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Abstract— In this paper, we present a component-based
visual object tracker for mobile platforms. The core of the
technique is a component-based descriptor that captures the
structure and appearance of a target in a flexible way. This
descriptor can be learned quickly from a single training image
and is easily adaptable to different objects. The descriptor
is integrated into the observation model of a visual tracker
based on the well known Condensation algorithm. We show
that the approach is applicable to a large variety of objects
and in different environments with cluttered backgrounds and
a moving camera. The method is robust to illumination and
viewpoint changes and applicable to indoor as well as outdoor
scenes.

I. INTRODUCTION
Object tracking is an important task in machine vision as

well as in mobile robotics. Applications include surveillance
systems, mobile robots that guide or follow people, or
human-robot interaction in which a robot interacts with a
human and both have to concentrate on the same objects.

Many good approaches for object tracking have been
proposed during the last years (see survey in [1]). However,
the methods that are applicable for a certain task vary largely
depending on requirements and setting. If the type of object
is known in advance, model-based trackers may be applied.
In these approaches, a model of the object is learned offline,
usually from a large set of training images which show the
object from different viewpoints and in different poses [2],
[3]. These methods are especially well-suited for specialized
tracking tasks such as person or face tracking. In some
applications however, the object of interest is not known in
advance, e.g., if a user shows an object to the system which
shall be able to immediately capture the appearance of the
object and track it. A long training phase is inacceptable in
such cases, online learning methods are required.

In systems with a static camera, it is possible to apply
methods like background subtraction [4]. For statistical in-
vestigations that do not require immediate response, like
e.g. counting people, it is possible to process the data
offline which extends the range of applicable algorithms
considerably.

On the other hand, systems which shall be applied on
a mobile platform usually have to operate in real-time and
have to deal with more difficult settings. The background
changes, illumination conditions vary, and platforms are
often equipped with low-resolution cameras. Such conditions
require robust and flexible tracking mechanisms. Mostly,
feature-based tracking approaches are applied in such areas.
They track an object based on simple features such as color
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cues or corners. An example is the Mean Shift algorithm [5]
which classifies objects according to a color distribution or
the CamShift algorithm which is based on the Mean Shift
approach [6]. Other groups integrate color histograms into
a particle tracker [7], [8] or combine a color model with
a template tracker [9]. In previous work, we have used a
cognitive observation model for visual tracking that was
based on features inspired by human visual perception [10],
[11]. Several ideas from this work have been integrated into
the current approach. Over the last years, techniques which
use interest points, like colored Harris corners [12] or SIFT
features [13] for object tracking have been introduced. Note
that these approaches usually rely on textured objects and a
certain image resolution and quality to work well.

For feature-based tracking, it is especially important to
detect discriminative features that distinguish the target well
from the background. However, the discriminability of dif-
ferent parts of the object may differ strongly depending
on the appearance of object and background. If a person
wears a shirt in a color similar to the background, it has
a low discriminability while the trousers on the other hand
might have a high discriminability. To consider the different
discriminability of parts, Beuter et al. train a top-down
attention model to learn the face and the torso of a person
separately [14]. Pérez et al [7], [8] determine different color
histograms for different, rigidly linked parts of the target.
Similarly, Adam et al. represent the target by a rigid layout of
vertical and horizonal patches [15]. All of these approaches
define a rigid layout of the parts in advance. In contrast to
this, we suggest to automatically detect the different parts of
a target in a flexible and object-dependent way.

In this paper, we present a component-based approach
to visual tracking that is able to automatically detect the
most discriminative parts of a target and to quickly learn
its appearance from a single frame. Depending on the
appearance of the object, the system determines a flexible
number of components, each representing a discriminative
part with respect to a certain feature channel. The resulting
components form a target template that is used in the
following frames to detect the most likely target position.
A similarity measure determines the similarity between the
target template and image regions in the following frames.
Instead of computing the similarity for each pixel, we employ
the component-based approach within a CONDENSATION-
based person tracker [16]. For this purpose, the similarity
measure is converted to a likelihood function that is used as
observation model within the particle filter.

This approach leads to a robust and flexible tracker that
is quickly applicable to track arbitrary objects in unknown



environments. Currently, the system works on camera data
from a hand-held camera. Thus, it provides all conditions
which are necessary to use it on a mobile robot: it is real-
time capable and it is able to deal with background changes,
viewpoint changes and varying illuminations.

