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Abstract— In this paper, we propose a novel approach for
generating generic object candidates for object discovery and
recognition in continuous monocular video. Such candidates
have recently become a popular alternative to exhaustive
window-based search as basis for classification. Contrary to
previous approaches, we address the candidate generation
problem at the level of entire video sequences instead of at
the single image level. We propose a processing pipeline that
starts from individual region candidates and tracks them over
time. This enables us to group candidates for similar objects and
to automatically filter out inconsistent regions. For generating
the per-frame candidates, we introduce a novel multi-scale
saliency approach that achieves a higher per-frame recall with
fewer candidates than current state-of-the-art methods. Taken
together, those two components result in a significant reduction
of the number of object candidates compared to frame level
methods, while keeping a consistently high recall.

I. INTRODUCTION

The field of visual object recognition is currently under-

going a major paradigm shift. There has been tremendous

progress both on an image classification [1] and on a category

detection level [2], [3]. Approaches are now available that

can reliably detect a small number of object categories in

complex scenes [2] or that can recognize the most prominent

objects in web images from a large number of classes

[1], [3]. Still, the recognition problem is far from solved.

Ironically enough, this is most visible when considering the

problem of recognizing everyday objects in a continuous

video stream that roughly emulates what a human or mobile

robot sees when moving through a common household scene

(see Fig. 1). In such a scenario, there are simply so many

possible objects that it is hard to come up with an exhaustive

set of categories for which specific detectors could be trained.

In addition, those objects are typically not the central motive

of a photograph (as in many recognition benchmarks), but

they may be just another (small) part of a cluttered scene.

As a result, the hitherto dominant paradigm of window-based

classification with exhaustive search is reaching its limits.

A recent trend is therefore to invert the recognition

pipeline and first generate a set of category independent

object proposals [4], [5], [6], [7], [8], [9] to support and guide

object search [9], [10]. However, most current approaches

still need to generate hundreds of proposal regions per image

in order to achieve a high recall. In contrast, saliency-based

approaches have been proposed with the goal of finding
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Fig. 1: Overview of our sequence-level object candidate

detection. (Left) Candidates from our frame-based, multi-

saliency object discovery. (Right) Tracked candidates. (Bot-

tom) Visualization of some sequence-level candidate objects.

and segmenting a single, prominent object in web images

[11], [12], [13], [14]. Those approaches typically generate

proposal regions that adhere better to object boundaries, but

their saliency formulation limits them to finding one or at

best very few objects in an image; they cannot be applied

for finding all objects in a cluttered scene.

In this paper, we want to think this trend further. As

object candidate generation methods become increasingly

accurate, we envision that large-scale recognition from video

will turn into a retrieval problem, where a low-level module

processes the incoming video stream and generates object

candidates that are sent as queries to a (possibly cloud-based)

recognition service. Concrete application scenarios could be

a wearable camera (e.g., a Google Glass like device) that

recognizes objects in the user’s field of view or a mobile

service robot that performs everyday tasks in people’s homes.

In such a setting, it is not necessary that every object is

recognized in every video frame. Rather, the number of

recognition queries will quickly become the main cost factor.

It is thus desired that this number be as low as possible, while

covering all relevant scene objects by at least one query.

We therefore propose to address the object candidate

generation problem on the level of entire video sequences.

Instead of generating a large set of proposal regions for each

frame, we are interested in reporting a small and consolidated

number of object candidates for an entire video. For this,

we take advantage of the temporal coherence of video input

in order to track and evolve region candidates over time.



We start from a set of region candidates for each frame

and build upon a fast segmentation based low-level tracker

[15] to propagate each of those regions independently over

the next frames. Tracking fulfills a dual purpose in this

procedure. First, it allows us to link independently extracted

candidates from different frames that correspond to the same

object. Second, it acts as a natural filter to improve proposal

quality. Single-frame candidates often extend beyond object

boundaries due to bad color contrast or suboptimal object

viewpoint. When a tracker is initialized to such a proposal

region, it will quickly diverge when the camera moves due to

parallax effects. We take advantage of this effect through a

series of consistency checks, terminating bad tracks already

at an early stage. We then rank the remaining region tracks

using shape, contrast, and tracking quality criteria and con-

dense them into a set of sequence-level object candidates. As

our experiments will show, this greatly reduces the number

of object candidates, while keeping a consistently high recall.

