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Abstract
We present a computational framework for the detection of un-
known objects in a 3D environment. It is based on a visual
attention system that detects proto-objects which are improved
by iterative segmentation steps. At the same time a 3D scene
model is built from measurements of a depth camera. The de-
tected proto-objects are projected into the 3D scene, resulting
in 3D object models which are incrementally updated. Finally,
environment- and object-based inhibition of return enables to
withdraw the attention from one object and switch to the next.
We show that the system works well in cluttered natural scenes
and can find and segment objects without prior knowledge.

INTRODUCTION
Object detection is one of the tasks which are easy to solve for
humans but hard for machines. Especially unsupervised ob-
ject detection, i.e., finding all objects in a scene without pre-
vious learning, is largely unsolved in machine vision.1 How-
ever, a system that is able to localize unknown objects in un-
known environments is tremendously useful for robotics. For
example, a future robot that shall assist in a household must
be able to operate autonomously in a new house and is per-
manently faced with new, unknown objects. Since humans
are able to solve such tasks easily, a promising approach for
technical systems is to mimic the human visual system.2

In humans as in machines, one of the challenges is to
deal with the huge amount of perceptual input. Despite the
parallelity of the brain, its capacity is not sufficient to deal
with all sensory data in detail and a selection has to take
place. Neisser (1967) was the first who proposed a two-
stage processing of perception that solves this task: first,
a pre-attentive process selects regions of interest in paral-
lel, and, second, an attentive process investigates these re-
gions sequentially in more detail. This view has since then
widely spread and many psychological theories and models
build upon this dichotomy (e.g. Treisman & Gelade, 1980;
Wolfe, 1994). Rensink (2000) has further developed this
idea with his coherence theory of attention. It states that the
pre-attentive processing determines structures, which he calls
proto-objects, that describe the local scene structure of a spa-
tially limited region. After that, focused attention selects a
small number of proto-objects which form a coherence field
representing a specific object.

Here, we present a computational framework that follows
Rensink’s idea of proto-objects as pre-processing step for ob-
ject detection. Our approach generates proto-objects with a

1The winner of the latest Semantic Robot Vision Challenge
(http://www.semantic-robot-vision-challenge.org) was only able to
detect 13 out of 20 objects (Meger et al., 2010), although in this
challenge, the target objects were known in advance.

2However, note that our intention is to obtain an improved tech-
nical system rather than to mimic the HVS as closely as possible.

bottom-up visual attention system (Klein & Frintrop, 2012)
and improves their shape by iterative segmentation steps. In
contrast to other attention models, we operate on 3D data
from a depth camera and are thus able to obtain 3D object
models in space, which are incrementally updated by inte-
grating new perceptual data.

In computational systems based on bottom-up visual at-
tention, the focus of attention is directed to the most salient
region in the scene. In order to scan the whole scene, this
requires a way to withdraw attention from that region and
switch to the next. In human vision, this is performed by in-
hibition of return mechanisms (IOR) that inhibit the currently
attended region (Tipper et al., 1994).

In most computational systems, IOR is implemented by ze-
roing values in the saliency map (Itti et al., 1998). This is
sufficient in static images, but when acting in a 3D world, the
correspondence between spatial locations and image regions
is required. This affects also the IOR mechanism, since when
the perspective of the observer changes or objects are mov-
ing, inhibition has to move with them, preventing attention
to re-visit the objects directly. This motivates the use of a
3D map that grounds the perceptions in space and enables to
maintain a coherent IOR representation over space and time.
Corresponding to human vision (Tipper et al., 1994), our IOR
mechanism is both object- and environment-based.

The contributions of this paper are threefold. First, instead
of operating on 2D images, we perform attention-based ob-
ject detection on 3D data; this enables us to situate the at-
tention system in a 3D environment, resulting in a coherent
representation of objects over time. Secondly, it allows for
performing not only an environment-based but also an object-
based inhibition of return mechanism that operates in space
and time. Finally, the use of salient blobs instead of only fix-
ation points for initializing the segmentation process lets us
bound the amount of perceptual data to be processed.

Related Work
Many computational attention systems have been built dur-
ing the last two decades, first for the purpose of mimicking
and understanding the human visual system (survey in Heinke
& Humphreys, 2004), and second to improve technical sys-
tems in terms of speed and quality (survey in Frintrop et al.,
2010). The general structure of attention systems is based on
psychological models such as the Feature Integration Theory
(Treisman & Gelade, 1980) and states that features are com-
puted in parallel before they are fused to a saliency map.