We evaluated the approach in different settings and com-
pared it to other color-based tracking methods. We tested
the ability of the methods to deal with illumination changes,
scale changes, occlusions, motion blur, background changes
and more. It shows that on average the performance of the
component-based tracking outperforms the other approaches
considerably.

In the following, we first introduce the component-based
descriptor (Sec. II). In Section III, we explain the visual
tracking system and Section IV presents experimental results.
We finally conclude in Section V.

II. A MULTI-COMPONENT TARGET DESCRIPTOR

In this section, we introduce the multi-component descrip-
tor that represents a target object. The descriptor consists of
a collection of components that have a strong contrast within
a certain feature dimension. These regions are automatically
and object-dependently extracted from the target region.
The components are color-based and the computation is
motivated from the cognitive perception model VOCUS [17]
that mimics human early visual processing.

Determining the multi-component descriptor consists of
two steps. First, six intensity and color feature maps are
computed (sec. II-A), second, components are automatically
determined within the feature maps and combined to form
the descriptor (sec. II-B). Finally, we describe how the target
descriptor is matched to a region in a different frame to test
if the target is present or not (sec. II-C).

A. Feature map computations

In this section, we describe how six intensity and color
maps are computed as a basis for the component-based
descriptor. An overview is displayed in Fig. 1.

First, the input image is converted to an image in the
CIELAB color space (also L∗a∗b∗), smoothed with a Gaus-
sian filter and subsampled twice to reduce the influence of
noise. The resulting image is called Ilab. CIELAB has the
dimension L for lightness and a and b for the color-opponent
dimensions; it is perceptually uniform, i.e., a change of a
certain amount in a color value is perceived as a change of
about the same amount in human visual perception. Each of
the 6 ends of the axes that confine the color space serve as
a prototype color, resulting in two intensity prototypes for
white and black and four color prototypes for red, green,
blue, and yellow (cf. Fig. 1, top right).

Then, the computation of feature maps is started. We
treat intensity and color computations separately since this
results in a higher illumination invariance. The intensity
computations can be performed directly from the L channel
Il. The color computations are performed on the color layer
Iab spanned by a and b. Now, we determine four color

Fig. 1. The feature computations: from an input image, 6 feature maps
are computed, showing bright-dark, dark-bright, red-green, green-red, blue-
yellow, and yellow-blue contrasts.

specific maps Ci that represent the four colors red, green,
blue and yellow.

For each of the color maps Ci, there is one prototype
color Pi (cf. Fig. 1, top right) and each pixel Ci(x, y) in a
color map stores the Euclidean distance to the corresponding
prototype color Pi:

Ci(x, y) = Vmax− ||Iab(x, y)−Pi|| i ∈ {1, ..., 4}, (1)

where Vmax = 255 is the maximal pixel value and the pro-
totypes Pi are the ends of the a and b axes with coordinates
(0, 127), (127, 0), (255, 127), (127, 255) in an 8-bit Iab.

Next, image pyramids with 3 levels are determined from Il

and Ci. This enables flexibility to scale changes. On each of
these scale maps in the pyramids we perform center-surround
mechanisms. These are filters that detect image contrasts
between a center c and a surround region s, similar to
ganglion cells in the human brain. Applied to our scale maps,
the filters detect intensity and color contrasts. On the color
maps, the filters react especially strong to red-green, green-
red, blue-yellow, and yellow-blue contrasts. We use surround
regions of two different sizes, resulting in six center-surround
maps Si,j , j ∈ {1, ..., 6} for each color/intensity (details
in [17]). Note that center surround applied to the intensity
scale maps detects only bright-dark contrast. To additionally
determine dark-bright contrasts, we compute the opposite
difference s− c. To speed up processing, all center-surround
filters are computed with integral images [18].

Finally, we sum up the 36 center-surround scale maps to
obtain 6 feature maps Fi =

∑6
j=1 Si,j . The feature maps for

some example images are displayed in Fig. 2.



Fig. 2. An example image and the corresponding feature maps Fi.

B. Determining a target template and descriptor
Now, we determine a component-based template from the

feature maps and derive a descriptor from the template. A
component is a peak in one of the feature maps within the
target region ~R∗ = (x∗, y∗, w∗, h∗), where x∗, y∗ denote
the position and w∗, h∗ the width and height of the region.
The peaks are detected by first detecting local intensity
maxima and then segmenting the region around the maxima
with region growing. For easier computations, the regions
are approximated by rectangular bounding boxes that we
call mi,j = (xmi,j

, ymi,j
, wmi,j

, hmi,j
), where i denotes the

feature map and j the different maxima in a map. Hereby, the
number of components per map is flexible and depends on
the appearance of the object. Additionally, we add the whole
target region as one of the mi,j to make the descriptor more
robust.

