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Abstract

In this paper, we introduce a new method to detect salient
objects in images. The approach is based on the standard
structure of cognitive visual attention models, but realizes
the computation of saliency in each feature dimension in
an information-theoretic way. The method allows a consis-
tent computation of all feature channels and a well-founded
fusion of these channels to a saliency map. Our frame-
work enables the computation of arbitrarily scaled features
and local center-surround pairs in an efficient manner. We
show that our approach outperforms eight state-of-the-art
saliency detectors in terms of precision and recall.

1. Introduction
Salient objects have the quality to visually stand out from

their surroundings and are likely to attract human attention.
A key property that makes an object salient is the visual
difference to the background. A polar bear is salient on
dark rocks, but almost invisible in snow. The detection of
visual saliency is of high interest in many computer vision
applications, ranging from general object detection in web
images [3], over image thumbnailing [17], to computing a
joint focus of attention in human robot interaction [20].

Visual saliency and, more general, visual attention
have been widely investigated in neurobiology and psy-
chophysics [18] and many computational models have been
built based on such findings [22, 12, 6]. A survey on
biologically-inspired attention systems can be found in [7].
Recently, several saliency approaches came up that are
based on computational and mathematical ideas and usu-
ally less biologically motivated. These approaches range
from the computation of entropy [13, 10], over determining
features that best discriminate between a target and a null
hypothesis [8], to learning the optimal feature combination
with machine learning techniques [15, 3].

In this work, we present a new approach to compute vi-
sual saliency that combines the general structure of psycho-
logical attention models [21, 25] with a sound mathemati-

cal foundation, and additionally enables an efficient com-
putational implementation. We define the saliency of an
image region in an information-theoretic way by means of
the Kullback-Leibler-Divergence (KLD). For a center and
a surround region, we estimate the distributions of visual
feature occurrences. Then, the KLD between these dis-
tributions expresses how much more capacity one can ex-
pect to require when events following the center distribu-
tion are coded according to the surround distribution. In
other words, KLD measures how much the feature statistics
in the center diverge from those in the surround.

This formulation of saliency has two advantages. First,
it allows a consistent computation for all feature channels,
in contrast to approaches that apply different feature extrac-
tion methods for each channel [15, 3]. Second and more
important, it allows a well-founded fusion of feature chan-
nels. While absolute values of such channels quantify mis-
cellaneous properties that are not necessarily unifiable in a
straight-forward way, KLD abstracts them to a common en-
tity. Additionally, we incorporate an efficient scale-space
computation of center-surround pairs of arbitrary sizes.

We evaluate our approach on a standard benchmark
database of salient objects [1] and compare the results with
eight state of the art saliency detectors. It shows that our ap-
proach outperforms all other methods in terms of precision
and recall. Our method shows its strength especially for
small objects, for which good precision values are usually
more difficult to obtain.

2. State of the Art
The concept of visual saliency comes from human per-

ception and correlates with the ability of a region to attract
attention [18]. While human attention can be attracted by
bottom-up, data-driven as well as by top-down, knowledge-
driven factors, saliency is associated with bottom-up atten-
tion that automatically attracts the human gaze.

Bottom-up attention has been widely studied in cognitive
fields. A basis for many computational attention models are
the Feature Integration Theory (FIT) [21] and the Guided
Search model [25]. The FIT has introduced the structure
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that still serves as basis for many computational attention
systems: several feature channels (e.g. color or orientation),
each divided into several feature types (e.g. red, yellow, hor-
izontal, vertical), are investigated in parallel. Finally, the
conspicuities are collected in a master map of attention. In
later works, this map has been called saliency map.

Many computational models have been built according
to this structure [12, 6, 24], among them one of the most
popular systems, the iNVT of Itti et al. [12]. While these
systems have obtained good results in simulating human eye
movements and in applications ranging from object recog-
nition to robotics [7], one problem is that the fusion of fea-
ture channels with per se not comparable properties is usu-
ally somewhat arbitrary.