One component of attention systems is the inhibition of re-
turn mechanism. While IOR is simple on static images, image
sequences introduce the challenge of establishing correspon-



Figure 1: System Overview. The RGB-D camera provides color and depth streams that are processed to obtain proto-objects
and a 3D representation of the scene. Here, one proto-object is fixated (1), segmented (2), and projected to the 3D scene (3).
The inhibition (5) did not yet take place.

dences between objects over time. In this context, Backer
et al. (2001) perform object-centered IOR. However, their
approach operates on simple artificially rendered scenes in-
stead of real world data and on 2D images instead of 3D
data as we do. Additionally, we combine object-centered and
environment-centered IOR to enable both types of inhibition.

Walther and Koch (2006) use an attention system to obtain
saliency maps and generate proto-objects inside this map by
thresholding. Unsupervised object detection was also tackled
by Kootstra and Kragic (2011) who produce saliency maps
with a symmetry-based attention system. They use the most
salient points as hypothetical centers of objects; these are then
provided as seeds to the segmentation process. The figural
goodness of the segmentations is evaluated by Gestalt prin-
ciples. In a robotics context, Meger et al. (2010) search for
objects with the mobile robot “Curious George”. The robot
used a peripheral vision system to identify object candidates
with help of a visual attention module. Then, close-up views
of these candidates were recorded with a foveal vision sys-
tem and investigated by a recognition module to identify the
object.

General Structure
A general overview of the system is depicted in Figure 1. We
acquire data with a depth camera that provides color as well
as depth information, and is moved around the scene to obtain
different viewpoints. The color and the depth information are
investigated in two separate processing streams. The color
stream determines proto-objects with help of a bottom-up vi-
sual attention system (Fig. 1, top), while the depth stream
generates a 3D map of the scene (Fig. 1, bottom). The two
streams are combined by projecting the proto-objects into the
3D scene. This results in 3D object models that are incremen-
tally updated when new camera frames are available.

The system operates in two behaviors: the saccade behav-

ior and the fixate behavior. When the system starts, it first
finds the most salient proto-object (1. in Fig. 1), which is then
attended for several frames (fixate behavior), allowing other
modules to improve the shape of the attended proto-object by
segmentation (2.) and project it to the 3D scene (3.). Af-
ter fixating an object for a while, the saccade behavior takes
over to determine the next focus of attention. This is enabled
by object-based and environment-based inhibition of return
mechanisms (4.), that inhibit the region of the segmented ob-
ject O and the surrounding region A. To maintain a coher-
ent inhibition of return representation, even when moving the
camera, the inhibition values are stored within the 3D map
data. From its 3D representation, the data can be projected to
produce a 2D IOR map (5.), that is used for inhibiting proto-
objects in the saliency map. When the attended object is in-
hibited, a saccade to the next salient proto-object is generated.

Proto-Object Detection
We perform object detection in two steps: first, we detect
proto-objects in each frame with a visual attention system
and second, the extend of the proto-objects is improved by
a segmentation step.

Attention System: Generation of Proto-Objects
The first step of object detection is the generation of proto-
objects with a visual attention system that mimics the pre-
attentive processing stage of the human visual system. Such
systems usually investigate several feature channels such as
color and orientation in parallel and finally fuse the result-
ing conspicuities in a single saliency map (Frintrop et al.,
2010). The peaks in the saliency map can be interpreted as
proto-objects (e.g. Walther & Koch, 2006). While in human
attention, top-down factors also play an important role, such
information is not always available in robotics. Therefore, we
compute here only the bottom-up attention.



Figure 2: Top left to bottom right: original RGB image; its
corresponding saliency map SM; saliency map after adaptive
thresholding SM′; the SM′′ map after the final thresholding.

In this work, we use the CoDi system to compute saliency
maps (Klein & Frintrop, 2012). The structure follows the
standard architecture of Itti et al. (1998), consisting of in-
tensity, color, and orientation feature channels which belong
to the most important features in the human visual system
(Wolfe & Horowitz, 2004). In contrast to other saliency sys-
tems, the center-surround contrast is computed with respect to
feature distributions; these are approximated by Normal dis-
tributions and their distance is quickly computed by the W2-
distance (Wasserstein metric based on the Euclidean norm).

To allow the detection of arbitrarily sized salient regions,
we perform the computations on 8 different scales. The color
channel consists of a red-green and a blue-yellow channel,
following the opponent-process theory of human color vision
(Hurvich & Jameson, 1957). The orientation channel com-
putes center surround differences of Gabor filters of four dif-
ferent orientations: 0◦, 45◦, 90◦, 135◦. The saliency map SM
is the result of fusing the color and orientation channels.