The positions of the regions mi,j are stored relative to the
center of ~R∗ and represent a template ~MR∗ = {mi,j |i ∈
{1, .., 6}, j ∈ {1, .., li}}, where li is the number of compo-
nents detected in feature map Fi (cf. Fig. 3, left). Now, we
derive a descriptor vector from the mi,j . For each mi,j , we
compute the ratio of the mean intensity value within mi,j

and the mean value of the background:

ρi,j =
mean(mi,j)

mean(Fi\mi,j)
(2)

The mean is computed with integral images, to speed up
processing and enable constant computation times for each
region, independent of the size of the region. Thus, the target
descriptor that we obtain is ~d∗ = {ρi,j |i ∈ {1, .., 6}, j ∈
{1, .., li}}.

C. Match descriptor to image region
In order to match the target descriptor ~d∗ to an image

region ~R′ of arbitrary size and dimension, we first determine
the factors fw and fh that represent the difference in size
between the target region ~R∗ and ~R′: fw = R′w/R∗w, fh =
R′h/R∗h, where R′w, R∗w denote the width and R′h, R∗h the
height of the regions. Now, an adapted template ~MR′ is
computed by extending or compressing all mi,j ∈ ~MR∗

with fw and fh: wm′
i,j

= fw ∗ wm∗
i,j

, hm′
i,j

= fw ∗ hm∗
i,j

(cf. Fig. 3, right). ~MR′ is now used to compute a descriptor
~d′ equivalently as in eq. 2.

Finally, the descriptors ~d∗ and ~d′ are matched by comput-
ing the similarity of the vectors. As similarity measure, we
use the Tanimoto coefficient:

T (~d∗, ~d′) =
~d∗ · ~d′

||~d∗||2 + ||~d′||2 − ~d∗ · ~d′
. (3)

Fig. 3. Left: An illustration of the template ~MR∗ for the target region
~R∗. The three colored rectangles denote the mi,j . Note that each of them

comes from a different feature map which is illustrated here by the different
colors. Right: the template ~MR′ adapted to region ~R′.

The Tanimoto coefficient produces values in the interval
[0, 1], the higher the value the higher the similarity. If the
two vectors are identical, the coefficient is 1.

III. THE VISUAL TRACKING SYSTEM

The tracking system uses the component-based descriptor
from the previous section as observation model of a par-
ticle filter approach. It employs the standard Condensation
algorithm [16] which maintains a set of weighted particles
over time using a recursive procedure based on the following
three steps: First, the system draws particles randomly from
the particle set of the previous time step, where each particle
is drawn with a probability proportional to the associated
weight of the particle. Second, the particles are transformed
(predicted) according to a motion model. Finally, all particles
are assigned new weights according to an observation model
and the object state is estimated.

Let us first introduce the notation. At each point in time
t ∈ {1, .., T}, the particle filter recursively computes an
estimate of the probability density of the object’s location
within the image using a set of J particles ~Φt = {~φ1

t , ...
~φJ

t }
with

~φj
t = (~sj

t , π
j
t ,

~dj
t ), j ∈ {1, ..., J}. (4)

(here: J = 500). ~sj
t = (x, y, vx, vy, w, h) is the state vector

that specifies the particle’s region with center (x, y), width
w and height h – in the following, the region is also denoted
as ~Rj

t = (x, y, w, h). The vx and vy components specify
the current velocity of the particle in the x and y directions.
Each particle additionally has a weight πj

t determining the
relevance of the particle with respect to the target, and the
component-based descriptor ~dj

t that describes the appearance
of the particle region.

In the following, we first mention how the system is
initialized (sec. III-A), second describe the motion model



(sec. III-B), and finally, specify the observation model as
core of the system (sec. III-C).

A. Initialization

Before starting the tracking, the initial target region ~R∗ has
to be specified in the first frame. This can either be carried
out manually or automatically using a separate detection
module. We initialize manually here. Based on the initial
target region ~R∗, the component-based descriptor ~d∗ is
computed that describes the appearance of the object. The
initial particle set

~Φ0 = {(~sj
0, π

j
0,

~dj
0) | j = 1, ..., J} (5)

is generated by randomly distributing the initial target
location around the region’s center (x∗, y∗). The velocity
components vx and vy are initially set to 0 and the region
dimensions of each particle are initialized with the dimen-
sions of ~R∗. The particle weights πj

0 are set to 1/J .

