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Abstract—In this paper, we present a visual object tracker the temporal evolution of the probability density functioh
for mobile systems that is able to specialize to individual objects  the state of the target object.
during tracking. The core of our method is a novel observation The main challenge is to build an accurate model of the

model and the way it is automatically adapted to a changing t t that al l t ibleefut
object and background appearance over time. The model is inte- 2/9€LS appearance thal also generalizes 10 possibleeiutu

grated into the well known Condensation algorithm (SIR filter) ~ @ppearances. One way to achieve this for spatial models is
for statistical inference, and it consists of a boosted ensemble of to prefer features that best discriminate the target froen th
simple threshold classifiers built upon center-surround Haar-  background [4], for example by learning a binary classifier
like features, which the filter continuously updates based on on features. Another way is to integrate discriminability

the images perceived. We present optimizations and reasonable Iready into the feat tati it b
approximations to limit the computational costs. Thus, the already Into the 1ealure computation, as cognitive obsienva

final algorithms are capable of processing video input at real- mModels do [5][6]. Compared to spatial models, pixel-wise
time. To experimentally investigate the gain of adapting the models are said to deal better with non-rigid objects like
observation model we compare two different approaches with persons [7]. As they do not rely on fixed spatial properties,
a non-adapting version of our observation model: maintaining they generalize better to target transformations. However

a single observation model for all particles, and maintaining h i f Hi | f h f
individual observation models for each particle. In additon, S'@P€ transiormations aré only one source for changes o

experiments were conducted to compare system performances the object and background appearance over time. To keep up
between the proposed algorithms and two other state of the art with the various changes possibly occurring in a real-world

Condensation based tracking approaches. scenario, we believe it is best not to rely on a fixed target
model, but to adapt the model over time. This way, spatial
|. INTRODUCTION target properties can be updated as well and strengthen the

Significance of features.
Adapting the observation model during tracking is not
ing or following as well as interacting with and |eamingstra|ghtforward, because to ensure the correct adaptien th

from humans. Many successful and accurate object trackiffgf@ct target location within a training image needs to be
approaches have been proposed in recent years (see surve§/{a"n- Otherwise the mod_el may dlve_rge from the real target
[1]). However, many of them are not applicable for the task@ver time. Several groups investigate in how to adapt the ta_r
of mobile robots, because the domain violates several of tf§et @ppearance model. Han et al. [8] introduced a sequential
underlying assumptions. There is no static background af{g™e! density approximation technique based on mean;-shif
no fixed target appearance and the image quality can be bigt is used to update a target appearance model on-line. Lei
due to insufficient illumination or glare. In some applicas  ©t &l- [9] try to adapt an off-line learned ensemble classifie
one cannot build a complex target model off-line, because tf?f @ particular object class to the changing appearance of

kind of object to track is not known in advance. Generally? tra_cked instance of SUCh_ class. Avidan [7] presents an
one does not have a set of calibrated cameras for 3@90rithm to adapt the constituent parts and combination of

reconstruction. And finally, the computational power isyer & ensemble of classifiers itself to new appearances. QGrabne

limited because of small form factors and the availapl&t @l- [10] demonstrated a semi-supervised on-line legrnin

energy, but at the same time quick reactions are needed whneme to tackle the problem of uncertain class assignments
interacting with a rapidly changing environment. of training examples collected while tracking the object.

For these reasons, feature based kemel tracking a Instead, we present a classifier-based approach that trains

proaches are mostly applied in the domain of mobil resholéj ]E:Iassmers ﬁ_nr?patlagy dlstr(ljbuted II-|aar-I|tzeter- bi
robotics. These techniques either build a pixel-wise or R:Jrroun eatures which are boosted to select and combine

spatial model of the target's characteristics from diffitre | e most discriminative ones mtp a s_trong classifier. The
features such as intensity and color cues or corners aHHt'al target appearance mc_)del IS qt_u_ckly learned from a
edges. Statistical inference methods like Kalman filterin ingle frame and the resulting classifier is used to detect