To generate the image blobs that correspond to proto-
objects, two thresholding operations are performed: first an
adaptive thresholding using a Gaussian kernel3

SM′(x,y) =
{

SM(x,y) : SM(x,y)> T (x,y)
0 : otherwise (1)

where T (x,y) is the weighted mean of the neighborhood of
(x,y). Finally, a binary thresholding is performed on SM′ at a
percentage of the global maximum saliency value MAX :

SM′′(x,y) =
{

SM′(x,y) : SM′(x,y)> 0.3×MAX
0 : otherwise (2)

Fig. 2 shows the saliency map SM and the thresholded maps
SM′ and SM′′ for an example image. On SM′′ we find the con-
nected components (proto-objects) and compute their average
saliency sal. This method provides us with salient blobs in-
stead of only fixation points which determines the center of

3We use the adaptiveThreshold function of the OpenCV library:
http://opencv.org/

fixation as well as the size of the region to use for further
investigation. Too small or too big blobs are discarded. If in-
formation for the inhibition of objects is already available in
terms of a 2D IOR map I (see below), it is used to inhibit al-
ready visited regions. This is done by computing the overlap
o between each blob and I. Finally, the proto-object with the
highest value sal ∗ (1−o) is attended.

Thus, the computational attention system fulfills its two
main purposes: first, it directs attention to a region of interest
and, second, it bounds the amount of perceptual data to be
processed afterwards while ignoring the rest.

Improving Proto-Objects by Segmentation
After finding proto-objects, we improve their shape by a seg-
mentation step that bundles parts of the image data. This has
a similar effect as grouping mechanisms in human percep-
tion that facilitate figure-ground segregation (Wagemans et
al., 2012). Such segmentation steps are likely to exist at all
levels of human visual processing (Scholl, 2001).

Here, we use the approved GrabCut segmentation (Rother
et al., 2004) that was originally proposed for segmenting
objects in images with help of user interaction. It takes a
rectangle as input, as well as an initialization of pixels with
their likelihoods of being object or background. Segmenta-
tion is based on the color similarity of neighboring pixels,
thus regarding two of the most important factors of percep-
tual grouping (similarity and proximity). GrabCut performs
foreground/background segmentation by iteratively minimiz-
ing an energy function. The energy function measures how
different each pixel is from the foreground/background model
to which it is assigned, as well as from its direct neighbors.
It penalizes pixels different from the foreground model to be
labeled as foreground as well as labeling pixels as foreground
when all its neighbors are background.

The rectangle required for initialization is determined au-
tomatically with help of the proto-objects and the information
about already detected objects. The pixels of the currently at-
tended proto-object are merged with the information of this
object from previous frames (if available). This information
can be gathered from the 3D scene representation raycasted
to a 2D object map that will be explained later on (cf. Fig. 1).
Now, the smallest rectangle r containing all merged pixels is
determined (cf. Fig. 4, top), as well as a rectangle r′, obtained
by expanding r’s dimensions by 10%.

For initializing segmentation, GrabCut requires four pos-
sible pixel likelihood values: FG (foreground), BG (back-
ground), PR FG (probably foreground) and PR BG (proba-
bly background). These are obtained by defining three inter-
vals between 0 and the saliency maximum max in R:

L(x,y) =


FG : SM′′(x,y) ∈ [v3,max],(x,y) ∈ R
PR FG : SM′′(x,y) ∈ [v1,v3],(x,y) ∈ R
PR BG : SM′′(x,y) ∈ [0,v1],(x,y) ∈ R
BG : (x,y) ∈ R′ \R,

(3)
where R and R′ are the sets of pixels contained in rectangles r



Figure 3: Top: a book as example object. Middle: initializa-
tion of GrabCut, the grayscale values correspond to the four
possible likelihoods FG (white), PR FG (light gray), PR BG
(dark gray), and BG (black). Bottom: the segmentation result.

and r′ respectively, and vi = i · max
4 defines each of the interval

limits. The likelihoods are corrected by incorporating the in-
formation about the current and all other objects. This is done
by setting the pixels that correspond to the current object in
the 2D object map as PR FG, and the ones corresponding to
other objects as BG. An example of the initialization values
is displayed in Fig. 3. Five iterations of GrabCut produce a
binary object mask O for the attended blob.

Creating a 3D Scene Map
While the color image was used to detect proto-objects, the
depth data is used to build a 3D map of the scene. This is
done with the KinectFusion algorithm4 (Newcombe et al.,
2011), which builds a 3D map of the environment by integrat-
ing multiple range scans from a moving depth camera such as
Kinect. It performs two processes in parallel, namely, track-
ing of the pose of the camera, and registration of the depth
scans into a complete scene representation. The result is a 3D
scene map consisting of voxels (cf. Fig. 5, right).