During the last decade, several approaches came up to
model saliency with computational and mathematical meth-
ods that are mostly less biologically motivated. Kadir and
Brady have introduced entropy-based saliency [13]. More
recently, Hou and Zhang have computed the incremental
coding length to measure the perspective entropy gain [10].
Entropy-based methods generally capture image regions
with a lot of structure, which corresponds often but not al-
ways to salient regions. A problem occurs if the absence of
structure makes an item salient, such as a person wearing
white clothes in the jungle (cf. last row of Fig. 4).

Ma and Zhang have proposed a contrast-based method
that uses fuzzy growing to extract regions from their
saliency map [16]. Achanta et al. have introduced a sim-
ple approach that determines the difference of pixels to the
average color and intensity value of the image [1, 2]. While
their system has problems to detect saliencies for several
classical pop-out experiments (cf. Sec. 4.1), it is fast and
simple to implement.

Some groups have investigated alternative ways to com-
pute saliency by applying different computer vision meth-
ods to obtain feature channels, which are finally fused
by machine learning techniques. Liu et al. combined
multi-scale contrast, center-surround histograms, and color
spatial-distributions with conditional random fields [15].
Alexe et al. combined multi-scale saliency, color contrast,
edge density, and superpixels in a Bayesian framework [3].

Information theory also has entered the field of saliency
detection. Itti and Baldi have computed temporal saliency
based on a Baysian notion of surprise [11]. Gao et al. have
presented a decision-theoretic approach based on mutual in-
formation [8] and Chen has computed the co-saliency of
two objects in different images with the KLD [5].

Bruce and Tsotsos have presented an interesting ap-
proach that computes the self-information of image regions
with respect to their surround [4]. There are some parallels
of this work to our approach. The differences are that while
they base their feature detection on ICA coefficients that are
learned from a large variety of images, we have specifically
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Figure 1. Center-surround filter based on the Kullback-Leibler Di-
vergence (KLD).

designed scalable feature detectors to represent the distribu-
tions in different feature channels. This enables us to com-
pute features on any scale in a computationally feasible way
and disengages us from the need of a training set. Further-
more, we compute the KLD instead of the self-information,
apply local instead of global surround regions, and compute
the saliencies on several scales.

3. The Saliency Model
The main structure of our saliency system, called BITS

(Bonn Information-Theoretic Saliency model), is based on
the general layout of psychological attention models like the
ones in [21, 25]: several feature channels are investigated in
parallel and the conspicuities are fused to a single saliency
map. The feature channels intensity, color, and orientation
have been chosen since they belong to the basic features of
the human attention system [26].1

The saliency computation itself is rather computation-
ally than biologically motivated and consists of two steps.
First, basic features analyze the occurrence of certain in-
tensities, colors, and orientations on different scales. In a
second step, the center-surround contrast is determined in
an information-theoretic way. Two distributions of visual
feature occurrences are determined for a center and a sur-
round region and the Kullback-Leibler Divergence deter-
mines the difference between these distributions (cf. Fig. 1).
An overview of the system is depicted in Fig. 2.

3.1. Basic Feature Cues

For our visual saliency system, we model the basic fea-
tures of color, orientation, and intensity. From an input im-
age in the HSL color space, integral layers are built in or-
der to quickly compute pyramid representations from our
scalable basic features. These integral layers enable the cal-
culation of summed and averaged values of arbitrary sized
rectangular regions in constant time [23].

The intensity feature is the average of the lightness layer
within a rectangle of a certain scale. The color feature is
also the average of a rectangular region, but a little trickier
to compute in order to account for the saturation of the oc-
curring colors. Hue and saturation that represent polar co-

1Another important feature is motion, but because here we concentrate
on saliency detection in web images, motion is not required.



Figure 2. Schematic overview of our saliency system BITS.

ordinates in the HSL color space are converted into Carte-
sian coordinates, referred to as hue(x)- and hue(y)-layers
(cf. Fig. 2). From those, average colors can be computed
via integral layers, before the representation is transformed
back into hue/saturation. The orientation feature computes
partial derivatives from region-wise averages to determine
the gradient direction on a given scale as in [14]. We apply
the orientation feature separately for lightness-, hue(x)- and
hue(y)-layer, because orientation should be observable from
intensity as well as color contrasts. We compute pyramids
of eight different feature scales in steps of factor

√
2. For

this, we do not need to scale the image data, but the feature
size, which is an advantage in terms of speed. The feature
sampling rate depends on their scales, larger features are
more coarsely sampled than smaller ones.