Mean Shift [2] or particle filters [3] are applied to evaluate h,e most likely target POS“iO” in the foIIovyi_ng frame. For
this purpose, the confidence of the classifier is converted
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To track arbitrary objects is a key ability for autonomou
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tion hypotheses of condensation filter into account durinthe dimensions of the target rectangl&.is the particle’s
this process. This approach leads to a precise and flexilbject classifier (to be described in Sedl 1) that detegmin
tracker that is quickly applicable to track arbitrary olifec its observation model.
in unknown environments in real-time. Currently, the syste e
. . B. Initialization

works on video data from a freely moving hand-held camera.
Thus, it is also ready to be mounted on a mobile robot. N the beginning, the target rectangley, w, h in the first

In our experiments we compare two different adaptatiofame must be given to the system. For instance a gesture
schemes, one that adapts a single observation model baggegnition module could pass the information about the
on the expected target state provided by the Condensati@Riect of interest to the system, or, like in our case, the use
filter, and a second one that maintains individual model@arks the target rectangle manually. A single binary cfeessi
for each particle conditioned on the particles’ uniqueestatC is learned from the initial target and background to initial
histories. We evaluated the approach in different settingé® the observation models of all particles. Whiley, w, h
to demonstrate the advantage of the adaptation techniqudC' are identical for all/ particles, their velocities,, v,
in Comparison to our own Classifier_based non_adapti\ére Sampled randomly from Gaussian diStI’ibutiOl’]S modeling
approach, but also in comparison to other non-adapti\i@e error in the different dimensions according to the nrotio
tracking methods. We tested the ability of the methods tB10del. The particle weights are initialized 1¢ = 5.
deal With pe_rspe_ctiv_e transformations, background ch&nge-  Motion Model
occlusions, illumination changes and more. It shows that th

performances of the adapting approaches are considerabl e apply_ a flrst_c_)rder autoreg_resswe motion model to
superior to the other, non-adapting tracking approaches. predict particle positions. The estimate of the new state of

In the following, we first give an overview on the particlea particle is a "”e?r extrapolation of the previous statespl
filter based visual tracking system (S&g. II). In Secfioh IIIwh|te Gaussian noise. In other words we calculate
we explain our classifier-based observation model and how vig = vig1+G(0,07), i€ {x,y},
it is adapted. Section IV presents experimental results. We

. ; . Ty = Tg—1+ Vg,
finally conclude in Sectioh V.
Yt = Yi—1+ Uy,
[I. THE VISUAL TRACKING SYSTEM wy = w1 +G(0,02)
The visual tracking system is based on the Condensation he = hi—1+G(0,07) . (1)

algorithm [3], a sequential Monte Carlo method also known )

as particle filter or Sampling Importance Resampling (SIR) Within —our experiments (cf. Sec[ JV) we used
filter. A distributionp (X) of the state of the tracked object= = 0y = 6.4 andoy, =05 =0.64 .

is approximated by maintaining a set of weighted particles 10 recover Fhe state of the tracked _object, the current state
(samples)S; = {s/},j € {1...J} over time, where each of the target is estimated as the weighted average over the

particle s) = (xJ, /) consists of its state vecto/ and an States of the particles, hence

importance weightr/. The set of particles is updated from B J o
one frame to the next by the following recursive procedure: (z,9,w,h)T = Zwﬁ (], yl,wl, )T (2)
first, a new sample sef; is drawn with replacement from j=1

the previous sef;_;, where a sample;_, from the old set p Opservation Likelihoods
is chosen with probability proportional to its weight_;.

Second, for each sample a new staﬁeis determined by
sampling from the motion model(X;|X; ; = x!_;), and
finally the measurement of the new frariigis integrated by
updating the importance weights with the likelihood of
the observation, i.er] = p(Z|X; = x},Z0, 21 ... Z4_1).

For the weighting of the particles we need to compute
the likelihood p(Z;| Xy = xJ, Zo,Z1 ... Z;_1). In our case,
we determine this value for each particle based on its binary
classifier G. This classifier decides between background and
target at a given image location. It is a continuous function

o f | i h
The likelihood depends on all frame%, ..., Z;_; because of a target rectangléz, y, w, 1) and an image” that returns

the observation model is adapted over time. In fast i/ialues between 0 and 1. We employ an exponential function
€ observatio j 0del1s adapte J ove e.Incase ot &Sty ., nvert the classifier responses to observation liketilsp
model we haver; = p(Z| X: = x{, Zp).

