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Abstract— We present a novel method based on saliency
and segmentation to generate generic object candidates from
RGB-D data. Our method uses saliency as a cue to roughly
estimate the location and extent of the objects present in the
scene. Salient regions are used to glue together the segments
obtained from over-segmenting the scene by either color or
depth segmentation algorithms, or by a combination of both. We
suggest a late-fusion approach that first extracts segments from
color and depth independently before fusing them to exploit that
the data is complementary. Furthermore, we investigate several
mechanisms for ranking the object candidates. We evaluate on
one publicly available dataset and on one challenging sequence
with a high degree of clutter. The results show that we are able
to retrieve most objects in real-world indoor scenes and clearly
outperform other state-of-the art methods.

I. INTRODUCTION

Object discovery is the task of finding objects in scenes
without having a priori knowledge of what the objects look
like or what class they belong to. It has recently attracted a
lot of attention in the robotics and vision communities [2],
[19], [11], [15] and is essential for many robotic tasks such
as object manipulation and scene exploration.

The task of discovering objects is a chicken-and-egg
problem: how to look for an object before knowing how
it looks like and which features it has? The vision and
robotics communities have developed different approaches
to address this problem. Vision approaches usually operate
on color images and generate a pool of object candidates,
also known as object proposals, based on various types of
image features which are combined by a machine learning
method [2], [19]. The idea is to generate promising candidate
regions as pre-processing for recognition, whose number is
significantly smaller than the number of sliding windows
used by default. Since usually around 1000 candidates are
generated, these approaches are less useful for systems
which have to operate in real-time and which potentially
aim to interact with the objects. In the robotics community,
it is therefore preferred to generate a small set of object
candidates. Many groups use the 3D information of the scene
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Fig. 1. Object candidates detected in color (top) and in depth (bottom)
data. It shows that color and depth are complementary: some objects are
only visible in color, some only in depth data. Fusion of both yields the
best results.

by either operating directly on the depth data from an RGB-
D device [23] or by first reconstructing the scene and then
doing the discovery of objects in the 3D reconstruction [11],
[15]. Other approaches use information about changes over
time to segregate objects from background [11] or interact
with possible object candidates to determine what is an
object [28]. While these are helpful approaches to resolve
ambiguities, it is certainly desirable to be able to find objects
also without or before interaction, and if possible already
from a single view without the need to regard a scene over
a longer time.

In this paper, we present a method for object discovery that
combines color and depth data to generate object hypotheses.
We follow a late-fusion approach that first determines color
and depth candidates independently, and fuses them after-
wards by an SVM-learned sorting method. This exploits the
fact that the data is complementary and some objects are
most easily extracted in color and others in depth data. For
example, in Fig. 1, the cereal box is fully detected in the
depth but not in the color data due to the inhomogeneous
texture (left), while the flat papers at the wall are only
perceivable in the color image (right).

Our discovery method is based on the simple principle



Fig. 2. Overview of the proposed method for object discovery.

that objects usually differ from their surroundings1. For this,
we use an attention mechanism that finds salient regions in
the scene and uses them as an indicator of the location and
extent of objects. Their precise boundaries are delimited by a
segmentation algorithm and segments are selected depending
on their overlap with the salient blobs extracted from the
saliency map. The segmentation algorithms we investigated
here are the color-based segmentation of Felzenszwalb and
Huttenlocher [5], the depth based surface patch clustering
of Richtsfeld et al. [26], and the RGB-D supervoxels [22].
We suggest to combine the first two methods in a late-
fusion approach and show in our experiments that this
outperforms the early fusion approach in which candidates
are directly generated in the RGB-D data, using color and
depth early. Interestingly, the late fusion approach has a
rough correspondence to human vision, where color and
depth are processed largely independently in two different
pathways [20].

The final step of our method is to rank the object can-
didates according to their likelihood to represent an object.
We propose three ranking mechanisms, of which SVM-based
ranking gave the best results. An overview of our approach
is shown in Fig. 2. We show on two datasets, the well-
known Washington dataset [18] and the challenging Coffee
Machine sequence [9], that our approach is able to retrieve
most objects in real-world indoor scenes and outperforms
other state-of-the-art methods for object discovery.