3.2. Center-Surround Distribution Feature based
on Information Theory

Information theory is an area of statistics that is used to
analyze signals and their transmission over channels. One
of the main concepts is the notion of entropy, which quan-
tifies the expected value of information that a signal of a
given coding scheme contains. A coding scheme equates
to a probability distribution over the occurrence of certain
messages. The less predictable the occurrence of a message
is, the higher the entropy. For instance the entropy of a uni-
form distribution is highest, while if one can predict the next
message for sure, the entropy is zero.

As mentioned above, the difference of a region to its sur-
roundings is essential to obtain visual saliency. One can
convey this principle of difference to information theory by
using the Kullback-Leibler Divergence,

DKL(P‖Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (1)

KLD is a measure between two probability distributions
P and Q, that meters the expected value how much longer a
message must be to express events from P based on Q. The

more P differs from Q, the higher the KLD.
For each pyramid layer of basic feature results, our con-

trast feature is computed. This feature is based on KLD
and integrates a local center-surround mechanism to rate the
conspicuity of a region (cf. Fig. 1). Here, the information-
theoretic notion of a message is the parameter value of a
visual feature. Therefore, we need to estimate local distri-
butions of basic feature results: we split every basic feature
layer into an integral histogram [19]. An integral histogram
consists of layers that count the summed number of values
top and left from a pixel that fall into a certain histogram
bin. Here, sums of relative distances of the values on the
corresponding basic feature map to centered values of the
neighboring bins are counted. Thus, one can obtain bilin-
early interpolated histograms for rectangular regions. For
the periodic color and orientation feature, we build radial
histograms with an additional center bin. In case of color,
the saturation determines how much a feature sample counts
for the center or a radial bin. For orientation and gradi-
ent magnitude we proceed correspondingly. This allows to
contrast the absence or occurrence of orientation and color
in the center with the surround distribution. Utilizing these
integral histograms, we calculate the discrete KLD feature

DKL(C‖S) =
b∑

i=1

C(i) log
C(i)

S(i)
, (2)

in constant time, where b denotes the number of bins
(here: 13), and C and S are distributions of center and sur-
round regions with size ratios of 0.2 and 0.3. Increasing the
number of bins did not substantially increase the quality of
the system. The KLD feature maps are scale normalized
corresponding to the ratio of the feature’s surround region
to the image size. Then they are rescaled and added per
pixel on highest resolution to form one conspicuity map per
channel. Fusion of conspicuity maps into a single saliency
map is done by per element multiplication. This results in a
fusion exponential proportional to geometric mean, but we
omit calculation of the nth root.



4. Experiments and Results
We evaluated our saliency method on two kinds of data:

psychological patterns (Sec. 4.1) and a database of salient
objects [1] (Sec. 4.2). On both data sets, we compared our
approach with eight state-of-the-art saliency models: the
iNVT by Itti et al. [12], the Saliency Toolbox (ST) [24],
two systems of Hou and Zhang (HZ07,HZ08) [9, 10], the
AIM model of Bruce and Tsotsos [4], the system of Ma
and Zhang (MZ) [16], and two versions of Achanta et al.
(AC09,AC10) [1, 2]. For iNVT, ST, HZ08, AIM, AC09 and
AC10 we used the code from the authors’ web pages. For
HZ07 and MZ we used the saliency maps provided online2.

4.1. Psychological Patterns

Detecting outliers in “pop-out” images is an essential
step for a saliency model, since the results clearly show the
strengths and limitations of an approach. We designed in-
tensity and color patterns with a gray background and items
with the same intensity contrasts to the background. This al-
lows to make sure that saliency really results from an item-
item contrast and not from an item-background contrast.

Fig. 4 shows the results on these patterns for all saliency
methods with available source code. Saliency maps that
have their most salient region on the outlier are marked with
a green bounding box, others with a red one. Except for
our model, none of the models was able to detect all out-
liers. Some results can be explained by the system design:
Achanta cannot detect orientation pop-outs, since it is a
purely color/intensity based approach. AIM and AC09 can-
not detect local pop-outs (row 4), since they use a global in-
stead of local surround. The result of Hou (last row) shows
that purely using entropy to compute saliency is not always
sufficient: the uniform square on a textured background is
not considered salient, since it shows low entropy compared
to the high entropy of the background. On the other hand,
the non-salient region in the result of AIM is due to the filter
size and could be avoided by a scale-space extension.