. . i.e. we compute
The observation model is the core of our approach. Before 4 P

we present it in detail in Selc. 11, we will first briefly desoe = p(Z)\ X =x],20, 71 ... Z4_1) 3
the remaining parts of the algorithm. — coexp ()\ ) Cg(x{,y{7wf,h{,2t)) . )

A. The Object State _Spaf:e Here, ¢ is a normalization constant which ensures that the
The state of a particle is modeled as vector new particle weights add up to In Eq.[4 it is assumed that
o T that the classifier Cis sufficient statistics for the images (and
x = (z,y,w, h,vz,0y,C)" ) : . S
the objects state history). The exponential weighting fiemc
in which z,y is the position of the tracked object in thewas proposed in [11]; it emphasizes the reward of a classifier
image with its respective first momentg, v, andw, h are result with high confidence in comparison to a lower one with



. . . o bject coordinates (sub-)wind
lower confidence. The influence of exponential weighting is gojec cograinates (OSL; Jwindow Lo

adjusted by\. We chose\ = 20 as suggested in [11]. 0.0

The observation model is the most important component A ’ il |
since it assesses which hypotheses should be followed and
which ones will die out. We will now explain, how the ’ .

classifier-based model operates and how it is adapted over

time. -
IIl. THE ENSEMBLE CLASSIFIER BASED OBSERVATION 0.5

MODEL —,—— -

Ensemble techniques like boosting have become popular
for classification during the last years, because it was show
that such classifiers can be precise and operate very fast
[12][13]. To adapt these techniques to real-time trackimayt
must be optimized for very short learning times as well.

[N
]

1.0
weak\cll/assifiers

A. The Initial Classifier
i . ... Fig. 1. The observation model is an ensemble of boosted weakifdtas
Gentle AdaBoost [14] is used to build a strong classifiegn center-surround features.

consisting of a weighted linear combination ef weak
classifiers. In our case, weak classifiers are simple thlésho
classifiers on Haar-like center-surround features varying sets. Because it would be inefficient to store the image data
size, relative position and RGB color channels. Because tioé all past frames and always calculate the feature results
representation of the tracked object is a rectangle flexibRgain when needed, we represent training examples as the
in position, size and aspect ratio, we define features velatiset of all its feature results directly. Note that this isyonl
to an object coordinate system that is transformed to imagg@ssible because our pool of features is rather small. After
coordinates for feature computation as illustrated in BEig. the first frame particles start to evolve differently. Howgv
These kind of features based on differences of average-inteaf every steg in time the current particles will have some
sities in upright rectangular regions can be computed in coeommon ancestors due to resampling. Like in a pedigree,
stant time using integral images [13]. Results from queriethie further one looks back in time, the more of the current
located between image pixels are interpolated bilinedvy. particles share common ancestors. We utilize this fact by
restrict the number of possible features to choose from tosharing the past training data of akin particles if possible
pool of 539 in order to speed up the learning process. In our From the current frame, we treat the estimate of the
case, AdaBoost iteratively picks out the= 32 best features system or respectively the state of the particle as newipesit
based on a weighted set of training examples. For the initittiaining example and the remainder of the frame as source
classifier, the only positive example is given by the user anfdr new negative examples. Every observation model has a
the negative examples are then randomly sampled from theaximum capacity for positive and negative examples (we
remainder of the first frame. This way the observation modeised pos,,q. = 20 and negpq., = 100). Until pos,,qq
incorporates target and background information. positive examples are obtained, we simply add the new