To represent the scene at time k, a global truncated signed
distance function (TSDF) Sk(p) → [Fk(p),Wk(p)] is com-
puted by integrating the depth measurements, where p ∈ R3

is a point in space, Fk(p) the TSDF value and Wk(p) a weight.
The function is discretized in a voxel grid; its zero crossings
are points that lie on surfaces. Thus, from the voxel grid, a
point cloud can be rendered by choosing the voxels contain-
ing zero TSDF values.

Extended 3D Scene Map
Our system stores all object information in a 3D structure. It
is an extended version of the voxel grid defined in the previ-
ous section. For convenience, we will refer to the new voxel
grid as Sk[c], where voxel c= (x,y,z), x,y,z∈ [1..Vol] and Vol
is the number of cells into which the grid is discretized. We
extend the Sk function to

Sk[c]→{Fk[c],Wk[c],Lk[c],LWk[c], Ik[c], IWk[c]}, (4)

where Fk[c] and Wk[c] are the values defined before,
Lk[c],LWk[c] are variables that contain object label informa-
tion, and Ik[c], IWk[c] are IOR related and will be explained

4We use the open source implementation available in the Point
Cloud Library (http://pointclouds.org/)

later on. The 3D information from the voxel grid can at any
time be projected to produce a 2D image containing IOR or
object label information (details follow).5

Generating 3D Object Models
Now, the 3D object models are created and updated using the
binary object mask O from the segmentation stage. Let us
denote the function that maps pixels in the image to voxels in
the grid as map : p ∈ Z2,T ∈ R4,D ∈ Zm×n→ c ∈ Z3, where
p is a pixel, T the camera pose, and D a depth image with
dimensions m×n. The pixels in the object mask are mapped
to their corresponding voxels in the grid:

map(O,Tg,k,Dk)→ O′ = {c : c ∈ Z3}, (5)

where g is the global frame of reference.
Now it has to be decided which label to assign to the vox-

els in O′. There are two mechanisms corresponding to the
fixate and saccade behaviors of the system. During the fixate
behavior, the label of the currently attended object is used.
When the saccade behavior selects a new focus of attention,
it performs as follows. On the set of voxels O′ correspond-
ing to the new proto-object, we extract the current labels > 0:
Lab = {Lk[c] : Lk[c]> 0,c∈O′}. We find the most frequently
occurring label l in Lab. If less than 5% of the voxels are
labeled, we assign l a new value corresponding to a newly
detected object. The value of l is now used to update the
voxels contained in O′. This simple scheme lets us integrate
the overlapping segmentations of different views of the same
objects in the 3D map.

To be flexible against wrong segmentations or overlapping
objects, weights are assigned to the labels. Every time the
same label is assigned to a voxel, its label weight LWk is in-
cremented. If a voxel is updated with a different label, the
weight is decremented. Eventually it could reach 0, result-
ing in an unlabeled voxel. This mechanism lets us incremen-
tally build the object representations with a certain tolerance
to failure; furthermore, by thresholding the label weight we
can specify the degree of confidence in our object represen-
tations that we want for rendering the labeled point cloud. In
our experiments, we used LWk = 5, meaning that a voxel has
to be assigned to a specific object at least 5 times to be con-
sidered for this object.

3D IOR Map
After fixating an object for several frames, the object must
be inhibited to enable the next saccade. To allow a coherent
IOR over time, we store the inhibition values within the 3D
voxel grid: Ik[c] is a binary flag denoting whether that voxel
shall be inhibited and IWk[c] is a weight that determines how
long the effect shall take place. Having IOR information in
3D coordinates lets us generate 2D IOR maps Ik from the
required camera poses throughout the sequence.

5In (Newcombe et al., 2011), the T SDF function is raycasted,
given a camera pose, to generate a depth map prediction. Using this
method in our extended T SDF function means we can generate 2D
IOR or object label maps for every new pose of the camera.



Figure 4: Table Top sequence at different points in time (columns). From top to bottom: (i) image of the scene with currently
attended object (blue rectangle); (ii) the saliency map and the segmented part from the currently attended object; (iii) inhibition
of return maps; white: object-based IOR, gray: environment-based IOR; (iv) the 3D scene map including detected objects

According to human vision, we use two types of IOR
mechanisms: environment-based and object-based IOR
(Tipper et al., 1994). The latter comes intuitively from the
segmented object mask O. The environment-based IOR is
initialized by the regions close to the object but not on the ob-
ject, i.e., from a so called attended mask A = R′ \O. The two
masks are mapped as in the previous section to obtain their re-
spective voxel sets O′ and A′. For every voxel c in O′ and A′,
its weight IWk[c] is incremented. When it reaches a certain
threshold, the IOR flag Ik[c] is activated. The weight of all
not considered voxels is decremented. If a weight eventually
reaches 0, the IOR flag is reset to 0 as well.