B. Motion model

The object’s motion is modeled by a simple first order au-
toregressive process in which the state of a particle depends
only on the state of the particle in the previous frame:

~sj
t = M · ~sj

t−1 + ~Q. (6)

Here, M is a state transition matrix of a constant velocity
model and ~Q is a random variable that denotes some white
Gaussian noise. This enables a flexible adaption of position
and size of the particle region as well as of its velocity. Thus
the system is able to quickly react to velocity changes of the
object.

C. Observation model

In visual tracking, the choice of the observation model
is the most crucial step since it decides which particles
will survive. It therefore has the strongest influence on the
estimated position of the target. Here, we use the component-
based descriptor to determine the feature description for the
target and for each particle, enabling the comparison and
weighting of particles.

First, we compute a descriptor ~
dj

t for each of the particles
according to sec. II-B. That means, the target template ~MR∗

is adapted to the size of the current particle and the descriptor
~
dj

t is computed for the resulting template M j
t . Then, the

weight of a particle is computed based on the Tanimoto
coefficient as

πj
t = c · eλ·T (~d∗,~dj

t). (7)

This function prioritizes particles which are very similar
to ~d∗ by assigning an especially high weight. A value of
λ = 14 has shown to be useful in our experiments. The
parameter c is a normalization factor which is chosen so
that

∑J
j=1 πj

t = 1.
Finally, the current target state, including target position

and size, can be estimated as a weighted average of the
particles by

~xt =
J∑

j=1

πj
t · ~sj

t . (8)

IV. EXPERIMENTS AND RESULTS

In this section, we compare three different approaches for
visual object tracking. All methods use the same particle
filter approach for tracking and a color-based observation
model. The first approach is a standard method based on
color histograms and was implemented according to [7]1.
The second approach that we call ROI tracking is a simplified
version of the here presented method. It uses the same feature
maps as in sec. II-A but no components. Instead, it considers
the whole target region and computes a descriptor based on
the ratio of the mean of the target region and the mean of the
background as in eq. 2. Thus, it computes a 6-dimensional
target descriptor.2 The third approach is the here presented
component-based tracking.

We test the three methods in seven different settings to
illustrate different properties. In each setting, we tracked one
object over a sequence of images (320× 240 pixels, length
of sequences: 125 – 388 frames). Examples of the settings
together with the component-based descriptors are displayed
in Fig. 4. The complete tracking results can be watched in a
video on http://ivs.informatik.uni-bonn.de/research/tracking/.

For each estimated tracking trajectory, we computed the
Euclidean distance to the real position of the target that was
determined manually. Reference for the computation was the
center of the object resp. the center of the estimated target
position. These distances are displayed in Fig. 5. Since the
distance of the estimation from the real position is not always
meaningful (depending on the size of the object, the same
distance might be still acceptably good or quite bad), we
additionally determined whether the center of the estimation
was on the target or not. This detection rate is displayed in
Tab. I. The computation time varied between 69 and 90 ms
per frame (av. 80 ms), depending on the complexity of the
target template (on a 2.5 GHz dual core PC). This frame rate
was sufficient for online tracking but a higher rate could be
easily achieved by code optimization.

In the following, we describe the different settings.

A. Illumination Changes

In this example, we test the ability of the systems to
deal with illumination changes. We tested a static scene
in which only the illumination is varied by opening and
closing the sun-blinds. It shows that the new component-
based tracking is hardly effected by these changes, while
both other approaches have problems. Note that the detection
rate of histograms is better than the one of the ROI tracking

1The color histograms were implemented exactly as described in [7]
(HSV color model, bin numbers Nh = Ns = Nv = 10), the particle
filter was the same as for the other approaches (cf. sec. III) to concentrate
the comparison on the observation model.

2We used almost the same method in [11], but we omitted the orientation
features to make the approach comparable to the other methods which are
purely color-based.



Fig. 4. The test sequences A - G. First row: the target region used for initialization (yellow rectangles). Second row: the component-based descriptors
computed for the target region. Colors denote the feature map the component comes from (white: bright-dark map, black: dark-bright map, red: red-green
map, ...). 3rd and 4th row: other example frames from the sequences. See also video on http://ivs.informatik.uni-bonn.de/research/tracking/
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Fig. 5. Comparison of the trajectories of the three tracking methods with ground truth. The y axis shows the Euclidean distance of the center of the
estimated region to the center of the real position of the target. average errors: histogram = 41, roi = 28, new component-based = 22.

while the average distance of the trajectories (cf. Fig. 5) is
the same.