We introduce a new spatial constraint to the normadnes. Thereafter, we always discard the positive example,
boosting algorithm and force AdaBoost to choose a spatiallfpe observation model from — 1 is most certain about,
distributed set of weak classifiers. Therefore, we enforcand keep all others. This approach has two positive effects:
that each quarter of the object window (top left, top rightfirst, we introduce new object appearances to the classifier
bottom left, bottom right) is covered by one quarter of thdast, this way. Second, the diversity of training examples
weak classifiers chosen by the algorithm. To distribute theill be increased for particles, whose target prediction is
weak classifiers in this way during the iterative selectiofargely wrong. A rather inconsistent and diverse trainiat s
process, we reduce the pool of candidate classifiers to théll produce less confident classifiers. This way, particles
ones centered in the quarters that have not yet reached thaith the most self-similar history of positive examples Iwil
limit of 2 weak classifiers. Although this constraint canreceive a higher rating from their classifiers and will have
prevent AdaBoost from selecting the optimal combinatiomore successors after resampling.
of weak classifiers for a given training set, we think thasthi As a special case, we always keep the positive example
spatial spreading strengthens the classifiers robustmabs &rom the first frame given by the user in order to avoid the
precision. For the same reason we prevent AdaBoost frotamplate drift problem [15][10]. Additionally, we alwaysii
choosing the same feature twice within one classifier. tialize this given first positive example with a higher weigh

) . when (re-)learning the classifier. The negative examples ar

B. Adapting the Observation Model treated differently. We replace the oldegt<%me=] ones

To adapt the observation model of a particle, we re-traiwith randomly generated strong negative examples from the
its classifier from frame — 1 to ¢ based on updated training current background. This way the classifier is adapted to



. . Seq. | #Fr. average score [%]
new backgrounds. Note that in general it would be better to Histo- | Multi- | n. ad.| adapt. | adapt.

keep more training examples and to replace more negative gram | Comp. | H-cs | H.-cs | p. part.
examples for every new frame, but this is the maximal H.-cs
adjustmgnt we are currgntly able tq compute in real-time ggé 23.'523 gg% 32:3‘;’ 33‘_%61 ??:gg
when using the per particle observation model. 403 | 47.58 | 63.71 | 89.33 | 90.66 | 91.33

Once the training sets are updated, they are used to adjust 946 | 63.35 | 76.39 | 62.78 | 7112 | 75.21
_the observation model. Insplreql by [7] a simplified boosting igg ﬁ:i; Zg:ég gg:ég gé:gg gg:gg
is conducted to select the optimal— k& (we usedk = 1) 715 | 46.27 49.62 34.34 7730 | 71.16
weak classifiers out of the weak classifiers of the strong 411 | 62.19 | 86.50 | 95.79 | 94.41 | 94.47
classifier fromt — 1 and adapt their confidences. This is 1016 | 68.94 | 47.63 | 48.97 | 75.02 | 56.33

; : 60.97 | 61.70 | 58.08 | 77.54 | 75.54

very fast because the set of possible features is small an
it is done without re-learning the threshold of the chosen TABLE |
weak classifiers. Note that if the training set has Changed in COMPARISON OF THE FIVE TRACKING METHODS BASED ON COLOR
such a way that we cannot find— k weak classifiers with @  1stogrAMS, MULTI-COMPONENTDESCRIPTOR NON ADAPTIVE AND
still meaningful threshold, we update less. We continuda Wit (per paRTICLE ADAPTIVE HAAR-LIKE CENTER-SURROUND FEATURES
the constrained boosting algorithm we used for the initial
classifier to select the remainirkgoptimally complementing
weak classifiers from the whole pool of features.

Adapting the observation model is the most costly part odipproaches with it.
the algorithm. Because we cannot update every particle thatThe parameters are chosen to meet the demands for
survived the resampling in real-time, we concentrate on theal-time tracking (not less than 25fps) on a modern CPU
up to ten best rated particles. This is still influential, dnese  (Intel Q9550) with our slowest approach and are not altered
of their high weights those ten particles are the ancestobetween sequences. We usdd= 2000 particles for the
of more than 50% of the next generation of particles mosxperiments.
of the times. Additionally we stop adapting the observation In the following we describe the test sequences (cf.[Big. 2)
model if the confidence of the classifier on the new positivand explain the results shown in Fig. 3 and subsumed in
example is below a thresholt] in order to handle temporary Table[].
occlusions of the target object.