II. RELATED WORK

Object discovery is a topic which started only recently to
develop strongly. The methods can be roughly classified into
approaches that operate on color images, those that operate
on depth, and those that use additional information to detect
objects.

Among the approaches that operate on color frames, the
objectness measure of Alexe et al. [2] is one of the best
known approaches. The authors sample object proposals
guided by an objectness measure, learned from features such
as saliency, edge density, and superpixels straddling. Rahtu et
al. [24] introduced a cascade learning using similar features.
Feng et al. [6] proposed to detect objects by measuring how

1This principle is only violated in camouflage cases, which are also
difficult to detect for humans.

well the candidate can be composed by the rest of the image.
Manén et al. [19] proposed a randomised Prim algorithm to
group superpixels into object proposals according to proper-
ties such as color homogeneity. In [8], we have presented a
predecessor of the current work, which focused on images
and did not use depth data.

In the robotics community, many groups have operated on
depth data. Johnson-Roberson et al. do object segmentation
on full point clouds [14]. The segmentation is seeded at
salient points in the image that are mapped to the full point
cloud. In [27], 3D object models are built by matching
scans from partial views from which they subtract points
that correspond to planar surfaces: floor, walls, etc. Karpathy
et al. [15] rely on a reconstruction of the scene where
several 3D features of objects are used to segment them:
compactness, symmetry, smoothness, convexity.

Little work has been done on object discovery approaches
that operate on both color and depth data. Mishra et al. [21]
proposed a framework for segmentation, where an object is
segmented using the concept of “simple objects and border
ownership”, which is defined using depth, color and/or mo-
tion information about the scene. In previous work [10], we
have detected objects in RGB-D data by observing a scene
over time and incrementally updating 3D object models.
The difference to the here presented approach is that object
candidates were purely generated based on color and not on
depth data; depth was only used to create the 3D map. In the
work of Potapova et al. [23], the authors developed a method
to segment objects from RGB-D images. A 3D symmetry-
based saliency operator is used to select attention points. The
object boundaries are then found by adding surface patches
that preserve the compactness and the color model of the
object hypothesis.

The final class of approaches summarized are methods that
use additional information about the scene to find objects.
For example, Herbst et al. [11] discover objects by analysing
the changes that have occurred in a scene at different points
in time: elements that do not match to the 3D reconstruction
of the scene are most likely objects. Collet et al. [4] incor-
porate domain knowledge to support the discovery process.
Other researches [16],[28] used interaction with the scene do
detect objects as parts of the space that are moving together
when pushed or carried around.

Our goal here is to optimize the discovery on single RGB-
D frames to lay a solid foundation for algorithms that use
additional information such as temporal data or interaction.

III. SALIENCY-BASED OBJECT DISCOVERY

Our approach for generating object candidates follows
a simple principle: objects differ usually from their sur-
roundings. This difference can be in color, intensity, texture,
depth, or other features. A well-known method to detect
regions that visually differ from their surroundings is saliency
computation. It originates from the human visual attention
system that is able to detect regions that differ from their
surroundings quickly and effortlessly. Therefore, we use
saliency as a cue to locate and roughly estimate the extent



Fig. 3. From left to right: original image, saliency map, image segmentation, and some of the candidates generated.

of the objects. In parallel, a segmentation of the scene is
computed, and saliency is used to glue the segments together
into object hypotheses/candidates.

The idea to combine saliency and segmentation has a cog-
nitive motivation in the psychological work of Rensink [25]:
in human perception, so-called proto-objects are detected
by segmentation processes that bundle parts of the visual
field; such processes are believed to exist on all levels of the
visual system [29]. Second, these proto-objects are combined
by focused attention to form coherent objects. While these
attention mechanisms consist of bottom-up and top-down
parts, top-down information is not always available. Thus,
we focus on bottom-up attention here, which corresponds to
saliency computation.

An overview of our approach is shown in Fig. 2. It operates
on RGB-D data, but if only color data is available, the
method works also well. The combination gives however
the best performance, since the channels are complementary.
From the color image, we compute a saliency map. In
parallel, we compute segmentations in the color as well as in
the depth channels. By using saliency to select segments, we
obtain a set of object candidates. Since in many applications
it is preferable or even required to restrict the processing
to a small number of candidates, e.g. to meet real-time
requirements, it is important to rank the candidates according
to their quality to be able to select the n best ones. We
investigated different ranking strategies in Sec. III-D.

