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Abstract. We present a new method for generating general object can-
didates for cluttered RGB-D scenes. Starting from an over-segmentation
of the image, we build a graph representation and define an object can-
didate as a subgraph that has maximal internal similarity as well as
minimal external similarity. These candidates are created by successively
adding segments to a seed segment in a saliency-guided way. Finally, the
resulting object candidates are ranked based on Gestalt principles. We
show that the proposed algorithm clearly outperforms three other recent
methods for object discovery on the challenging Kitchen dataset.

1 Introduction

The human ability to detect arbitrary objects fast and reliably is a very impor-
tant competence for everyday life. It enables us to interact with our environment
and reason about it. Also computational systems would strongly profit from such
capabilities, for example by being able to detect new objects without explicit in-
structions. This would increase the autonomy of such systems while decreasing
the interaction time spent with them.

Recently, interest in this detection of arbitrary, previously unknown objects,
called object discovery, has increased strongly. Several methods have been pro-
posed that address this problem in the computer vision community [2, 14, 5] as
well as in the field of robotics [13, 11, 16, 8]. We follow here the approach of
Manén et al. [14], which is a recent approach that has been very successful. The
method starts from an over-segmentation of the image and iteratively grows
object hypotheses by adding segments to a random seed segment. This is done
by representing the segmented image as a graph and then randomly sampling
partial spanning trees that correspond to object candidates.

We modify and extend Manén’s approach [14] in several ways to improve the
detection quality. First, we add the processing of depth data from an RGB-D
device to the processing pipeline. Second, we modify the random selection strat-
egy of Manén to an informed search based on saliency. Saliency detection, as
the bottom-up part of visual attention, is an important ability of human percep-
tion that guides the processing to regions of potential interest [15]. The saliency



information affects the selection of the seed segment as well as the selection of
iteratively added segments. Third, we adapt the computation of edge weights
of the graph to integrate a new feature called common border saliency. Fourth,
we adapt the termination criterion that determines when to stop the growing
of a candidate by considering the internal similarity as well as the external dif-
ference of the current candidate to a new segment. This idea is borrowed from
the segmentation method of [4] and fits very well here. And finally, we add an
SVM-learned ranking of the resulting object candidates based on Gestalt princi-
ples. These principles are descriptive rules from psychology that aim to explain
how humans segregate objects from background, especially, which visual proper-
ties of objects support our perception [17]. Gestalt principles have recently been
successfully used in machine vision approaches to evaluate the shape of objects,
e.g., in [16, 11, 8, 13], and we show that ranking based on these principles clearly
improves the detection quality.

We have tested our method on the recently introduced Kitchen dataset for
object discovery [8] that contains several challenging real-world sequences and
show that our approach clearly outperforms the approach from [14] as well as
several other recent methods for object discovery in terms of precision and recall.

2 System Overview

This section describes the proposed approach in detail (overview in Fig. 1). Given
an input RGB-D image, the data is first pre-processed, including the conversion
to an opponent colorspace as well as an inpainting of missing depth values. We
use the colorspace of [12], but shifted and scaled to the range [0, 1]. Next, a
saliency map and an over-segmentation are generated from the color data. From
the oversegmented map, a graph is constructed which has segments as vertices
and stores the similarity of neighboring segments in edge weights. Then, we
introduce the saliency-guided Prim’s algorithm that generates object candidates
by iteratively adding segments to a set of salient seed segments. Finally, we rank
the candidates by a combination of Gestalt principles which is learned with an
SVM. The output of the system is a list of object candidates sorted by objectness.

2.1 Saliency Computation

For saliency computation, we use the recently introduced VOCUS2 saliency sys-
tem [7]3, which is a re-implementation of the VOCUS system [6]. The main
structure is similar to traditional attention systems such as the one from Itti
[9]: the system computes intensity and color features by Difference-of-Gaussian
filters (center-surround ratio: 2 : 4) on different scales (here: 2) and octaves
(here: 5) before fusing them to a single saliency map (example in Fig. 2). We
chose this system since it has shown to outperform many state-of-the-art meth-
ods for salient object segmentation, is real-time capable, and works on cluttered
real-world scenes [7].

3 Code: http://www.iai.uni-bonn.de/∼frintrop/vocus2.html
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Fig. 1. Overview of the proposed approach: Given an RGB-D input, the algorithm
produces a list of object candidates, sorted by quality, here from 0.986401 (best) to
0.107082 (worst).

In the following, the saliency map is used to determine the seeds of the
candidate generation process and as a feature for determining object boundaries.

