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Abstract. Saliency is an attribute that is not included in an object it-
self, but arises from complex relations to the scene. Common belief in
neuroscience is that objects are eye-catching if they exhibit an anomaly
in some basic feature of human perception. This enables detection of
object-like structures without prior knowledge. In this paper, we intro-
duce an approach that models these object-to-scene relations based on
probability theory. We rely on the conventional structure of cognitive
visual attention systems, measuring saliency by local center to surround
differences on several basic feature cues and multiple scales, but innovate
how to model appearance and to quantify differences. Therefore, we pro-
pose an efficient procedure to compute ML-estimates for (multivariate)
normal distributions of local feature statistics. Reducing feature statis-
tics to Gaussians facilitates a closed-form solution for the Ws-distance
(Wasserstein metric based on the Euclidean norm) between a center and
a surround distribution. On a widely used benchmark for salient object
detection, our approach, named CoDi-Saliency (for Continuous Distri-
butions), outperformed nine state-of-the-art saliency detectors in terms
of precision and recall.

1 Introduction

The detection of salient objects that visually stand out from their surround-
ing and automatically attract attention has been intensely investigated during
the last decade. It is of interest not only from a psychological perspective, but
also from a computational one. Finding salient regions in images supports ap-
plications such as general object detection and segmentation in web images [1,
15], or steering a robots eyes and head [18,19]. The proposed algorithm not
only convincingly fulfills its main purpose to quantify saliency, but does this at
low computational costs. We integrated efficient and innovative solutions for the
most critical parts of saliency systems based on feature statistics: local estima-
tion of distributions and calculation of their contrast. Therefore, CoDi-Saliency
is especially suited for such large scale offline application or online usage on
restricted mobile platforms.

Many computational approaches have been presented during the last two
decades that compute visual saliency, ranging from the well-known Itti-Koch
model [11] to approaches that learn optimal feature combinations with machine
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learning techniques [15]. A survey on computational attention systems that de-
termine saliency can be found in [5].

Since saliency is intrinsically based on the difference of a region with respect
to its surround, it is clear that the computation of a feature (e.g. colors, gradients,
entropy, etc.) is per se not sufficient to determine saliency. An example is a
single bird that is salient in front of a blue sky but not among a swarm of
other birds. Instead, computing the difference of some feature qualities in a
region and in its surround is essential [3,14,12]. Most approaches determine
the center-surround contrast by DoG-filters or approximations of these [11,4].
Recently, some groups have represented the center and surround area by feature
distributions to capture more information about the area [3,6,14,12]. These
approaches use discrete distributions in the form of histograms to represent the
occurrences of features in an image patch. In contrast to this, we represent
feature statistics by multivariate normal distributions that are compared with
the Wasserstein distance based on the Euclidean norm. This metric is a well-
known method to compare probability distributions and, in contrast to methods
such as KLD, considers also the distance of feature entries. This is especially
useful for computing saliency since there the similarity of feature values is an
essential aspect.

This mathematically well-founded way to compute the saliency of a feature
dimension is integrated into a complete framework that is based on findings
from neuroscience and psychophysics. It computes several feature cues on mul-
tiple scales and finally fuses their conspicuities into a single saliency map. In
contrast to most other saliency computation methods, our approach outputs
fine-grained saliency maps in which the complete salient objects stand out. We
show that our approach outperforms nine state-of-the-art saliency detectors in
a segmentation task on the MSRA salient object database [15]. In addition, we
show the biological validity of our approach on psychophysical test patterns.

2 The Saliency Model

The structure of our saliency system complies with the architecture of approved
psychological visual attention models like those of Treisman and Gelade [20]
or Wolfe [22]. Basic features of the human attention system [23] are processed
independently from each other. Anomalous appearances of a feature with respect
to surroundings are emphasized, resulting in one map of perceptional conspicuity
per basic feature. Then, individual conspicuities are fused into a conjoint saliency
map.