A. Detection of Salient Blobs

We extract salient blobs from the color image which we
will need later on to select segments that form the object
candidates. The salient blobs are computed in two steps.
First, we compute a saliency map. Second, we extract the
most salient blobs from this map. The saliency map is
computed with the VOCUS2 saliency system2, which is a
re-implementation of the VOCUS system [7]. It computes
pixel-precise saliency maps with state-of-the-art performance
on current benchmarks for salient object detection, but it
performs also well on cluttered real-world scenes as common
in robotics applications. The main structure is similar as in
traditional saliency systems such as [13], i.e., the system
computes different features in parallel on different scales
before fusing these feature maps to a single saliency map
sal(x, y). Contrast in each feature channel is computed

2Description and code: http://www.iai.uni-bonn.de/∼frintrop/vocus2.html

by Difference-of-Gaussian filters, but instead of subtracting
layers of the pyramid as in [13], we build specific center
and surround pyramids which are used for subtraction. This
enables more flexibility in determining the center-surround
ratios. Additionally, we use a more sophisticated scale-space
consisting of 5 octaves and 2 scales in a Gaussian pyramid,
and we compute feature contrasts in intensity and color
channels (orientation is less useful for salient object detection
because it highlights the boundaries of objects, and this
makes it more difficult to select salient blobs from the
saliency map). The saliency maps we obtain are quick to
compute (about 60 ms per 640 × 480 frame on a standard
desktop computer on unoptimized code), don’t have a center
or border bias, and are detailed enough to let us obtain
good estimates of the location and extent of objects: see for
example the saliency map in Fig. 3.

For the second step, the extraction of salient blobs from
the saliency map, we determine the set of local maxima
{l1, ..., ln}. A local maximum is here a (collection of)
pixel(s) which is larger than all neighboring pixels. Next, for
each local maximum in the saliency map l = (xl, yl), where
(xl, yl) are the pixel coordinates of the point, we do seeded
region growing [1] to obtain a salient region sl. The region
growing recursively investigates all neighbors of li and adds
them to the salient blob sl, as long as the saliency of the pixel
is above some percentage of the saliency of the seeding point
sal(xl, yl). Thus, for every candidate point p = (xp, yp), we
compute whether sal(xl, yl) ≥ sal(xp, yp) ≥ sal(xl, yl)× t,
with 0 < t < 1. This procedure is repeated for different
values of t (we use 0.6 and 0.7), and the complete set of
salient regions {s1, ..., sm} is stored for the next step.

B. Segmentation

In parallel to the salient region extraction, the original
image and depth data are segmented. Here, we present four
alternatives for segmentation: color segmentation, surface
clustering on the depth data, RGB-D supervoxel extraction,
and a combination of the first two methods. Since our main
approach differs depending on the segmentation we use, we
call the four variants of our method accordingly M1 – M4.
To illustrate the candidate generation, we show in Fig. 4
the results for our four methods on a sample frame from
sequence 3 of the Washington dataset. In the following, we
describe these variants in more detail.

1) Method 1 (M1): Felzenszwalb Segmentation: We chose
the Felzenszwalb and Huttenlocher algorithm [5] for seg-



Fig. 4. Left side: the original image with ground truth. Below, the saliency map. The four rows on the right correspond to the top 10 candidates according
to the SVM ranking for each of the methods M1, M2, M3, M4. The first column shows the segmentations, the second displays the contours of the object
candidates, and the third, the actual candidates.

menting color images into perceptually coherent segments.
The authors proposed a method that constructs a graph
based on the pixel neighborhoods, and iteratively merges
groups of pixels into regions, keeping a trade-off between the
internal variability of the regions and the difference between
neighboring components. Therefore, it relies mainly on one
parameter, k, that determines the scale of observation. We
set it in all our experiments to 200, to slightly over-segment
the images. The candidates that we obtain with this method
are shown exemplarily in the first row of Fig. 4.

