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Abstract In this paper, we summarize our project work

of the last two years, where we addressed the tasks of

visually exploring a scene with visual attention mech-

anisms based on saliency computation, and of locating

unknown objects in the environment. The latter is also

called object discovery and consists in finding candidate

objects without previous knowledge about the objects

themselves or the scene. We follow an approach moti-

vated from human perception and combine saliency and

segmentation to generate object candidates. We show

results on 2D images as well as on 3D sequences ob-

tained from an RGB-D camera.

1 The Project: Situated Vision to Perceive

Object Shape and Affordances

This report describes our progress within the DFG-

funded project Situated Vision to Perceive Object Shape

and Affordances which started in February 2012 and is

a cooperation with the groups of Barbara Caputo from

the university of Rome, Bastian Leibe from RWTH

Aachen, and Markus Vincze from TU Vienna.

The objective of this project is to develop the visual

capabilities a service robot must have when operating

in a home environment (correspondingly, our internal

project name is “Vision@home”). More specifically, we

plan to provide models and methods to detect, recog-

nize, and categorize the 3D shape of everyday objects

and their affordances in homes. The research is based

on the Situated Vision paradigm, which starts from the

premise that vision has the task of delivering informa-

tion for the cognitive robot situated in its environment.
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2 Work Package Bonn: Visual Attention and

Object Discovery

The part of the project that is tackled by our group

is the task to visually explore a scene and to locate

objects in the environment. Exploring a scene means

to prioritize the huge amount of incoming visual data,

which we address by visual attention mechanisms that

are inspired from human vision (Section 2.1). The lo-

calization of unknown objects is also known as object

discovery and will be introduced in Section 2.2. This

report summarizes our work in these areas which has

been published in [14,10,9].

2.1 Guiding Scene Exploration by Visual Attention

In human vision, the prioritization of sensory input is

performed by mechanisms of selective attention [24].

These mechanisms consist of bottom-up parts that di-

rect attention to regions that are salient, and top-down

aspects that guide the processing to regions that are

behaviourally relevant. Many computational models of

visual attention have been developed during the last

fifteen years, and they have been surveyed in depth in

[11,5]. While top-down information is important in hu-

man perception, such information is not always avail-

able for computational systems. Here, we concentrate

on bottom-up attention, which is commonly modelled

by saliency maps.

During the last decade, there has been increased

interest in saliency computation within the computer

vision community. There are approaches that are based

on the spectral analysis of images [15,29], models that

base on Bayesian theory [17,35], or on decision theory

[13,12], and those that use machine learning techniques
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[20,3]. Because of the overwhelming number of different

approaches, it is hard to keep an overview and to see

the differences, and, more importantly, the similarities

of the methods.

As we have outlined in [9], the most essential ele-

ment of saliency methods is a center-surround contrast

computation, since a high contrast in some feature di-

mension is an intrinsic property of a salient item: by

definition, something that “stands out relative to its

neighbours” (cf. Wikipedia: “Salience (neuroscience)”,

Jan. 2014). Basically all saliency methods compute such

a value (although not always in a center-surround man-

ner), and the most important difference between them

is the way this contrast is computed.

Cognitive models compute the center-surround con-

trast usually by Difference-of-Gaussian filters (DoG),

since these are known to model best the concentric cells

of the human visual system, e.g., retinal ganglion cells

[28]. Also other approaches, such as the Bayesian sur-

prise model [17] or the decision-theoretic model of [13],

use DoG and Gabor filters to compute contrasts. Some

approaches compute the contrast not based on pixels

but on patches [32,6] or on previously segmented re-

gions, e.g., superpixels [25,36]. Instead of computing

local contrasts, some approaches compute global con-

trasts by considering the whole image as surrounding

region, e.g., [1] or [7]. Note, however, that while global

contrasts are quicker to compute, they are not able to

capture local saliencies (see [9]). The contrast compu-

tation can also be extended to the spatial domain by

computing depth contrasts [22,4] or to the temporal do-

main, where it computes the change of the visual data

over time [17].

2.1.1 Saliency Computation

While enormous effort has been put into introducing

novel concepts for computing such contrast, we have re-

cently shown that within a well-designed framework, it

is still possible to achieve state-of-the-art performance

with traditional Difference-Of-Gaussian filters [10]. While

the system in [10], called Simple CoDi, was a modifica-

tion of the CoDi saliency system [19], we have by now

a new implementation of the saliency system1 that fol-

lows the structure of traditional saliency systems like

our previous VOCUS system [8] or the the well-known

iNVT system of Itti and colleagues [18]: we compute

the contrast in different feature dimensions within a

scale-space given by image pyramids.