In CoDi, basic features are investigated in a multi-scale approach, utilizing a
difference-of-Gaussian pyramid representation of the input image constructed as
in [16]. We implemented the basic features of intensity and color, nevertheless it
is possible to adopt the computational methods presented in this paper to further
basic features as well. We express local feature occurrences by means of normal
distributions. For each point in the image (scale-)space, two normal distributions
are estimated: one characterizing the feature appearance closely centered around
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Fig. 1. Schematic intra-system view of the CoDi-Saliency computation.

the point, the other incorporating appearance of a wider surround. Then, the W5-
distance between those distributions is used as conspicuity measure determining
the local center-surround contrasts. Figure 1 shows a flowchart of our system.

2.1 Basic Feature Cues

In a first step, the input image is transformed from RGB into a simple, but more
psychologically motivated color space following the opponent-process theory [10].
From every pixel, the intensity and color features are computed as

R+G+B c R—-G
e = () o= (2) = (5U0e) - o
(zy) 2 /()

From this image in opponent color space, a difference-of-Gaussian pyramid is
computed. That way, we achieve a scale-separated representation I(z,y;t) of
one-dimensional intensity feature and C(z, y;t) of two-dimensional color feature
consisting of a red-green and blue-yellow contrast dimension. In theory, it would
be best to use a perceptually normalized color space like CIELAB!, but this re-
quires additional knowledge about the illuminant, which is not given but varies
heavily in image collections from unknown sources. Constant use of Dgs stan-
dard illuminant factors for midday sunlight would probably introduce similar
inaccuracies as using the proposed, efficiently computable space.

2.2 Local Feature Statistics

In our framework, local feature statistics are summarized by one-dimensional
normal distributions for intensity, respectively two-dimensional distributions for
color. To facilitate an efficient maximum likelihood estimation of the normal
distribution parameters, supplementing layers are added to the feature maps,
resulting in

1
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! http://www.hunterlab.com/appnotes/an07_96a.pdf
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Local occurrences of a feature are treated as weighted samples for the estima-
tion process. The weights are determined by a Gaussian integration window
(cf. Fig. 2), implemented by discrete convolution of the feature maps

Li(z,y;t) = (g (0?) x 11 (1)) (z,y)
CJr(x?y;t) = (g (02) * C+ (t)) (.’E, y) . (3)

Sophisticated optimizations and approximations are essential to be applied in
this step to achieve competitive performance: For Gaussians of a small standard
deviation, separability of the Gaussian kernel in z- and y-dimension is exploited,
resulting in run-time complexity O(on). For those of bigger o, based on the cen-
tral limit theorem, a Gaussian filter is approximated by repeated smoothing with
b box-filters, choosing their width and height so that the result is a b*"-order ap-
proximation of a Gaussian of slightly smaller oy, inspired by [13]. The standard

deviation of a box filter of extent w equals \/(wz—l)/u. Thus, applying b itera-

tions, a filter of size Wigeal = 1/ (1202)/b + 1 would provide the best approximation

of this Gaussian. However, since w € N, we choose the next smaller and larger
odd filter sizes

wy = 2 [0.5 (120%)/p 4 1] -1 and wy=w; +2 (4)

instead. The closest approximation we can get showing a standard deviation
lower than o, is achieved by
1202 — bw? — 4bwy — 3b
my =
7411}1 —4

-‘ and mo=b—my (5)

repeated rounds of box-filtering with extents w; and ws, respectively. This pro-
cess results in an overall standard deviation of

Obox = \/(m1w§+m2w§—b)/12. (6)

The small defect of oo = /02 — agox is then smoothed as described before,
resulting in overall run-time complexity of O(oan + bn). Furthermore, one can
apply stepwise smoothing when computing center (o) and surround (®) statis-
tics, since w.l.o.g. for o5 > o,

Lio=g(0f)*L =g (0 —02) x5 (02) * 1t =g (0f — o) x4 (7)

and the same holds true for color.

