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Abstract. This paper introduces a new way to apply boosting to a joint
feature pool from different sensors, namely 3D range data and color vi-
sion. The combination of sensors strengthens the systems universality,
since an object category could be partially consistent in shape, texture
or both. Merging of different sensor data is performed by computing a
spatial correlation on 2D layers. An AdaBoost classifier is learned by
boosting features competitively in parallel from every sensor layer. Ad-
ditionally, the system uses new corner-like features instead of rotated
Haar-like features, in order to improve real-time classification capabili-
ties. Object type dependent color information is integrated by applying a
distance metric to hue values. The system was implemented on a mobile
robot and trained to recognize four different object categories: people,
cars, bicycle and power sockets. Experiments were conducted to compare
system performances between different merged and single sensor based
classifiers. We found that for all object categories the classification per-
formance is considerably improved by the joint feature pool.

1 Introduction

Object classification in sensor data is an important task for many applications.
Especially autonomous mobile robots that have to act in a complex world rely
on knowledge about objects in their environment. Imagine for example an auto-
matically controlled car driving in city traffic or a universal housekeeping robot
cleaning up your room. Various machine learning and pattern recognition meth-
ods have been studied to meet these demands. One area of active research in the
field of object classification are boosting techniques [1-7]. An exhaustive survey
can be found in [8].

While most approaches for object classification use camera data [9,5,6,10-
13], several groups also have investigated the use of other sensor data such as
laser range finders [14, 15] or infrared cameras [16]. A reason for choosing differ-
ent sensors is that each sensor has different strengths and drawbacks and some
sensors capture information that others are not able to provide. Laser scanners
for example provide accurate depth information and infrared cameras enable the
detection of people or animals at night.



In this paper, we introduce an approach to automatically exploit the advan-
tages of different sensors. We provide a feature pool that consists of a collection
of feature candidates from different sensor layers. In a training phase, the boost-
ing algorithm Gentle AdaBoost automatically selects the most distinctive feature
at a time to obtain an optimal classification performance. Thus, it depends on
the object type which features from which sensor layers are selected. To further
improve the results, we introduce new corner-like features and a new measure to
extract color information based on hue-distance.

We show the classification performance in various experiments for four dif-
ferent object classes: cars, people, bicycles and power sockets. Depending on the
object type, different layers are chosen with different priorities. In all cases, the
classification profited considerably from the fusion of data from different sensors;
the classification performance was considerably higher than the classification rate
of each sensor on its own.

The combination of data from different sensors has also been investigated by
other groups. A straightforward solution is to train a classifier on the data from
each sensor independently and in a second step combine the results. For example,
Zivkovic and Krose integrated a leg detector trained on 2D laser range data
and a part-based person detector trained on omnidirectional camera images this
way [17]. Frintrop et al. trained classifiers to detect chairs and robots on the range
and the remission data of a laser scanner [18]. Niichter et al. applied the same
approach to people detection [19]. Here, the authors suggest two ways to join
the two cascades: serial or interleaved. Both versions represent a logical “and”
operator. In our approach instead, the boosting algorithm decides automatically
which features to choose for an object type. It is thus a general approach to
optimizing the sensor fusion for a certain object category. The result is a single,
more concise classification cascade that achieves a faster classification with a
better classification performance.

This paper comprehends results of the master’s thesis® of Klein [20] and some
further enhancements.

2 Adaptive Boosting with Haar-like Features

The Adaptive Boosting algorithm, short AdaBoost, forms a strong classifier as a
weighted sum of as many weak-classifiers as are needed to reach a given precision
on the training data [2]. Therefore it iteratively picks the weak-classifier out of a
huge amount of possible candidate classifiers that performs best on a weighted
training set. Subsequently it reweights the training set according to the outcome
of the chosen weak-classifier: a failure raises the weight of the example, a correct
match lowers its weight.

There are different versions of AdaBoost that differ on how weights are up-
dated and how classifier performance is measured. We use Gentle AdaBoost with
squared error metric to decide which candidate classifier is considered next, be-
cause it has been shown to outperform standard Discrete AdaBoost in [4], and
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we confirmed this result during our own experiments. In addition we arrange
strong classifiers of increasing complexity in a cascade structure as proposed by
Viola and Jones [5, 6] to speed up the system.