In detail, this paper makes the following contributions:

1) We propose a novel approach for sequence-level object

proposal generation from video. Starting from a set of

candidate regions extracted from each frame, our approach

tracks each candidate region independently over time and

selects the best representatives among the tracked set. 2) In

order to generate the per-frame object candidates, we present

a novel method based on multi-scale saliency that achieves

a higher per-frame recall with fewer candidates than current

state-of-the-art methods [4], [8]. 3) We demonstrate that the

combination of those two approaches results in a concise

scene summary consisting of a small number of high-

quality sequence-level object candidates that could be used

as queries to a recognition service. 4) We present a new

benchmark dataset for object discovery from video consisting

of very challenging video sequences of cluttered scenes with

detailed object annotations and use this dataset to compare

our approach to the state-of-the-art.

The paper is structured as follows. The next section

discusses related work. Sec. III then gives an overview of

our approach and highlights the main design goals. Sec. IV

presents our saliency-based object proposal generation ap-

proach, after which Sec. V describes the proposed pipeline

for tracking and consolidating object candidates over time.

Experimental results are reported in Sec. VI.

II. RELATED WORK

Object Discovery. The capability to discover and

segment unknown objects is of considerable interest

for many applications in mobile robotics [16], au-

tonomous vehicles [17] and general visual scene analysis

[18]. Many approaches in those areas either assume an active

camera [19], [20], active interaction with potential objects

[21], [22], or make use of 3D cues from an RGB-D sensor

[5], [23], [18], [24], [25]. Our focus is on extracting object

hypotheses from the video stream of a moving, monocular

camera (e.g., from a Google Glass-like setup), where we

cannot control the camera motion and we do not have ready

access to 3D information. We therefore concentrate here on

approaches that are only based on (monocular) vision.

Many approaches for object discovery in images proceed

by sampling a set of candidate regions and ranking them

according to their “objectness”, i.e., to the likelihood that

the region corresponds to a full object [4], [6], [7], [8], [9].

E.g., [4] randomly sample bounding boxes to define the can-

didate regions and rank them using a Naive Bayes framework

combining global saliency, color contrast, edge density, and

location cues. [6] generate multiple figure/ground segmenta-

tions by solving a constrained parametric min-cuts problem

from a grid of seed points and learn a ranking classifier

based on Gestalt cues. [7] create occlusion boundary based

seed regions [26] and group them using a learned affinity

measure between regions. They then use structured learning

for ranking. [9] follow a similar strategy, but use a variety

of complementary grouping criteria and color spaces starting

from superpixels [27] to sample more diverse proposals.

[8] also start from superpixels [27] and randomly group

connected regions by sampling partial spanning trees that

have high sums of edge weights. The main effort in those

approaches is spent on learning a good prediction model to

rate the “objectness” of a segment based on a set of pixel

or region based cues. In our work, we use the much simpler

idea that the content of a good segment should differ from

the content of the surrounding region. This is a property that

is captured by the center-surround contrast that is at the heart

of saliency approaches.

Object Saliency Criteria. Saliency and visual attention have

been intensely investigated for decades in human perception

as well as in computer vision and robotics. While early

computational models have been mainly designed to simulate

human eye movements [28], interest has recently increased

to use saliency for object candidate generation as a pre-

processing step for classification. However, the main focus

has so far been on web images [11], [12], [13], [29], which

often exhibit photographer bias. Many saliency methods have

taken advantage of the special properties of such images, e.g.,

that objects are often large and rarely intersect with the image

borders [12], [29]. For mobile cameras, such assumptions fail

and we need methods that work well without them.

The key element of saliency methods is usually a measure

of center-surround contrast. While this was traditionally

addressed with biologically inspired Difference-of-Gaussian

methods [28], several other methods were recently proposed

to compute this contrast. For example, [30], [31], [13]

use information theory to compute the difference between

center and surround distributions. Other methods compute

the center-surround contrast on superpixels [32], [33]. This

is especially useful when detecting salient objects, which

is a combination of saliency computation and segmentation.

Other approaches address this task by applying a segmen-

tation method to salient blobs, e.g., Graph Cuts [12]. We

follow a different approach here by computing segmentation

and saliency independently and using saliency to select the

segments that form an object candidate.







Region features

Object dimensions: width, height, aspect ratio.

Color contrast: χ2 distance of color histograms [4]

Region symmetry: Maximum overlap of both contour halves (over 10 rotations

of center axis).

Color symmetry: Minimal χ2 distance of color histograms (over 10 rotations)

Contour convexity: #pixels in region / #pixels in its convex hull.