In contrast to [18,8], where simple Gaussian pyra-

mids are used, we build a more sophisticated scale-space

structure with several scales on each level (octave) of

1 Code will soon be available on our webpages

the pyramid as in [21]. Since the levels of the scale-

space correspond to the size of the regions that can

be detected, such a structure enables a larger variety

of regions it responds to and a higher precision in the

saliency maps. Such a Gaussian pyramid is constructed

for each of the features. We have implemented intensity,

color, and orientation as features. However, for the task

of object discovery, the orientation feature has shown to

be less useful and we have only used intensity and color

in this setting. To enable a processing of red-green and

blue-yellow contrasts for the color feature channel, the

system operates on an opponent color space. We have

investigated the Lab color space and the opponent space

from [19], with the latter giving better performance in

most cases.

For each map of the scale-space, we compute a center-

surround difference based on Difference-of-Gaussian fil-

ters. A DoG contrast image can be computed quickly

by subtracting two layers of the image pyramid. How-

ever, this restricts the computations to smoothing fac-

tors that exist in the pyramid (usually powers of 2 with

respect to the original image). We have achieved better

performance by explicitly computing a “surround im-

age” for each image of the pyramid which is then used

for subtraction. That means, for each pyramid image

Is, we consider this image as center image and com-

pute a corresponding surround image by Ss = Is ∗ G,

where ′∗′ denotes the convolution and G a Gaussian.

Then, we compute the DoG contrast image Cs as usual

by subtracting the surround image Ss from the center

image: Cs = Is−Ss. Note that by choosing G appropri-

ately, arbitrary center-surround ratios can be obtained.

After computing such a DoG contrast image for each

layer of the pyramid, we sum the contrast maps up, first

to one conspicuity map for each feature, and finally to

a saliency map.

We could show that this system, which is simple

in structure, quick to implement, and fast in execution

time, outperforms 7 state-of-the-art saliency systems in

terms of precision and recall [10]. In contrast to many

other saliency systems which are designed to detect one

prominent object which is centered in the image, our

approach is able to cope with natural cluttered scenes

as they would be obtained from a mobile robot or a

head-mounted camera. Figure 1 shows exemplary some

saliency maps obtained from our saliency system and

from the baseline methods.

2.1.2 Visual Attention in Video Sequences

If attention operates on sequences instead of images,

new challenges occur. Regions of interest have to be

fixated for a certain time, then withdrawn from this lo-
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Fig. 1: Saliency maps from AC [2], AIM [7], SaliencyToolbox [31], HZ [16], HSaliency [33], Yang [34], and our

saliency system (Fig. from [10])

cation, and a new fixation has to be generated. When

computing the new fixation, it has to be considered

which regions have been attended recently. In human

vision, this problem is solved by inhibition of return

(IOR) mechanisms that inhibit an attended region for

a while to prevent returning to this location [26]. In

computational attention systems, the inhibition of re-

turn mechanism is usually solved by inhibiting regions

in the saliency map [18,8]. However, this works only in

static images. In sequences, the inhibition does not in-

hibit the correct region any more as soon as objects

or the camera moves. Why then does the inhibition

of return mechanism work in human vision, although

eyes, head, and objects usually move? Posner and Co-

hen found that the IOR mechanism works in spatial,

and not in retinotopic coordinates [26].

Based on these findings, we introduced in [14] a spa-

tial attention mechanism that operates on 3D data from

an RGB-D camera and that performs the attentional

saccade-fixate cycle in spatial coordinates. A 3D en-

vironment map is created based on the KinectFusion

algorithm [23] and the information about when an ob-

ject was attended last is stored directly in the voxels.

Based on an inhibition weight that stores the time since

the last fixation of this voxel and an inhibition flag that

determines whether a voxel should be currently inhib-

ited, we raycast the inhibition data from the spatial

map to the current viewpoint. The resulting 2D inhibi-

tion map can then be used for inhibiting the values in

the saliency map (see [14] for details). This 3D atten-

tion mechanism will be used in our 3D object discovery

method, described in Sec. 2.2.2

2.2 Object Discovery

Object discovery is the task to find all the objects in

a scene without knowing how they might look like or

what category they belong to. In contrast to object

recognition or classification, the types of objects are not

known in advance, there is no training phase, and the

system starts without any prior knowledge. Following

the phrasing of [3], such a system addresses the ques-

tion “what is an object?”. This topic is of interest for

many applications, ranging from automatically crop-

ping the most interesting thumbnail from your holiday

pictures up to collecting a database of objects with an

autonomous service robot that explores a new environ-

ment.

The notation for the task to detect and localize un-

known objects in a scene varies strongly among com-

munities. While the robotics community calls the prob-

lem object discovery or general object detection, in com-

puter vision the problem is commonly known as object

proposal generation. Literature in cognitive science and

psychology usually speaks about object detection or ob-

ject perception. We call the problem “object discovery”

since we think that the term best describes the fact

that objects are not known in advance. Also the re-

sulting object candidates have different names in the

communities. To disambiguate the notation, we list the

terminology in Table 1.