2.2 Graph Representation

Since our candidate generation method is based on finding minimum spanning
trees in graphs, it is necessary to transform the input image into an appropriate
graph representation. The graph representation is generated from an overseg-
mentation S of the image, obtained with the algorithm of [4].

We construct the graph G = (V,E) so that each segment si ∈ S becomes a
vertex vi ∈ V , and for each neighboring pair of segments si and sj , an undirected
edge ei,j ∈ E is introduced. To each edge ei,j , a weight wi,j is assigned that
represents the similarity of the corresponding segments (cf. Fig. 3).

The appearance similarity of two neighboring segments svm(fi,j) is evaluated
using an SVM that receives a feature vector fi,j extracted from the corresponding
segments si and sj . It computes the likelihood that both segments are part of
the same object. The 4 + 4 + 1 = 9 features that are used are:

– Intersection of the normalized 16 bin histograms of the four feature channels
(3 color + 1 depth)

– Absolute differences of average value per feature channel
– Common-border ratio as defined in [14]

To overcome possible problems that come with inconsistent appearances of
objects, an additional feature which relies on saliency is used to measure the
similarity of segments. The measure is called common border saliency and is
based on the observation that along boundaries of perceptually different regions
(e.g., object/background boundaries) a center-surround based saliency operator
produces a low response (cf. Fig. 2). It is defined as the average saliency along
the common border of the two segments. This information can be utilized later



Fig. 2. Common-border Saliency: The Difference-of-Gaussian (DoG) operator that is
used to computed center-surround contrasts has a low response when located at object
boundaries (green = center, red = surround of the DoG filter).

to enforce the candidate generation process to respect such boundaries. The final
edge weight/similarity value is defined as

wi,j = svm(fi,j) · cbs(si, sj), (1)

which is the likelihood of belonging to the same object svm(fi,j) weighted
by their common border saliency cbs(si, sj).

2.3 Candidate Generation Process

Motivated by [14], the candidate generation process is formulated as the problem
of finding partial maximal spanning trees using the Prim’s algorithm. The differ-
ences to [14] are: (i) instead of random vertices the seeds are chosen according to
their saliency, which enforces the inspection of the most promising regions first;
(ii) segments are chosen in a greedy manner based on the similarity measure of
Eq. 1; and finally, we introduce a deterministic stopping criterion compared to
the randomized one from [14].

Given the graph G of an image, we extract several partial maximal spanning
trees that serve as object candidates. The main idea is to select a starting seg-
ment (seed) sh0

as the initial candidate h0 = {sh0
} and to iteratively add the

most similar neighboring vertices until a termination criterion is met. After t
iterations, this results in candidate ht consisting of segments {sh0 , ..., sht}. The
termination predicate, inspired by the one in [4], takes into account the internal
dissimilarity between the segments of the candidate, the external dissimilarity
of the candidate to a given segment, and the size of the candidate.

Given a candidate ht at iteration t and a vertex (segment) vi, the external
dissimilarity is recursively defined as

Ext(ht, vi) = 1− 1

|Evi↔ht |
∑

ej,k∈Evi↔ht

wj,k, (2)

where Evi↔ht
is the subset of edges connecting vertex vi with any vertex in

ht. In other words, the external dissimilarity is the average dissimilarity of the
vertex vi to the current candidate ht. The final termination predicate is defined
as

Ext(ht, vi) > min

(
k, Int(ht) +

k

t+ 1

)
, (3)
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Fig. 3. Small example of the candidate generation process on an artificial graph: Green
= current candidate, red = pool of next segments, blue = final candidate. The vertex
weights are their external similarity to the current candidate and the edge weights
reflect the similarity of the connected vertices.

which compares the external dissimilarity to the next vertex with current maxi-
mal external dissimilarity. As in [4], parameter k regulates how much extra inter-
nal variability is accepted within the candidates; the less segments the candidate
has, the more influence k has. If the predicate holds, the vertex vi is rejected
and the growing process stops. Otherwise, the vertex is accepted and added to
the current hypothesis. In such case, the internal dissimilarity Int(ht+1) of the
candidate at time t+ 1 is updated as

Int(ht+1) = max (Int(ht), Ext(ht, vi)) , (4)

which is the maximal external dissimilarity obtained so far.
We generate object candidates for several values of k: we use k = 0.6 to

k = 0.9 in steps of 0.05. A small example of the candidate generation process
on an artificial graph is shown in Fig. 3. There it can be seen that 3 vertices are
accepted due to their high similarity whereas the next candidate vertex is not
similar enough and therefore rejected.