#Non-empty bins in color histogram.

Tracklet features

Tracker confidence: c.f . Section V-A.

Bwd tracker confidence: when tracking the current region backwards into the

previous frame.

Bwd tracking overlap: Overlap between last contour and backwards-tracked

contour.

TABLE I: Frame level and track level features used for

ranking tracked regions.

Trajectory Initialization and Duplicate Merging. In each

frame, we use N object candidates to initialize new tracklets.

We filter out candidates that are thinner than 10 pixels

and initialize the tracker with a region 4 pixels larger than

the candidate. In case there already is a tracklet which

strongly overlaps with the new candidate, no new tracklet

is started. Moreover, since tracklets can evolve to the same

region, we merge tracklets that overlap significantly. In our

implementation we use an overlap threshold of intersection-

over-union (IOU) > 70%.

Level Set Segmentation and Tracking. For tracking region

candidates, we use the segmentation-based level set approach

from [15]. This probabilistic framework segments and tracks

regions using their color distribution. It has been shown to

be very fast and robust to motion blur, appearance changes,

and rapid camera movement. It is particularly suitable for

our task, since it does not only track the position, but also

the region of the target object. The tracked segmentation is

adapted in every frame to account for viewpoint changes

and non-rigid deformations. Our re-implementation is able

to track and re-segment one region at approximately 40 fps.

Starting from an initialization region, the object is first

segmented. Foreground and background probabilities Pf and

Pb are modeled with color histograms and the contour is

described with a level set (LS) embedding function Φ, which

is evolved to optimize the energy functional from [15].

The object’s location is modeled as the position p of

the object frame, a rectangular region around the contour,

described by the parameters of a warp that transforms the

image into the object frame. As in [15], we choose the

warp to include translation, scale, and rotation to cope

with camera motion. In each frame, the object is tracked

by performing a rigid registration of the contour, such that

the foreground and background model optimally match the

image content. We define the tracker confidence as follows:

conf (Tj) =
∑

i∈fg(Tj)

Pf (xi) +
∑

i∈bg(Tj)

Pb(xi), (1)

where Pf (xi) is proportional to the probability of pixel xi

belonging to the foreground (frequency of the pixel’s color in

the foreground color model), Pb analogous for background.

For more details please refer to [15].

Features. Ideally, we would like to use the saliency

scores from the object candidate generation stage also for

judging the quality of tracked regions. However, the abso-

lute saliency scores are incomparable between frames. We

therefore compute a larger set of features which are used in

both stages. These can be divided into region features and

tracklet features, as shown in Tab. I.

Consistency Checks. We maintain candidate quality in two

stages. We make the assumption that correct object regions

can be tracked, but not each region which can be tracked is an

object. In the first stage, we terminate degenerated tracklets

that are clearly not tracking a consistent region anymore. This

stage makes no decision about whether the tracked region is

an object or not; it simply finds failed tracks.

There are several criteria with which failed tracklets can

be identified. If the tracking algorithm cannot distinguish

foreground from background or has lost the target, the typical

behavior is extreme scaling or movement. Thus, we sort out

regions which become very small or big, which moved very

fast, or have an extremely low tracking score or convexity.

Moreover, we perform backward tracking (inspired by [37]),

i.e., we track the region one frame into the past to see if

returns the same region. If the overlap of the region in the

last frame and the backwards tracked region or the backward

tracking score is too low we also discontinue the track.

SVM Re-Ranking. In the second stage, we use an SVM

classifier to score and re-rank each tracked region and filter

out low-scoring tracklets. Since tracks might drift or fail at

some point, each frame in a track is scored independently.

We train a Gaussian RBF kernel SVM to classify regions into

objects and non-objects. Since the data we want to classify

can only be computed from tracklets, we create the training

feature vectors by running our system without any duplicate

removal and with less strict consistency checks on a separate

training set. We initialize new tracklets from the saliency

object candidates in every 5th frame and track all candidates

independently until the tracklets are terminated. This results

in a large number of tracklet frame characteristics with both

positive and negative examples. We then train the SVM using

cross-validation and a grid search for the SVM parameters.

When applying our approach to a new test sequence, we

use the SVM to score each tracked region. If the classifica-

tion is negative more than M times in a row, the tracklet is

discontinued. Whenever there is a new candidate that is a

duplicate for a tracked region, the tracklet’s counter is reset

in order to avoid periodic re-initialization of tracklets for the

same region.