A common approach in computer vision to build weak classifiers is to use
Haar-like features [9], which are inspired by Haar wavelet functions. In general,
they consist of a positive and a negative area, whose values add to a common sum
(cf. Fig. 1). For efficient computations, areas have upright rectangular borders,
because it allows the use of integral images to compute this sum in a constant
time. An integral image, also known as summed area table, is an intermediate
step between per pixel values and sums of values in rectangular regions [5]. For
every pixel position, the sum of all pixel values left and above this position is
stored. This integral image can be computed in a single pass over the image
by building the integral image in normal reading direction and just adding the
current pixel value to sums computed before. With this integral image, the sum
of any rectangular region can be computed with the four values at its corners.

Regions are combined to form simple templates that match to edge, line
or center-surround features. To further enlarge the over-complete candidate
pool and approximate diagonal features, we introduce new, corner-like features
(cf. Fig. 1, g-j). In contrast to the diagonal features in [7] that are computed
on rotated integral images, our features have the advantage that they can be
computed as fast as the basic haar-like features of [9] with the standard upright
integral image.

A feature is defined by its type, size and position with respect to a subwin-
dow in an image. Variations in size do not only include scaling but also aspect
ratio. This combinatorial multiplicity results in an over-complete set of some
hundred thousands up to millions of different features. Every feature becomes a
single weak-classifier by computing an optimal CART (classification and regres-
sion tree) for the training set. Because our training sets are rather small and
generalization capability decreases by depth of the CARTS, we only use stubs.
The coordinate system of the subwindow is also normalized to fit into the unit
square (Fig. 4). This enables to handle differently stretched object instances in
an elegant way.
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3 A Joint Feature Pool from Different Sensors

3.1 Sensor Fusion

Our robot is equipped with a color vision camera and a rotating SICK LMS 291
laser scanner. The beams of the laser scanner uniformly meter the encircled
sphere. By clocking their time of flight a laser scanner supplies accurate dis-
tance information, and by quantifying the amount of laser-emitted light that
is reflected or scattered back by the surfaces in the scene it provides remission
information. Thus our robot is able to perceive an RGB image and a 3D point
cloud of its surrounding area. After a conversion from spherical into Cartesian
coordinates the visible part of the point cloud is projected onto the image plane
of the camera (cf. Fig. 2). Note that the centers of reception of the sensors should
be as close together as possible to avoid wrong assignments in case that an ob-
ject is exclusively seen by one of the sensors. Although we use a lower resolution
for the image layer of the laser, the layer is not densely-packed and we need
to interpolate the missing values. In our case, we have to additionally correct
the barrel distortion of the camera, before we obtain correctly correlated sensor
layers.

The coordinate system of a sensor layer [ is normalized by its width w; and
height h; to fit into the unit square,

@yl = (ij) |

Thus, the position of an object is specified by the same coordinates in every
layer, even if they vary in physical resolution (Fig. 3).

Altogether, we use seven sensor layers: red, green, blue, intensity and hue-
distance from the camera, and distance as well as remission values from the
laser (cf. Fig. 8). The hue channel from HSV color space encodes pure color
information without saturation and brightness as an angle in a color wheel.
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Fig. 5. Distribution of hue occurrence for object classes (10 degree smoothed average).

However, the computation of weak-classifiers from Haar-like features needs a
totally ordered set which is naturaly given in case of continuous intensity values,
but not in case of angles. Therefore we do not use angles directly. Instead, we
use the distance between the hue angles and one specifically chosen hue angle.
This particular value depends on the object type and is calculated from the
positive training examples: we choose the most frequent hue by building a coarse
additive histogram (Fig. 5). If the color distribution of an object type has only
a few strong peaks, this choice tends to be more reliable than the use of a
single predetermined hue value, because that constant reference hue could be
located between two strong peaks and thus would not allow to discriminate
between those peaks in the hue distance norm. Otherwise, if the color is uniformly
distributed for an object type, there is no difference.

3.2 Integration of Different Sensors

A straightforward approach to exploit the information of different sensors is to
train one classifier for each sensor and somehow join the outcome. For instance
Frintrop et al. linked range and remission based classifiers by a logical “and” op-
erator [18]. Instead of this, our approach is to learn only one classifier per object
type that uses information of all sensors simultaneously (cf. Fig. 6). Because of
our mapping to unit square coordinates, every feature is well defined on every
sensor layer. Now it is a rather natural extension to enlarge the pool of candidate
classifiers to all layers. It is up to AdaBoost to decide which weak-classifier from
which sensor is best.