2) Method 2 (M2): Surface Clustering: Here, we use a
method that purely relies on depth information to produce
image segments. Similar to Richtsfeld et al. [26] we cluster
neighboring points into uniform planar patches without dis-
continuities based on their normals. Normal clustering starts
at the point with lowest curvature and greedily assigns neigh-
boring points as long as they fit to the initial plane model.
The algorithm iteratively creates planar surface patches until
all points belong to some plane or are identified as noise. An
example of the segments and the candidates obtained with
this method is shown in Fig. 4.

3) Method 3 (M3): Supervoxel Segmentation: As the
third segmentation method, we used Voxel Cloud Connec-
tivity Segmentation [22] that generates volumetric over-

segmentations of 3D point cloud data3. The algorithm imple-
ments a local region growing variant of k-means clustering
which incrementally expands supervoxels from a set of seed
points distributed evenly in space. Expansion from the seed
points is based on a measure consisting of distance, color,
and normal similarity.

4) Method 4 (M4): Fusion of Color and Depth candidates:
As an alternative to method M3, we propose to merge
together the candidates obtained by methods M1 and M2. As
we will show in the evaluation, color and depth candidates
are complementary, so that we obtain better results with this
late-fusion method than with the early fusion in M3.

C. Candidate Generation: Saliency + Segmentation

Now, we have salient blobs and segments and we have
to determine which segments form an object candidate. The
selection of segments works in the same way for each of
the segmentation methods: for each salient region s, we pick
the segments which overlap at least o% with s. We set this
overlap to o = 30% w.r.t. the segment.

3We used the implementation from the PCL library http://
pointclouds.org/documentation/tutorials/supervoxel_
clustering.php

http://pointclouds.org/documentation/tutorials/supervoxel_clustering.php
http://pointclouds.org/documentation/tutorials/supervoxel_clustering.php
http://pointclouds.org/documentation/tutorials/supervoxel_clustering.php


Fig. 5. The top 30 object candidates from M1,M2,M3 and M4 for several frames
of the Coffee Machine sequence.
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Fig. 6. Precision and recall curves for M4
using the three ranking methods on the Coffee
Machine Sequence. Numbers in parentheses
denote the AUC values.

To summarize the steps: first, saliency is computed on the
input image; second, salient regions are extracted from the
saliency map that roughly determine the extent and location
of the objects; finally, the salient regions are used to glue
together the segments obtained from one of the four different
segmentation algorithms.

D. Ranking of the candidates

A critical issue is how to rank the object candidates to
be able to select the best ones. As mentioned before, this
is important especially in robotics applications to meet real-
time constraints and to select the most promising candidates
for interaction. A set of 1000 candidates is just impractical
to operate on.

We investigated three different approaches for ranking the
object candidates. First, we used the average saliency of a
candidate for ranking. To avoid a size bias towards small
objects which have naturally a higher average saliency, we
incorporate the size of the candidate, p, into the ranking
score: score(p) = avg saliency(p) ∗

√
area(p). We call this

ranking method (R1).
Our second ranking approach (R2) sorts candidates ac-

cording to their 3D convexity: convex candidates get higher
score than non-convex ones. The convexity is computed
according to [23]: given a set of object points {pi}, V is
the corresponding object’s convex hull, and vj is a set of
visible faces from the current viewpoint. Convexity measure
κ is calculated as the mean of the shortest distances from
the object points to the visible surfaces of the object’s 3D

convex hull:
κ =

1

n

∑
pi

dmin(pi, V ), (1)

where n is the number of object points and dmin(pi, V ) is
the shortest distance from the point to any visible face

dmin(pi, V ) = min
j
d(pi, vj). (2)

The lower the convexity measure, the more convex the
object proposal is.

Our third approach (R3) ranks object candidates using
several features extracted from the candidate mask: (1-7)
Hu’s image moments [12], which are invariant to rotation and
scale; (8) 3D convexity measure (described above); (9) object
proposal area normalized to the image area; (10) average
saliency of the proposal; (11) perimeter of the object proposal
mask normalized to the image area; (12) normalized average
depth of the proposal. Given this set of features we trained
a support vector machine (SVM) [3] to classify between
object/non-object. Training was done on the ground truth
annotated scenes of the Washington dataset. For every feature
vector, the SVM then outputs the probability of the object
candidate being object/non-object. This probability is used
as a ranking score to sort candidates. To train the SVM, the
Washington dataset was divided into two parts. One part was
then used for training and the other for testing and vice versa.