2.4 Candidate Ranking Using Gestalt Measurements

After all object candidates are generated, a scoring mechanism is applied to each
candidate h to evaluate its visual objectness. Several measures that correspond
to different Gestalt principles are derived and evaluated on the candidates.

Color/Depth Contrast: since objects usually have a strong contrast to
their surround, a contrast measure is derived. For each feature channel, each
segment within the candidate is compared with the neighbors outside the candi-
date, based on the intersection of normalized 16 bin histograms and the difference
of color averages of the corresponding segments.

Good Continuation: objects usually have smooth contours. Thus, the mean
curvature of the contour of the candidate is a good indicator for its objectness.
As in [13], we define good continuation as the average angular change of contour.

Symmetry: symmetry is a non-accidental property and is known to have
influence on human object perception [10]. Based on [11], we measure the overlap
O1 and O2 of the candidate with itself after mirroring along both of its princi-
ple axes (eigenvectors of the scatter matrix). The two measures describing the



symmetry are the maximal symmetry (max(O1, O2)) and the weighted average
symmetry ( 1

λ1+λ2
(λ1O1 + λ2O2)) weighted by the corresponding eigenvalues.

Convexity: convexity is also an important part in human object perception
[10]. We propose three measures that capture the convexity of a candidate based
on its convex hull. The first one, motivated by [11], is the average convex distance,
which is the average distance of the candidate boundary to the closest point on
the convex hull. Since it depends on the size of the candidate, it is normalized
by the number of points that contributed and the largest observed distance.
The second and third measure are the perimeter ratio and the area ratio of the
convex hull and the candidate.

Compactness: the compactness measure consists of three values. The av-
erage centroid distance is computed as the average distance of the boundary
points to the center of mass of the candidate. It is normalized by the number
of boundary points and the maximal observed distance. The second measure is
the circularity, that measures the similarity to a perfect circle of the same size.
The measure is based on the ratio of perimeter P and area A of the candidate

and is defined as 4πA(h)
P (h)2 . The last measure is the eccentricity and is defined as

the ratio of extensions λ2, λ1 along both principle axes by
√

1− λ2

λ1
.

Combination of measures: After all measures are computed, their con-
catenation is fed to an SVM that evaluates the objectness of the corresponding
candidate and assigns a real value to it. Based on the objectness, the list of
object candidates is sorted so that those that are likely to correspond to a real
object appear first. Finally, non-maxima suppression is applied to remove du-
plicate candidates with lower objectness. Whether a candidate is a duplicate,
is determined using the Intersection-over-Union (IoU) measure and a threshold
of 0.5 [3]. Output of our system is a list of object candidates, sorted by their
decreasing objectness value.

3 Training, Evaluation and Results

In this section, we evaluate the performance of our algorithm and compare it to
other state-of-the-art methods. We use the Kitchen dataset [8], which consists
of five video sequences showing different cluttered, real-world indoor scenes. The
sequences contain 600 frames and 80 objects on average. Ground truth labels
are available for every 30th frame. Furthermore, the labels are consistent over
the sequences, making it possible to evaluate the candidates on a sequence level.

3.1 Parameter Evaluation

We use the first of the sequences in [8] as training data and for parameter
estimation. The rest are used as test sequences.

Saliency System: Following the method of [1], we evaluated saliency maps
for several sets of parameters using the training sequence’s ground truth. The op-
timal parameters are introduced in Sec. 2. A detailed description of the saliency
evaluation and the results can be found in [18].
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Kitchen A Kitchen B Kitchen C Kitchen D Average
Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall

Ours (B) 14.3 81.4 30.3 89.9 12.2 90.8 36.2 59.9 23.2 80.5
Ours (P) 8.3 43.7 24.4 75.2 8.4 66.8 28.3 45.0 17.4 57.7

Ours (no Depth, B) 9.8 60.9 25.3 85.5 9.6 81.6 27.9 51.9 18.2 70.0
Ours (no Depth, P) 5.8 33.6 19.6 64.4 6.8 55.6 20.3 34.0 13.1 46.9

SOC (B) 19.3 74.3 21.5 68.0 11.3 75.2 15.9 31.5 17.0 62.3
SOC (P) 12.8 50.9 14.9 53.4 7.9 54.3 7.6 18.5 10.8 44.3

RP 12.4 51.5 14.0 47.9 14.1 66.2 8.4 17.2 12.2 45.7
OM 4.7 27.0 6.2 24.5 3.3 27.7 7.4 17.0 5.4 24.0

Fig. 4. Evaluation on the Kitchen dataset sequences with three reference methods RP
[14], OM [2] and SOC [8]. Top: Frame-based recall (left), precision (middle) and scene-
based recall (right) on the Kitchen D sequence. Bottom: Overview of area under curve
(AUC) values for precision and recall on all kitchen sequences. Highest values shown
in bold. B: bounding boxes, P: pixel-precise.