Thus, it only depends on the characteristics of the object type how much a
certain sensor layer contributes to the final decision. The most distinctive fea-
tures from every sensor are estimated and combined to supplement each other.
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Fig. 6. Overview to our approach: utilizing AdaBoost to combine multiple sensors in
a single strong classifier.

Furthermore the computational effort for classification is much lower. On av-
erage, one can expect that a multiple sensor classifier cascade is much smaller
than each single sensor cascade used in the decoupled approaches, because they
achieve a lower average classification error of selected weak-classifiers. A heuris-
tic for combining the cascades of different sensors is no longer needed in this
approach, therefore, it is also more general.

4 Experiments

We conducted experiments to discover if and how much a classifier benefits
from our training on merged sensor data and from the new corner-like features.
For this purpose, we built a training and a test set* for four different object
categories: people, cars, bicycles and power sockets. Table 1 shows their config-
uration. An example is a labeled rectangular region inside of an image. During
learning negative examples are bootstrapped from those parts of training images
that do not contain positive examples. We also add images that do not contain
positive examples but only clutter to enlarge the choice for negative examples.
First, we trained one classifier with all Haar-like features (cf. Fig. 1) on all
sensor layers (cf. Fig. 3) for each object type. Then we decomposed those cascades
into weak-classifiers and summed up their weights by sensor layer to discover how
much a certain layer contributes to the final decision of the cascades. Fig. 7 shows
the results of these experiments. It can clearly be seen that the laser distance

4 Note that because of our special sensor fusion we cannot use common benchmark
tests. More example pictures from training and test sets can be found in [20].



Table 1. Components of training and test sets (number of positive examples / images).

car people bike  |power socket
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Fig. 7. Distribution of weak-classifier weights by sensor layers.

layer is favored over all others. Power sockets themselves are complanate at a
wall and hardly visible in distance data, but the distance data is still useful
for rejecting non-flat negative examples. In this case sensor fusion pays off most,
weak-classifiers are shared equally between the sensor layers of laser and camera.
Categories with a more protruding shape, namely car, people and bike, benefit
still more from the distance layer. It can also be seen that hue-distance as a
unified layer for color features is a worthwhile extension. While the utility of
red, green and blue layers on their own seem to have strong correlation with
each other and with intensity, hue-distance adds some unique information.

Fig. 8. (a.) Person classified with a cascade trained with features from intensity (b.),
hue-distance (c.), distance (d.) and remission (e.) data.

In further experiments, we restrict the pool of candidate features to certain
types or sensor layers to compare performances. Some of the sensor layers with



Table 2. Results of classifiers trained on  Table 3. Results of classifiers trained on
all sensor layers. Length is number of all sensor layers without the corner-like

combined weak-classifiers. features.

car|people|bike|p.sock. car |people|bike|p.sock.
length 47 77 199 | 142 length 62 | 111 |162| 142
recall 1] 0.98 |0.97| 0.85 recall 0.94| 0.98 |0.94| 0.89
precision | 1 1 ]0.65| 0.88 precision [0.94| 0.98 |0.69| 0.63
F-measure| 1 | 0.99 [0.78| 0.87 F-measure|0.94| 0.98 [0.79| 0.73

a classified person are shown in Fig. 8. We evaluate the performance with recall,
precision, and the F-measure. Recall is a measure of completeness, whereas pre-
cision is a measure of exactness. Because they are interdependent opposite goals,
the F-measure combines them into a single value by calculating the harmonic
mean.

First, we evaluate the gain of corner-like features by training classifiers with
and without them. We found that classifiers with all features are composed of
31% corner-like features on average. The classification results on our test sets are
shown in Tables 2 and 3. As can be seen, the performance of cascades decreases
and/or their length increases if corner-like features are omitted. Since we are in-
terested in a real-time capable application for our mobile robot, shorter cascades
are an important advantage. Thus, all subsequent experiments are carried out
including our corner-like features.