IV. EVALUATION

We evaluate all the methods on one publicly available
dataset, the Washington Dataset [18], and one of our own, the
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Fig. 7. Average recall (left) and precision (right) values on the Washington
dataset. Numbers in parentheses denote the average recall/prec. over all
sequences.

Coffee Machine sequence, which first appeared in [9]. The
latter is a challenging scene for object discovery with high
clutter, and a total of 80 distinct objects appearing throughout
the sequence and up to 43 objects per frame. It lasts for 436
frames, and ground truth was annotated on every 30th frame.
Some frames with the object candidates generated with our
four methods are depicted in Fig. 5. The Washington dataset
[18] contains 8 sequences recorded with a Kinect camera
on household environments, and is intended to test object
recognition algorithms. Thus, it contains labeled ground truth
where different object classes/instances appear, and serves to
evaluate our generic object candidates. Note, however, that
not all the objects that appear are labeled. The ground truth
is provided as bounding boxes, so, in order to measure the
overlap we fit a bounding rectangle on each object mask we
generate. Although the dataset was not designed for object
discovery it is to our knowledge the most suitable RGB-D
dataset with annotated ground that is freely available.4

On both datasets, we measure precision as the number of
correct object candidates over the total number generated,
and recall as the number of correct candidates over the total
present in the ground truth. We consider candidates as correct
if they satisfy the Pascal criterion, i.e.,intersection over union
is greater than 0.5.

A. Ranking of the Candidates

In the first part of the evaluation, we compare the three
ranking methods explained in Section III-D. Namely, the
saliency/area score (R1), the convexity score (R2), and the
SVM score (R3). To evaluate R3, we split the Washington
sequences into two sets of four sequences each, and used
one for training and the other for evaluation. We used the
model learned in the first set to evaluate in our own Coffee
sequence.

We show the results obtained in the Coffee sequence for
our method M4 in Fig. 6. The results obtained in the other
sequences were analogous. The effect we expect by a better
ranking is that precision and recall values are increased for
a smaller number of candidates. This happens mostly for
R3. The convexity score showed some small improvement
in the Coffee sequence and slightly worse performance than

4There is also the recent dataset of [17], but the sequences do not add
difficulty to the task of object discovery.
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Fig. 8. Precision and recall values over number of proposals/candidates on
the Washington dataset. Numbers in parentheses denote the AUC values.

R1 throughout the Washington dataset. It can be seen in the
precision plot how good candidates are chosen first with the
SVM ranking method; this is an effect that also occurs in
the Washington dataset. As a result, the recall curve raises
faster as well.

In the remaining evaluation, we used the ranking of our
object candidates that turned out to be the best, R3.

B. Washington Dataset

Here, we show our results on the Washington dataset [18].
We compare our four proposed methods, M1 (color), M2
(depth), M3 (RGB-D), and M4 (color+depth), to the method
of Potapova et al. [23], to the objectness measure of Alexe
et al. [2], and the method of Manén et al. [19].

We show in Fig. 7 average precision and recall obtained
in each of the sequences by all methods. The results show
that, with an average recall of 84%, our method M4 clearly
outperforms all the other methods. Even when only using
color (M1) or only depth (M2), the approaches outperform
the other methods clearly (76% vs 75%), except the object-
ness measure of Alexe et al. (81%). This is due to the high
number of candidates that objectness generates (1000). In
terms of precision, the method of Potapova et al. [23] turns
out to be the best: it produces very few object hypotheses
but these are often correct. For the other methods, all values
are quite low and similar to each other. The generally low
precision values come partly from the fact that few objects
are present in the scenes, and not all objects are labeled
as ground truth in this dataset (e.g. in Fig. 4, the mouse is
detected but not labeled as ground truth, resulting in a false
detection).