2ITTOIMMUOw»>

A. Rapidly Changing Object Appearance (Ball)

A red ball with white spots is kicked back and forth. While
e histogram representation is well suited in this case and

IV. EXPERIMENTS AND RESULTS
In this section we present a qualitative comparison of fiv

tracking approaches. All of them are based on particle f'ltjferforms best, our approach is struggling a little to keapkr

techniques. We use the same particle filter implgmentati d} the locations of the white spots. However, the advantage
for all approaches and change only the observation mod%lr adapting our classifier is clearly visible.

The first approach is the well known color histogram tracking
as described in [11]. The second is a more recent approagh Challenging Background Alterations (Cup 1)
namely component-based tracking [6]. It computes center-
surround feature maps from color and intensity and buildf
an object description from the relative positions of mugip |
local maxima and their circumference within these map
Tlhe ofthers ar:e ]?ur H?ar:-like (;:enter-surrgund feattl)Jre bas ur adaptive classifier models are able to learn the new
classifiers. The first of these does not adapt its observati
model after the first frame, the second holds and adapts Or%%ckground appearances and perform best.

one observation model for all particles, and the third holdg. Fast Moving Object and Size Changes (Juice)
and adapts one o_bservanon model per p_artlcle. A juice box stands on a table. The camera pans very

We recorded nine test sequences with a total of 548%

frames (326240 at 25fps) and manually marked the small- st. This results in quick object m_ot|on without blgger
- : . pearance changes. Thus our adaptive and non adaptive ap-
est rectangle containing the whole target object in eaci?

frame. Between this ground truth and the results of thgroaches differ very little. In the middle of t_he sequence th
. : . amera zooms out. Because of that the histogram degrades
approaches we measure the fraction of the intersection Y0 .
. . . . . mpst, the component-based model also worsens whereas this
the union. This measure is more precise than the distance,0 :
" has no effect on our Haar-like center-surround featurease
the centers of the rectangles, because it incorporatesnhpt o
. . . A . approaches.
differences in position but also in size. For better conguari
to other groups’ results an overlap below 33.33% in a framg. Non-rigid Object in an Outdoor Scene (Person 1)
can be considered as a miss. We provide this data on ou

webpag@ and kindly invite everyone to evaluate their own

A blue cup moves along a heavily cluttered background.

he component-based model and our non-adaptive classifier
ose the object when the background becomes mainly blue.
e component-based model manages to recover afterwards.

rA person is walking and turning around multiple times.
All approaches successfully estimate the person’s positio
Ihttp://www.iai.uni-bonn.de/ ~ Kleind/tracking/ but the component-based model and our per particle adaptive


http://www.iai.uni-bonn.de/~kleind/tracking/

Fig. 2. The test sequences A. - |. . First row: each first framté wie region that was given the algorithms for initializati@reen rectangles). Second
row: an example frame with manually marked ground truth usedvaluation. See also the accompanying video.

Sequence A Sequence B. Sequence C.
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Fig. 3. Results on tracking the target object with four difet observation models on the test sequences A. - |. . Plagjathst the y-axis is the fraction

of the intersection to the union between the rectangula aeféhe manually marked ground truth and the estimates of therags For better comparison
to other group’s results one can consider a score ab@8eas correct match and below as miss.

classifier are a little bit more precise in following theocclusions is caused by another person crossing. Interest-

variation of the size of the person in the images. ingly, our non-adaptive approach is also very precise and
superior to color histogram and component-based tracking.
E. Partial Occlusion (Person 2) Likely this is because the person is seen from the side during

The person is stationary, but the camera moves so that thhéa whole sequence and his upper part of the body appears

person gets half occluded and visible again. The noticeabje nstantly the same. The regular spike patf[ern shown by ".""
valley in the graph is caused by this partial occlusion 01’;\pproaches is because the ground truth width pulsates with

the person. We marked only the visible parts of the persoenvery step of the_ person. _The per partu_:le adaptive classifie
. . again is best to imitate this transformations.
as ground truth, while all approaches tend to estimate th

person’s position and size behind the occluding object. ~ G. Appreciable Viewpoint Changes (Rubik’s Cube)