The next experiment compares the exclusive ability of laser and camera for
object recognition. For each object type one cascade was trained with the dis-
tance and remission layers from the laser sensor and one with the intensity and
hue-distance layers from vision. Tables 4 and 5 show the results. Two obser-
vations can be made. First, performances of classifiers from single sensors are
worse than those from all sensors and cascades grow considerably in length (cf.
Tab. 2). For example the sizes of car classifiers increased by 236% (laser only) re-
spectively 853% (camera only) while the F-measures slightly decreased. Second,
performance of a sensor depends on object categories. It shows that the power
socket category performs better with data from the camera than with data from
the laser while car, people and bike categories show better results and shorter
cascades with laser data.

After this we evaluate our sensor fusion approach against the approach to
first learn separated classifiers and then fuse the results (cf. Fig. 6). We learned
cascades with merged hue-distance, intensity, distance and remission layers and
compared them to classifiers generated by a logical “and” concatenation of the
cascades from camera-only and laser-only data (Tab. 4 and 5) as proposed in
[18]. Tables 6 and 7 comprise the results on our test sets. It is self-evident that
linking classifiers by a logical “and” can only improve precision, but possibly
degrades the recall. This also arises in our experiments: while results from power
sockets and cars perform comparably well with both methods, our approach
shows superior results on the people and bike categories. It is able to exploit
the pros of every sensor, thus can improve precision and recall. Furthermore,



Table 4. Results of classifiers trained Table 5. Results of classifiers trained
only on laser data (distance and remission  only on camera data (intensity and hue-

layers). distance layers).

car |people|bike|p.sock. car |people|bike|p.sock.
length 111 123 |135| 418 length 401| 1008 |373| 172
recall 1 | 0.96 [0.97| 0.85 recall 0.94| 0.67 |0.52| 0.89
precision [0.89| 1 0.6 0.29 precision |0.89| 0.97 0.59| 0.86
F-measure|0.94| 0.98 |0.74| 0.43 F-measure|0.91] 0.8 |0.55| 0.87

Table 6. Results of classifiers trained on  Table 7. Results of classifiers from Tab.

distance, remission, intensity, and hue- 4 linked by logical “and” operator with

distance layers. classifiers from Tab. 5.
car|people|bike|p.sock. car |people|bike|p.sock.

length 581 128 [108] 87 length 512| 1131 |508| 590

recall 11 098 l0.04] 1 recall 0.94| 0.65 |0.55| 0.74

precision | 1| 1 [0.78] 0.75 precision | 1 1 074 1

F-measure| 1 | 0.99 [0.85] 0.86 F-measure|0.97| 0.79 [0.63| 0.85

in theory a strong-classifier trained on the same examples but with a super-set
of candidate weak-classifiers has at most the same size as one trained with less
weak-classifiers. Therefore, the execution time of n concatenated single sensor
classifiers is on average at least m times longer than the time spent by one
classifier trained with a joint feature pool. In practice, the sensor fusion approach
proposed here is more than twice as fast as the “and” concatenation of classifiers.

5 Conclusions and Future Work

In this paper, we have introduced a new approach to combine the significant parts
of information from different sensors for object classification. Gentle AdaBoost
selects the best weak-classifiers built from a joint feature pool from different
sensors. In several experiments, we have shown that the presented approach
outperforms results from separate sensor classifications as well as from a simple
fusion of separately trained cascades. The proposed approach is generic and can
be applied to other object types as well.

Moreover we have shown that corner-like features are a reasonable extension
of the standard feature set. In our experiments, classifiers trained with corner-
like features outperform those trained without. Already the fact that they have
been selected by Gentle AdaBoost proofs their advantage. The same holds for
our new feature channel based on hue-distances.

While the test and training sets in our experiments are comparably small
(a fact that is explained by the time-consuming acquisition of sensor data with
our mobile robot), our results imply that these sets are big enough to define the
characteristics of object types and to classify objects reliably. In future work we



will investigate if larger training sets can even improve the performance. We also
plan to use classifiers trained with this approach as initializer for object tracking
to go one step further towards autonomous behavior of mobile robots.

We meet another challenge with improving the sensors. Acquisition time for

the laser is much to long (& 4 seconds per frame) to record data of fast moving
objects or while driving with the robot. We will examine the applicability of
TOF camera ZCAM or its successor Natal to tackle this drawback.
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