Evaluation
To evaluate our system we recorded two video sequences in
an office environment with an RGB-D camera that provides
depth as well as color information. The first sequence shows a
setting of objects on a table top (cf. Fig. 4). The complexity of
this setting corresponds to the complexity of scenes in current
state of the art benchmarks and papers on unsupervised object
detection in machine vision (cf. Meger et al., 2010; Kootstra
& Kragic, 2011). However, the real world can be much more
complex. Therefore, we recorded a second sequence, that
shows a very cluttered setting (Fig. 5). Both settings were
recorded turning the camera so that the scene was observed
from different viewpoints (cf. Fig. 1).6

Fig. 4 illustrates several steps of our approach at different
time points. First, the book was attended (fixate behavior).

6Videos of the complete sequences as well as the resulting 3D
representations can be found at http://vimeo.com/cogbonn/

After fixating it for several frames, the region is inhibited (3rd
row) and the attention switches to the next proto-object (sac-
cade behavior). This proto-object consists of two real objects
(cup and tea box) since these objects are overlapping from
this point of view and have similar saliency. The procedure
continues, until all objects on the table have been detected.

For the second sequence, we present for space reasons only
the resulting 3D map with detected objects (Fig. 5, right).
Here, the approach finds 19 objects after 438 frames (∼13
sec). More objects could be found by longer observing the
sequence, but some would be missed, e.g., due to high simi-
larity to the background, and no current computer vision sys-
tem would be able to find all objects without pre-knowledge
in such a complex setting. Note that several of the “objects”
still have proto-object characteristics, meaning that they show
parts of objects (handle of dishwashing brush (6), bottom of
coffee machine (18)) or clusters of objects (tea boxes (11)).
Such semantic ambiguities could only be resolved by a recog-
nition system that investigates the attended regions in more
detail, or by a robot that interacts with objects and decides on
objectness depending on the connectivity of object parts.

To evaluate our system quantitatively, we measure how
precisely the detected objects were segmented. For this, the
points in the 3D map corresponding to objects were manu-
ally labeled to serve as ground truth. We generally denote the
ground truth of each object as G, and the 3D points of the
object detected by our system as S. We measure the preci-
sion p and recall r of the detected objects with respect to the
ground truth as p = (S ∩ G)/S, and r = (S ∩ G)/G. The
values are shown in Tab. 1 and Fig. 5. It can be seen that the



object 1 2 3 4 5 6 7 8 9 10

precision 93 69 92 99 62 52 90 60 100 99
recall 40 43 28 40 61 28 36 36 21 37

object 11 12 13 14 15 16 17 18 19

precision 23 90 83 98 91 99 100 89 100
recall 47 40 35 39 31 30 8 1 3

Figure 5: Coffee Machine sequence. Left: color image.
Right: 3D scene map with detected objects (numbers denote
labels). Bottom: precision/recall values in %

object Book Cup Cereals Box Car Sponge Pot

precision 99 55 98 99 97 94
recall 64 62 53 54 56 9

Table 1: Table Top sequence: precision/recall values in %
(cf. Fig. 4).

precision values are mostly very good (more than 90% for 17
out of 25 objects), that means that only few voxels were acci-
dentally assigned to an object. A bad value usually indicates
that a cluster of objects was detected and compared with sep-
arate objects in the ground truth (e.g. objects 5 and 11). The
recall values are lower, meaning that often not all of the vox-
els that belong to an object were detected. In the future, this
can be improved by additional post-processing steps based on
grouping mechanisms for figure-ground segregation.

Conclusion

We have presented a flexible framework for the detection of
unknown objects in a 3D scene. Unlike other approaches, the
system uses depth values additionally to a color image of a
scene and is thus able to generate 3D object models that are
incrementally updated when new information is available. All
perceptual data is spatially grounded and thus consistent over
different viewpoints. The results show that the algorithm is
able to detect many objects in scenes with high clutter, with-
out using any prior knowledge about the type of objects.

Applying attention mechanisms in space and time intro-
duces new challenges, for example the question of how and
when to switch attention between salient regions. We intro-
duced an environment- and object-based inhibition of return
mechanism that addresses this problem by using the informa-
tion from the 3D environment and object models for inhibi-
tion.
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