When looking at the results more closely, the plots show
that, in terms of recall, the color segmentation approach
(M1) is better than the one using depth clustering in four
sequences, and the other way round in the other four. The
combination of M1 and M2 object candidates in M4 shows
that to some extent, color and depth are complementary, and
boosts the recall in every sequence, outperforming the RGB-
D segmentation approach of M3. M4 has the highest recall
in six out of eight sequences.

A complementary view for this results is shown in Fig. 8,
where precision and recall values are plotted over the number
of object candidates. It averages over all eight sequences in
the Washington dataset. This is useful for deciding how many
object candidates to generate. There, one can see that by



2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Coffee Machine Sequence

Frame

R
ec

al
l(

pe
rc

en
ta

ge
of

gl
ob

al
di

sc
ov

er
ed

ob
je

ct
s)

M1 (7.0412)
M2 (5.6353)
M3 (5.3294)
M4 (suggested) (7.6588)
Alexe (5.4882)
Manen (6.8412)
Potapova (3.2471)

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Coffee Machine Sequence

#Proposals/frame

P
re

ci
si

on
(p

er
ce

nt
ag

e
of

va
lid

pr
op

os
al

s)
M1 (60.7684)
M2 (54.2117)
M3 (43.5927)
M4 (suggested) (71.6242)
Alexe (18.6301)
Manen (24.2276)
Potapova (80.9575)

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Coffee Machine Sequence

#Proposals/frame

R
ec

al
l(

pe
rc

en
ta

ge
of

di
sc

ov
er

ed
ob

je
ct

s)

M1 (75.9153)
M2 (58.389)
M3 (47.9614)
M4 (suggested) (81.508)
Alexe (37.3717)
Manen (42.9335)
Potapova (38.5408)
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taking about 20 candidates from method M4, approximately
75% of the objects are detected.

C. Coffee Machine Sequence

The high recall obtained by most methods in the Wash-
ington dataset shows that the benchmark is relatively easy.
Thus, we evaluate all the methods in a sequence [9] that
contains many more objects (on average 36 per frame, some
frames have up to 48 objects) and plenty of clutter.

As before, we show in Fig. 9 (left+middle) the precision
and recall values over the number of candidates. The dif-
ficulty of the sequence is reflected in lower recall values
than for the Washington dataset for all the methods. Despite
this difficulty, all methods achieve a considerably higher
precision (e.g., for M4 an AUC of 71 vs. AUC 34 in Fig. 8).
This is due to the fact that in this dataset, all objects were
labeled for the ground truth (cf. argumentation in Sec. IV-B).

In Fig. 9 (right) we show an additional plot that shows the
number of discovered objects over time: for this, the identity
of the objects in the scene is kept consistent in the ground
truth. That means, we consider the amount of objects in the
scene rather than in individual frames. This is interesting
since for many applications it is not necessary to detect every
object in every frame, but it is sufficient to detect an object in
one of several frames. The values are achieved by computing
up to 200 candidates/frame for each of the methods. The plot
shows that after 15 frames, the M4 method retrieved about
80% of all the objects in the scene.

The top 30 candidates from M1 to M4 are shown in
Fig. 5 for several frames. There, one can see examples of
objects that would not be retrieved by the depth clustering
method, for example the notes on the wall. Also, objects
that are far away from the camera are a challenge to the
surface clustering algorithm. Especially in those cases, visual
information can be of help. On the other hand, some of the
depth-based object candidates have more precise boundaries:
see for example the sponge on the lower right part of the
image in the middle column. The M1 method includes a
shadow as part of the object, whereas this boundary is clearly
defined for the M2 method. As for M3, the boundaries of the
objects are not as precise as in the color and depth methods.

V. CONCLUSION

We have presented a method for object discovery that is
based on saliency and segmentation and that works on single
RGB-D frames. It relies on a pre-segmentation of the scene
by either using color, depth information, or both. Given an
input frame, it produces a set of object candidates that can be
used for either recognition, or interaction of a robot. We show
that a method that treats color and depth segments separately
improves results w.r.t. both methods independently, which
suggests that both modalities are complementary. Also, the
results were better than when using a single segmentation
approach that integrates color and depth. In order to have
the best candidates first, we proposed and evaluated three
different approaches for ranking them. We showed that,
especially in sequences with high clutter, our algorithm
clearly outperforms state-of-the-art approaches for object
discovery.
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