After applying this local weighting of feature samples by means of smoothing
the annotated feature maps, one can easily compute a center and a surround ML-
estimate of normal distribution parameters with help of the images I+7{.7®} and
C4 fe,0) utilizing the relations

_ ) —2 - ——
~ - A 5 T2 A C1 > 1 — ] C1Co — C1C2
H1 =1, 01 = i2—1 y HC = <02> ; and Yo = ( ! 3 2 (8)

C1Cp — 5162 C% — 52
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Fig. 2. Center and surround integration windows of feature samples are Gaussians of
different standard deviations. Especially the large surround integration window requires
fast approximation algorithms.

for every pixel and scale. Note that this computation scheme could also be ap-
plied in a similar way for multivariate normal distributions of more than two
dimensions.

2.3 Center-Surround Difference of Feature Statistics

In the last section, we explained how to efficiently compute (multivariate) nor-
mal distributions of local, basic feature occurrences, so we can assume a center
P, and a surround distribution P, to be given for every pixel and scale. The next
step is to determine how much the center appearance sticks out of the surround,
in other words how different those two distributions are. Here, a plausible dis-
tance measure should not only score the similarity of probabilities between same
feature manifestations, but also take into account the visual difference between
manifestations. A white region within a black image is clearly more conspicuous
than a gray one. The Wa-distance on the Euclidean norm, which is defined as

1
2

Wo(P,, Po) = inf / T — dv(z, 9
(P = | _int [ e yladate) ©

with I'(P,, Ps) denoting the set of all couplings of P, and Py, meets this re-
quirements, if the underlying feature space is defined reasonably. Most often it
is imagined as a transport of mass problem: how much (probability) mass needs
to be moved how far (wrt. Euclidean distance) to transform one probability den-
sity function into the other. For example, in computer vision the W;-distance on
discrete random variables is also referred to as earth mover’s distance (EMD).

It would be intractable to evaluate the integral in equation 9 in case of
arbitrary distributions. Thankfully, it can be solved algebraically for multivariate
normal distributions, as established by Givens and Shortt [7], resulting in the
closed form expression

1
2

Wa(Pa, Po) = IIM-—u@||§+tr(2-)+tr(2@)—2tr( 2.22@2.2)} . (0)
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Fig. 3. Saliency maps of our system on psychophysical test patterns provided by Klein
and Frintrop [12].

Applying equations 8 and 10 to our basic features L,{.,@} (z,y;t) and C_,_’{.,@} (z,y;t)
yields pyramids of intensity Z(z,y;t) as well as color C(x,y;t) conspicuities.

2.4 Fusion of Scales and Feature Modalities

For every feature, the arithmetic mean over normalized scales is calculated as
1 s 1 s
Iz,y) = - & ViZ(z,y;t) and C(z,y) = 3.8 ViC(z,y;t)  (11)

with & denoting a rescale and add-per-pixel operator. Finally, the saliency map
is given by the arithmetic mean across feature modalities

(Z(z,y) + C(z,y)) - (12)

DN =

S(xvy) =

3 Evaluation

We compared our saliency model, CoDi, with nine state-of-the-art saliency mod-
els: the iNVT by Itti et al. [11], the Saliency Toolbox (ST) [21], two systems of
Hou and Zhang (HZ07,HZ08) [8, 9], the AIM model of Bruce and Tsotsos [3], the
system of Ma and Zhang (MZ) [17], two versions of Achanta et al. (AC09,AC10)
[1,2], and the BITS system of Klein and Frintrop [12].

The evaluation was done first on the psychophysical test patterns used in [12]
(Sec. 3.1) and second on the MSRA database of salient objects [1] (Sec. 3.2).

3.1 Psychophysical Soundness

The purpose of a saliency model usually is to mimic human behavior, thus it is
crucial to obey the findings of neuroscience about the human attention mech-
anism. There, attention was studied testing the human ability to immediately
detect outliers in so called “pop-out” images. A conform computational saliency
model should likewise output the maximum saliency at the positions of such
pop-outs.