Here, we briefly summarize our work on object dis-

covery that has been published in [10] for 2D images

and in [14] for 3D data from an RGB-D camera. For

more details please refer to the corresponding publica-

tions.

2.2.1 Object Discovery in 2D Images

Our method bases on the idea of proto-objects that

originates from psychological research where it was in-

troduced by [27]. As mentioned there, proto-objects are

object candidates, which correspond to visual struc-

tures that result from early segmentation processes. Ac-

cording to Rensink, attention then “acts as a hand to

grasp proto-objects to form coherent objects”. Follow-

ing this idea, we find objects in a two step approach:

first the image is segmented into perceptually coherent

parts; second, a saliency map is computed and segments

are selected depending on their saliency. The concept is

visualized in Figure 2.

This simple approach already works very well on

many web images, as the ones from the MSRA Dataset
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Community: Computer Vision Robotics Cognitive Psychology
Task: Object proposal Object discovery/ Object detection

generation General object detection Object perception
Results of Segments/ Segments Proto-objects
segmentation: Superpixels
Final results: Object proposals Object candidates Proto-objects

Object candidates Object hypotheses Object candidates
Object hypotheses Object hypotheses

Table 1: Disambiguation of terminology in different communities (Table from [9]).

Segmentation Saliency computation

Object 

hypothesis

Saliency 

map

Proto-

objects

Fig. 2: Simplified overview of the object discovery ap-

proach for web images: saliency (right) selects the seg-

ments (left) that compose an object hypothesis (bot-

tom). Fig. from [10].

of Salient Objects [20], which is the most frequently

used data collection for testing saliency systems. Some

example results are shown in Figure 3, and quantita-

tive results can be found in [10]. When interpreting

data from a moving camera, the task is much more

challenging since scenes are more cluttered and objects

are not centered in the image and often intersect with

the image borders. Here, it is essential to first extract

salient regions from the saliency map, which can then

be combined with the superpixels obtained in the seg-

mentation step (details in [10,9]). Some example images

on real-world images from an office scene are shown in

Fig. 4.

2.2.2 Object Discovery in 3D Sequences

In [14], we have presented an approach to find objects

in RGB-D data from a Kinect-like camera and built

3D object models incrementally while observing a scene

over time. As in human perception, where color and

depth information are processed mainly independently

in separate pathways [30], we have a color and a depth

processing stream. The color processing stream detects

Fig. 3: Several examples of our object discovery method

on web images (MSRA dataset). From top to bottom:

original images, saliency maps, segmentations, object

hypotheses, ground truth. Fig. from [10]

object candidates according to the procedure presented

in Sec. 2.2.1. The depth stream builds a 3D map of

the environment using the KinectFusion algorithm [23].

Finally, the object candidates are projected into the 3D

scene to form 3D object models. An overview of the

method is shown in Figure 5.

To prioritize the processing, attention is guided to

process the data according to their saliency. The scene

is analyzed starting from the most salient item, which

is regarded for several frames, before this region is in-

hibited and processing continues with the next item. To

keep consistency of already fixated regions over frames,

we root our attention process directly in the 3D data,

using the 3D attention model that was described in

Sec. 2.1. Storing inhibition data in the 3D voxels in-

stead of pixels in the saliency map prevents the system

from loosing track of an inhibited region when moving
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Fig. 4: Top: some examples of our object discov-

ery method on real-world office scenes. Each colored

contour shows one object hypothesis. Bottom: sepa-

rately displayed object hypotheses of the above images.

Fig. from [10].

Fig. 5: 3D object discovery: RGB-D data is analyzed in

two streams: a color stream processes the RGB image

and generates object hypotheses and a depth stream

processes the depth data of the sensor and produces a

3D map. Object hypotheses are then projected into the

3D map and data is incrementally improved over time

when new measurements arrive. Fig. from [9].

the camera and results in a saccade-fixate cycle that is

oriented towards novelty.

In [14], we have shown that our system is able to

find many objects, even in cluttered real-world scenes,

and that the detection precision is mostly very high

(more than 90% for 17 out of 25 objects). An example

can be seen in Figure 6. In this quite complex scene, 19

object candidates have been generated after 438 frames

(13 sec.). More objects could be found by observing the

scene longer.

3 Conclusion

We have presented our work on the field of object dis-

covery, and shown how an attention system can be used

for exploring a scene and finding unknown objects in it.

In the future, we plan to incorporate the Gestalt prin-

ciples into our framework of object discovery to select

and rank candidates according to their objectness.

2

Fig. 6: Discovered objects in one of our sequences. Left:

original scene. Right: 3D map with 19 discovered ob-

jects by the end of the sequence. The rectangles show

the automatically obtained 2D object candidates from

the color processing stream. Fig. from [9].
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