The camera pans around a Rubik’s Cube from left to right
and then flies over it. This causes heavy changes in shape
A person walks along a corridor and becomes fullyand color of the object. Before the camera starts to move,

occluded by a pillar three times. In these situations it iadaptive and non-adaptive Haar-like center-surroundifeat
important to stop adapting the models if the object is ndbased classifiers perform equally well and are superior to
visible. Fortunately, it turned out that a simple confidencéhe other approaches. While our non-adaptive classifietsstar
threshold on the classifier response is sufficient to handte fail when viewpoint changes become larger, the adapting
such situations for our adaptive approaches (cf.[Big. 4jeNoones retain a good performance. Thanks to the rather uniform
that the short oscillation in Fi@ll 4 between the first two fulbackground, color histogram and component-based tracking

F. Full Occlusion of a Non-rigid Object (Person 3)



Adaption Prevention during Occlusion, Sequence G.

multi-modal distributions. But experiments showed tha th

1 classifier is so reliable that such situations are very réne.
advantages of the global adaptive observation model, speed
and robustness, weigh more heavily, so we recommend this
approach. Note that for an adaptive observation model it is
beneficial if the different object appearances are intreduc

05 |

Confidence of Best Particle

200
Frame Number

300 400

the

Fig. 4. Green: confidence of best particle. Red: adaptiastioldd = 0.6 .
Blue: Object visible or fully occluded.

are also able to identify the object, but with a loss o
precision.

H. lllumination and Backlight Changes (Panda)

During the sequence the sun-blinds are opened/closg
and the artificial light is switched on and off, while the
camera is not moving. The histogram is confused mo
but recovers very quickly. The other approaches are rob
against changes in lightening, while the component—basé’@
approach in general is less exact than our Haar-like cent
surround feature based classifier.

1
I. Real-world Person Following Scenario (Person 4) .

The camera follows a person walking outdoor while (2
other persons cross him 13 times. Our global adaptive
observation model is the only approach able to differeatiat [3]
the persons and track the correct one all the time. Color
histogram tracking performs also very well on this sequencej4]

In summary, one can say that the three non-adaptiv
approaches on average all perform similarly, but it depends
strongly on the type of sequence which approach perform§!
best (compare also the results in [6] and [16] for other;
types of sequences in which the component-based approach
outperforms the histogram tracking clearly). The histagra [l
tracking is the most general and is therefore not affected
much by deformations of the target, even without adaption.
On the other hand, it generally has problems with illu-[©]
mination changes which is often a problem in real-worlqlo]
robotic settings (cf. [16]). The component-based appraach
currently not able to deal with rotations of the object, dut i[11]
is mainly robust against illumination change and transéorm ;,,
tions in size. At the beginning of every sequence one can see
that our Haar-like center-surround feature based classifie
the most exact observation model. This is an advantage[]l’rg]
the scene does not change a lot. However, without adaptigia]
it does not generalize sufficiently well to deal with bigger
changes. When adapting the model to new appearances j‘ikﬁ
effect is compensated. Our global adaptive observatioremo
turned out to be the most exact and most robust model as
it was the only approach that was able to keep track
the targets in all test sequences. In theory, a per particle
adapting observation model should be able to better dehl wit

rather slowly to the model for the first time to enable a more
proper adaption.
0 Please see the accompanying video for a visualization of

results of our proposed new visual tracking system.
V. CONCLUSION

In this paper we presented a new particle filter based
approach for real-time video tracking of arbitrary objects
]:I'he heart of this new approach is the adapting observation
model. For this, a strong classifier composed of an ensemble
of Haar-like center-surround features is learned from glsin
positive training example with Gentle AdaBoost and quickly
Bdated to new object and background appearances in every
rame. The system deals with different objects and settings
nd is robust to perspective transformations, rotatiors an
g’qhtening conditions. Thus, it is disposed to the deplogtme
a mobile platform. In experiments we found that it
qunsiderably outperforms other methods.
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