SVMs: Within the proposed method two SVMs are used. The first one is
trained to estimate the visual similarity of two segments (Sec. 2.2), a problem
which is treated here as a classification problem. Training is performed as follows:
(i) Given the training sequence, an over-segmentation as described in Sec. 2.2 is
generated, (ii) positive and negative segment pairs are extracted, (iii) the cor-
responding feature vector from Sec. 2.2 is extracted and (iv) the feature vectors
and positive/negative class labels are fed to the SVM. A positive segment pair
consists of two neighboring segments belonging to the same object, and a neg-
ative pair is a set of two neighboring segments that either belong to different
object or one belongs to an object and the other to the background. A segment
is part of an object if its area is covered by the object by at least 50%. To find
the best parameters, the training of the SVM is done using a grid search in the
parameter space and 10-fold cross-validation. The best parameter set is the one
that has the lowest average error over all 10 rounds.

The second SVM is used to evaluate the objectness of object candidates
(Sec. 2.4), which is treated as a regression problem. Training is performed as
follows: (i) As before, an over-segmentation of the training data is produced,
(ii) all ground truth objects are extracted by forming candidates of all covered
segments, (iii) for each candidate the feature vector introduced in Sec. 2.4 is
extracted and the IoU with the ground truth is measured, and (iv) for each
candidate the feature vector is the input to the SVM, which regresses on the
IoU. Like before, the best parameter set is obtained using a grid search and
10-fold cross validation. A detailed description of the training process and the
results can be found in [18].
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Fig. 5. Evaluation of the effect of different ranking methods. Plain: ranking by av-
erage saliency; sorted: ranking by Gestalt features; NMS: ranking after non-maxima-
suppression (removes dublicates). Each individual step as well as their combination
increases the quality of the candidates.

3.2 Comparison to other Methods

We compare our approach to the methods RP [14], OM [2] and SOC [8]. We
measure precision and recall in terms of the number of valid candidates (IoU ≥
0.5). Additionally, we measure global, scene-based recall as the number of objects
that were found throughout the whole sequence. We use the four sequences that
were not used for training of the Kitchen dataset [8] as test data.

Although the dataset is annotated with pixel-precise ground truth, all eval-
uations are also performed using bounding boxes. This way a fair comparison
of the methods is guaranteed, since RP and OM only produce bounding boxes.
Our method is evaluated with and without depth information, since the reference
methods are also developed to work only with color data.

Fig. 4 shows the evaluation results exemplarily for the Kitchen D sequence.
It contains recall, precision and global recall (from left to right) along with the
corresponding area under curve values for each method. The proposed method
outperforms all reference methods in terms of recall as well as precision. The
recall plot shows that around 40% of the objects in a frame are detected and
that almost all objects in the sequence are detected at least once. The precision
plot shows that when taking few candidates, e.g. 20, many of them match an
object. The results on the other sequences are consistently good and can be seen
in the table in Fig. 4: our method has on average the highest precision and recall,
and outperforms all the other methods in each sequence in terms of recall.

In Fig. 5 we compare different ranking strategies: the default ranking strategy
according to the average saliency (’Plain’ in the figure), sorting according to
the Gestalt measures (’Sorted’), and the non-maxima suppression (’NMS’). The
results can be explained as follows: sorting the candidates by their objectness
will cause good candidates to appear first which explains the high precision
for few candidates and the early increase of the recall. On the other hand, the
non-maxima suppression removes duplicate candidates (also good ones) which
explains the overall high recall as well as the drop in precision. For the recall
the removal of duplicates has only positive effects, since duplicates will at most
only re-discover objects or will not discover any object at all.



In Fig. 6 the ten best candidates per method are shown. It can be seen
that two of the reference methods (RP and OM) generally produce very large
candidates that capture either multiple objects or very large structures. The
proposed method on the other hand adequately produces candidates for the
individual objects.

Fig. 6. Top 10 object hypotheses for some images. From top to bottom: Input image,
ground truth, OM [2], RP [14], SOC [8], Ours (sorted + NMS).



4 Conclusion

We have presented a method for finding arbitrary, unknown objects in RGB-
D data that utilizes principles of human object perception – visual attention
and Gestalt psychology. This enables a fast and reliable generation of object
candidates even for complex scenes containing many objects. We have shown
that the presented method outperforms several state of the art methods and is
able to detect more than 50% of the objects in a frame and more than 90% of
the objects visible in the scene.
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