B. Sequence-Level Candidate Selection

After performing tracking for the entire video sequence,

we merge tracklets that show the same object across small

tracking gaps using greedy clustering based on the tracklet

similarity from [38]. Finally, we rank the resulting tracks

by their SVM scores and report the top-ranking results. For

visualization, we select a representative view of each tracked

region as the frame with best SVM score. Altogether, this



results in a significant reduction in the number of object

candidates compared to the frame-level input, since each

track can now be represented by a single candidate. Fig. 4

shows some sequence-level candidates that can be obtained

by our approach.

VI. EVALUATION

We introduce a new benchmark dataset for the evaluation

of object discovery methods from video, called kitchen

object discovery dataset. It consists of five challenging

video sequences recorded in real-world indoor environments

containing a high degree of clutter. The sequences have on

average about 600 frames and contain up to 80 objects. In

contrast to many popular benchmarks, our dataset contains

real-world images without photographer bias and with a large

amount of objects and clutter. In each frame, there are on

average 23 objects visible, but some views contain up to 43

objects. Object ground truth in terms of pixel-precise binary

maps was annotated manually on every 30th frame, keeping

the identity of objects over frames. This makes it possible

to evaluate on a sequence level. The videos, annotations and

the saliency based candidates are available on our website3.

In the following, we first evaluate our new saliency-based

object candidates, and second the sequence-level candidates

obtained by tracking over frames.

Saliency-Based Object Candidates. We first evaluate the

quality of our saliency-based candidates by computing the

precision (percentage of candidates that corresponds to a

ground truth object) and recall (percentage of discovered

ground truth objects) values depending on the number of

candidates per frame. Our saliency method is able to operate

in two modes: the single saliency mode, and the split-octave

approach that generates candidates on each level of the

saliency pyramid. We compare our methods with four recent

approaches that have shown good performance for object

candidate detection: The objectness measure of Alexe et

al. [4] (OM), the Randomized Prim Object Candidates of

Manén et al. [8] (RP), the contour detector with hierarchical

image segmentation of Arbelaez et al. [39] (gPb), and our

previous method [35] that uses adaptive thresholding instead

of region growing to extract candidates and computes a

single saliency map (AT). For all methods, we rank the

candidates according to their quality ([39] do not provide a

score for their hierarchical regions. We extract regions with

a watershed algorithm and use the difference between the

maximum and the minimum contour score as region score).

Since [4] and [8] deliver bounding boxes instead of pixel-

precise regions, we use the smallest surrounding rectangle

around the regions also for [39] and our own method to

make the methods comparable. Candidates which have at

least 50% overlap (intersection-over-union) with the ground

truth are counted as correct.

Fig. 5 (left) shows the average precision and recall over

the number of candidates per frame. From our two methods,

the single-scale version achieves consistently the highest

3http://www.vision.rwth-aachen.de/projects/kod/

precision, while the split octave variant achieves the same

precision as AT and better precision than the other three

approaches. For the recall, the quality depends on the number

of candidates that is considered: for few candidates per frame

(up to 80), the single saliency approach (orange) achieves the

highest values. For more candidates, the split-octave version

(red) that generates more candidates achieves the highest

recall. Especially difficult objects that are missed with the

other methods are detected with this approach: for 200

candidates/frame, we achieve a recall of 52%, whereas all

other methods remain below 40%. Here, we favor the split-

octave version with more candidates and a higher recall since

our sequences contain up to 43 objects/frame and the tracking

of candidates sorts out bad candidates later on. So, we chose

the split-octave method for the remaining evaluations. We

also evaluate the frame-level candidates generated by the

tracker in comparison to the saliency-based object candidates

with which the tracker was initialized (Fig. 5 (right)). Our

tracker is able to achieve a higher recall than the saliency-

based candidates, which shows that the tracker is able to

track good candidates into later frames, where they are not

among the saliency-based candidates.

In our video scenario, it is not only of interest how many

objects are detected on a per-frame level, but even more how

many real-world objects are found over the whole sequence.

Some objects might not be found in one frame, but in another

one. Therefore, we additionally measure the global recall,

i.e., the percentage of discovered individual objects from all

objects that are visible over the entire sequence. The results

are summarized in Fig. 6 (bottom) in terms of the global

recall obtained at the end of the sequence. The results show

that our saliency-based object candidates (2nd row) is able

to find on average 85% of the objects in the scene and thus

outperforms all the baseline methods clearly. The tracking

and feature evaluation (1st row) further improve the result

to achieve 91% on average. Additionally, we plot how the

global recall evolves over time (cf. Fig. 6, top).