Salient Pattern Detection using W2 on Multivariate Normal Distributions 7

‘:§> -
l...\" .Iag

Fig. 4. Comparison of saliency maps on natural images from the MSRA dataset [15].
First row shows the original images, second row the corresponding ground truth. Next,
results of the following saliency methods are listed from top to bottom: our approach
CoDi, BITS [12], AC10 [2], ST [21], AIM [3], iNVT [11], HZ08 [9].

Klein and Frintrop [12] introduced suitable test patterns and compared sev-
eral approaches. Only the BITS system successfully passed all tests, the others
([11,21,1,2,9, 3]) each failed in at least two of the patterns. The CoDi-Saliency
detector passes every pattern but the orientation (cf. Fig. 3), since this basic fea-
ture is not integrated. However, since the proposed framework is very generic, it
should be possible to add further feature cues to our system.

3.2 Salient Object Detection

A quantitative performance analysis of our algorithm was done on the subset
of 1000 images out of the MSRA salient object database [15] that was first
used in [1]. The images contain objects that have been consistently marked as
salient by several subjects. Pixel-precise binary maps are available that contain
the ground truth shapes of the objects. Figure 4 shows exemplary results of the
saliency maps of different saliency detectors with available source code.
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Fig. 5. Precision-recall curves for the salient object dataset of 1000 images from [1].
We compared our system CoDi against nine other saliency detectors.

The quantitative experiments were conducted as in [1]: all saliency maps
are binarized by thresholding the intensity values between [0,255]. Thereby,
one achieves 256 possible segmentations for the dataset. Then, each is matched
against the ground truth binary masks to obtain precision and recall. Finally,
results are plotted together in the graph depicted in Figure 5. It can be seen
that our approach outperforms the others. The second best, BITS, is also based
on local distributions of basic features, but seems to be inferior because of two
major points: first, the Kullback-Leibler divergence as a distance between distri-
butions does not consider distances in the feature domain like the Wasserstein
metric. Second, feature space discretization in histograms can be problematic,
especially for 2D features such as color. Instead, our algorithm works on contin-
uous distributions. The precision value for threshold 255 using our approach is
~ 0.91 (cf. left boundary of Fig. 5), stating that in more than 9 out of 10 cases
the most salient point was located on the object of interest. Thus, it should serve
as a good starting point for a subsequent object segmentation algorithm.

With parameters chosen as used for this evaluation, the computation time
per image executed by an Intel Core i7-2600 CPU is 82ms on average. It mainly
depends on the number and resolution of evaluated scales. If necessary, it can be
tuned to even less computation time without disproportionally downgrading the
results. Besides that, the framework is well suited for parallelization and should
benefit much if one makes use of a modern GPU.
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4 Conclusion

We introduced CoDi-Saliency, a new method to compute visual saliency in a
probabilistic fashion. The overall framework follows the conventional structure
of cognitive visual attention systems, computing the conspicuity for each basic
feature cue individually before fusing them to a common saliency map. Local
normal distributions of basic features were aggregated and estimated employing
an efficient approximation algorithm for Gaussian image convolution on intelli-
gently supplemented feature maps. This enabled the computation of Ws-distance
in constant time per pixel.

The presented approach outperformed nine other saliency detection meth-
ods on the widely used Achanta subset of the MSRA salient object database.
Although systems based on feature distributions and local contrasts are usually
slower than those directly using basic features and global contrasts, our method
is sufficiently fast to be applied on mobile systems or for large scale datasets.

In future work, we will investigate how the feature distributions computed
for saliency can be reused for graph-based segmentation of the object located
around the most salient point. Furthermore, we want to enhance the framework
with further feature cues such as orientation or symmetry. Additionally, it would
be interesting to adopt the system also for other domains, e.g. the prediction of
human eye movements.
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