B. Object Motion and Scale Changes

Next, we test an object that is moving and changes
strongly in scale. We use face tracking as example appli-
cation. Again, the component-based method outperforms the
other approaches clearly.

C. Temporal Object Occlusion

In this example, we test how the approaches deal with
temporal occlusions of the object. The target is a face that is
temporary occluded by hands and arms of the person. This
is especially challenging since hands and face both have skin
color. The fact that the results of all methods are better for
this sequence than for seq. B shows that obviously the scale
changes affect the methods stronger than a brief occlusion.

D. Quick Object Motion

Here, we test the ability of the methods to deal with ex-
tremely quick object motion. The object changes its direction
abruptly and the motion is so quick that the object moves
many pixels between consecutive frames: Rows 3 and 4 in
column 4 of Fig. 4 show consecutive frames; the object
position varies almost 1/3 of the image width. All methods
show that the particle filter tracking needs some frames to
follow the object if the motion is very fast. Thus, the target is
briefly lost until the method adapts and redetects the target
again. This results in relatively low detection rates of all
methods (cf. Tab. I). From Fig. 5 it can be seen that the
error grows quickly for each quick motion but is reduced
briefly after when the target is redetected (see also video on
http://ivs.informatik.uni-bonn.de/research/tracking/).



Seq. Object # Frames detection rate [%]
Hist. ROI Comp. (our)

A. Box 264 61 42 100
B. Face 207 55 78 89
C. Face 229 76 82 100
D. Bottle 198 33 45 57
E.a left Person 388 45 78 89
E.b right Person 388 15 56 84
F. Box 125 92 70 74
G. Person 169 68 70 54
av. 56 65 81

TABLE I
COMPARISON OF THE THREE TRACKING METHODS BASED ON COLOR

HISTOGRAMS (HIST.), SIMPLE REGION OF INTEREST TRACKING (ROI)
AND THE HERE PRESENTED COMPONENT-BASED TRACKING (COMP.).

E. Moving Camera

While the previous examples have been tested with a
static camera, the following three examples are recorded with
a moving camera. This is considerably more challenging
since it envolves illumination changes, motion blur, and
background changes. The first example shows two people
walking down a corridor, while the camera is following them.
The persons cross their way twice. This is a typical setting
for a service robot that shall follow a person and not confuse
it with other people. We tested the tracking of each of the
persons individually. In both cases, the component-based
tracking clearly outperforms the other methods. Most dif-
ficulties has the histogram-based approach, especially when
tracking the right person.

F. Moving Camera with Strongly Changing Background

The next example shows an extreme case of background
change: the background changes from dark blue to white.
Since the target object has similar colors (also mainly blue
and white), the two tracking approaches that include the
background (ROI and component-based) have some dif-
ficulties here. While including the background is usually
helpful, it makes some problems in such an extreme case.
We are currently working on ways to adapt the descriptor
automatically to new environments.

G. Outdoor

Finally, we show an outdoor sequence that combines most
of the previous challenges: the camera is moving, several
objects (two people and a ball) are moving very quickly, the
appearance of the target person changes strongly in scale,
the shape of the person changes, e.g. when shooting the
ball (cf. Fig. 4, 3rd row, right), and the illumination as
well as the background change. Here, the purely color-based
approaches, histogram and ROI, outperform the component-
based tracking. The strong changes in shape are problematic
in the latter case. We are currently working on ways to track
the components of the target individually. This could help
to cope with such difficulties. However, it can be seen from
Fig. 5, that the approach is always able to redetect the target
after some frames.

In average, the new component-based tracking has outper-
formed the other two methods considerably with an average
error 22 and a detection rate of 81 %, compared to error 28
and detection rate 65 % for the ROI tracking and error 41
and detection rate 56 % for the histogram tracking.

V. CONCLUSION

We have presented a new approach for object tracking
based on a component-based descriptor. The method grabs
the appearance of an object in color and intensity together
with a rough spatial layout which are quickly learned from
a single training image. It can deal with different objects
and settings, works in real-time, and is applicable on a
moving platform. We have shown that it on average clearly
outperforms other methods.

However, there is still room for improvements. We are
currently working on ways to store the position of the
components individually to achieve more flexibility to defor-
mations and rotations of the objects. Additionally, we intend
to adapt the target descriptor online if background and/or
target appearance change strongly, as e.g. in [19].
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