Sequence Level Results. Finally, we evaluate the recall over

the absolute number of candidates. With this, we show how

many individual objects were found in the whole sequence,

regardless of which frame they were found in. (These plots

should not be confused with the global recall over time,

where the accumulated recall over the course of the video is

shown.) For the saliency-based object candidates, this means

we consider all candidates for every annotated frame. For

the tracking-based candidates, one candidate consists of one

tracklet. A tracklet is considered correct if it has more than

50% intersection over union overlap with a ground truth

object in at least one annotated frame. Fig. 7 shows the

percentage of individual objects found per number of can-

didates for the five different sequences. These results show

that with the tracking stage we can significantly reduce the

number of candidates while still achieving higher precision

and recall than with the saliency-based candidates. In all of

the sequences, we only need between 500 and 750 track-

level candidates per sequence to reach above 80% recall –



Fig. 4: Correct sequence level candidates (tracking initialized with 200 saliency-based object candidates).

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

#Candidates/frame

P
re

ci
si

on
 (

pe
rc

en
ta

ge
 o

f v
al

id
 c

an
di

da
te

s)

 

 

Our Saliency proposals (split octaves) (21.3889)
Our Saliency proposals (single saliencies) (31.9443)
AT (26.7952)
RP (14.4987)
OM (5.7288)
gPb (3.9845)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

#Candidates/frame

R
ec

al
l (

pe
rc

en
ta

ge
 o

f d
is

co
ve

re
d 

ob
je

ct
s)

 

 

Our Saliency proposals (split octaves) (66.1422)
Our Saliency proposals (single saliencies) (61.3313)
AT (50.6028)
RP (47.4725)
OM (23.7367)
gPb (13.0458)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on
 (

P
er

ce
nt

ag
e 

of
 v

al
id

 c
an

di
da

te
s)

#Candidates/frame

 

 

Tracking−based object candidates (200)
Saliency−based object candidates (200)
Tracking−based object candidates (100)
Saliency−based object candidates (100)
Tracking−based object candidates (50)
Saliency−based object candidates (50)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

R
ec

al
l (

P
er

ce
nt

ag
e 

of
 d

is
co

ve
re

d 
ob

je
ct

s)

#Candidates per frame

Fig. 5: Precision and recall over number of candidates per frame averaged over all sequences. (Left) Our two new methods

(orange: single saliency map, red: split octaves) compared to the methods AT [35], OM [4], RP [8], and gPb [39]. Numbers

in the legend denote AUC values. Since here we are mainly interested in high recall, we use the split octave version (red) in

the following experiments. (Right) For 50/100/200 object candidates. Green: Frame-level tracking-based object candidates.
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Fig. 6: (Top) Global recall over time for kitchen A, i.e. how many of the individual objects in the scene were found over

the course of the video, for 50/100/200 object candidates per frame. (Left) Our saliency-based candidates in comparison

to baseline methods. (Middle) Saliency-based candidates in comparison to frame-level tracking-based object candidates.

(Bottom) Table showing the global recall for 200 object candidates per frame. Best result in bold and second best in italic.

compared to the 200 saliency-based object candidates per

frame for each frame of the sequence that we start from, this

is a significant reduction! Fig. 4 shows the correct sequence

level candidates in some example frames.

VII. CONCLUSION

We have presented a new method for object candidate

generation on a sequence-level. It is especially well suited for

videos from mobile devices in which it is important to limit

the cost factor of recognition queries. Our method consists of

two steps: first, a new frame-based object candidate detector

based on multi-scale saliency determines candidates with a

higher per-frame recall than current state-of-the-art methods.

We show that this method is able to detect most of the

objects in a scene even in very complex scenarios with

plenty of objects and a high degree of clutter. Second, the

candidates are tracked over time in order to group candidates

that belong to the same real-world object and filter out

inconsistent regions. Thus, our approach delivers a set of

region trajectories that combine different views of an object.

These two components result in a significant reduction of

candidates compared to frame-based methods, while keeping

a consistently high recall. We show that we are able to detect

on average 91% of the objects with this method. Finally, we

select a representative view for each track that can be used

as a query for recognition in future work.
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Fig. 7: Sequence level results: we show the global recall (percentage of individual objects found) over the absolute number

of object candidates per sequence for 50/100/200 considered object candidates per frame. Green: Sequence level object

candidates. Red: Saliency-based object candidates.
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