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direction of future research is to investigate how systems have to be adapted to
best fit the robots’ embodiment and environment.

Finally, it should be mentioned that current systems use attention mechanisms
for clearly specified tasks such as landmark detection or object manipulation.
While good results have been obtained in these areas, it is still a long way to
obtain an attentive robot such as Dobby. Among the parts that are still missing
is certainly a close interaction between different modules. In computer vision,
recent work has shown that tasks such as object detection, segmentation, tracking,
and categorization profit strongly from each other if the modules collaborate and
share information [Leibe et al., 2008, Ess et al., 2010]. Similarly, future attentive
robots will strongly profit from interacting modules. Context information and prior
knowledge from other modules can enable an attentive robot to obtain better, more
useful regions of interest. On the other hand, the computation of attention regions
will also improve the performance of other modules since more processing resources
can be provided to essential parts of the sensory input.
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