4.2. Salient Object Database

Additionally, we performed quantitative experiments on
the image set that was used in [1, 2]. It is a database of
1000 images, which is a subset of the MSRA salient object
database [15]. The latter contains objects that were marked
as salient by 2 out of 3 users. For the 1000 image subset, bi-
nary maps are available that show accurate contours of the
salient objects. Fig. 5 shows some images of this database
and the corresponding saliency maps for the saliency meth-
ods with available source code.

The saliency maps were evaluated according to [1]. A
binary map was obtained from the saliency map by vary-

2http://ivrg.epfl.ch/supplementary\_material/
RK\_CVPR09

Figure 3. Precision-recall curves for the saliency maps of our sys-
tem BITS and 8 other saliency detectors on the dataset of 1000
images from [1] (top) and of a subset of small objects (max. 20%
of image) (bottom). See text for details.

ing a threshold on the intensity values [0, 255]. Each of
these 256 maps was compared to the ground truth binary
map from the database and precision and recall were com-
puted. This resulted in the precision-recall curves shown
in Fig. 3, top. It should be noted that some of the methods
(e.g., iNVT, ST, AIM) are designed rather for simulating hu-
man eye movements than for the detection of salient objects
in web images. Therefore, these results should be regarded
with caution. We have included them for completeness.

As already pointed out in [15], obtaining high precision-
recall values for images with large objects is not too diffi-
cult: if an object occupies 80% of the image, an algorithm
that selects the whole image obtains 80% precision with
100% recall. Thus, it is more challenging to obtain high
precision-recall curves for small objects. To test this, we de-
termined a subset of the database containing small objects,
similarly as in [15]. We selected 549 images with objects
occupying at most 20% of the image area. The resulting
precision-recall curves are shown in Fig. 3, bottom. Here it
shows more clearly that our approach outperforms the other
methods.



Figure 4. Comparison of saliency maps on psychological patterns. Saliency methods from left to right: iNVT [12], ST [24], AC09 [1],
AC10, [2], HZ08 [10], AIM [4], our approach BITS. Green bounding boxes: outlier detected; red boxes: failure.

5. Conclusion

We presented a new approach to compute visual saliency
in an information-theoretic way. By means of the Kullback-
Leibler Divergence, we determine the contrast of the cen-
ter and the surround distribution of features for the dimen-
sions intensity, color, and orientation. This enables a well-
founded fusion of channels based on a common entity. We
have shown that the new approach outperforms eight other
saliency computation methods, especially for small objects.

Since information-theoretic approaches are based on fea-
ture distributions, the computation is intrinsically more
computationally expensive than the classical area-based
center-surround filters. To obtain a system that is applica-
ble in reasonable time, calculations are often restricted. For
example, AIM uses a center patch with a fixed size and one
global surround distribution that covers the complete image.

However, since the detection of salient structures relies
essentially on center-surround pairs of different sizes, it is
important to integrate scalable feature computations in a
computationally still feasible way. Especially for applica-
tions on large image databases or on mobile robots, real-
time performance is an essential requirement. With our in-
tegral image based framework, we found a good compro-
mise between accuracy and speed. With less than 0.5 sec
(320×240 pixel image, 2.66 GHz quad-core PC using dou-

ble precision computations) the system is close to real-time
performance. Since the code is not yet optimized, we are
confident to obtain real-time performance easily by stan-
dard optimizations and/or more extensive parallelization.

Systems as the proposed one always include many pa-
rameters and design choices. The parameters used here
have shown to be reasonable for the detection of salient ob-
jects in web images. We tested the approach also on other
images, and it shows to be quite stable and not strongly de-
pendent on parameter choices. Our combinations of center-
surround pairs enable the detection of a wide range of sizes
of salient regions. Nevertheless, for other applications such
as modeling human eye movements, the parameters might
have to be adapted to yield optimal performance.
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