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ABSTRACT
We present a new segment-based method for saliency detec-

tion based on multi-size superpixels that combines local and global
saliency cues. We extract superpixels at several scales and represent
each superpixel with a normal distribution in CIE-Lab space esti-
mated from its associated pixels. Global saliency is computed by
grouping similar superpixels to estimate the spatial distribution of
colors, while local saliency detection is achieved by determining the
center-surround contrast of neighboring superpixels. Both methods
rely on the Wasserstein distance on L2 norm (W2) to measure per-
ceptual (dis-)similarity between superpixels. Additionally, we pro-
pose a Saliency Flow technique to refine the local saliency map. Our
approach uses very few empirical parameters and outperforms 6 re-
cent state-of-the-art saliency detection methods in terms of several
evaluations on a widely used benchmark.

Index Terms— Saliency detection, Wasserstein distance, Color
distribution, Center-surround contrast, Clustering.

1. INTRODUCTION

Saliency detection has become a major research area in recent years
and has been used for several high level vision applications [1,
2]. Many computational attention methods have built their saliency
models based on local center-surround differences [3, 4, 5]. On
the other hand, the global compactness of color is another efficient
evidence in saliency detection [6, 7, 8]. From the perspective of
computation, the classical approaches often calculate a pixel-based
saliency by use of sliding integration windows to estimate center
and surrounding appearances [3, 4, 5]. These windows are rigid
and ignore boundaries present in the image content. Another type
we call segment-based approaches, which apply content-aware seg-
mentation as a preliminary step before calculating saliency for each
extracted segment instead of each pixel [6, 8, 9, 10].

In this work, we propose a new segment-based saliency detec-
tion approach based on superpixels that are computed on multiple
scales. The color occurrence of pixels in each superpixel is ap-
proximated by a multivariate normal distribution. This assumption
is appropriate for superpixels since the clustered pixels have simi-
lar properties in the selected feature space. The difference between
superpixels is measured with the Wasserstein distance on L2 norm
(W2-distance) [11]. Based on this metric, the global and the local
saliencies are computed in a coherent manner. As shown in Fig. 1b,
global saliency is determined with a parameter-free approach. This is
in contrast to others which employ the global compactness evidence
that usually needs several parameters to control the color sensitivity
of element distributions [6], or determine the dominant colors [8].
In local saliency estimation, a locally constrained and finite random
walk based procedure named Saliency Flow is proposed to refine

(a) (b) (c) (d) (e)

Fig. 1. From left to right: (a) the original image. (b) global saliency
map at single scale ((c) and (d) correspond to the same scale). (c)
local saliency map. (d) local saliency map after the Saliency Flow
method. (e) final saliency map of combining all scales.

our local saliency map via balancing the inside of probable objects
as well as smoothing their outside borders with similar surrounding
background regions. Fig. 1d shows two examples of using Saliency
Flow to refine the local saliency maps in Fig. 1c. Furthermore, we
introduce a method for measuring the effectiveness and determining
the convergence state of this iterating procedure.

We show that our approach outperforms 6 recent methods for
saliency detection on a widely used benchmark.

2. THE COMPUTATIONAL SALIENCY FRAMEWORK

This section describes the architecture of our approach in detail.
As shown in Fig. 2, firstly, the multi-size superpixels are extracted
from images according to predefined scale levels. Secondly, the vi-
sual appearance of each superpixel in every scale is approximated
by a three-dimensional normal distribution in CIE-Lab space. Dif-
ferences between superpixel-appearances are measured by theW2-
distance. Both global and local saliency maps are obtained based
on this metric and further fused into a single saliency map per scale.
Thirdly, we combine these single scale saliency maps over all scales
to form a final saliency map.

2.1. Multi-size Superpixel Extraction and Measurement

We use the SLIC algorithm introduced in [12] to extract superpix-
els of a given number. Since too small regions make the appearance
distribution estimation less meaningful, and are not able to reliably
capture texture information, at least 64 pixels are ensured in each
superpixel at the finest scale. Then, we repeatedly conduct the SLIC
algorithm for several scales starting from the finest scale by decreas-
ing the number of demanded superpixels by a factor of two. Here,
three scales are analyzed in our experiments. At scale t, the ith su-
perpixel is represented as a tuple St

i =
(
NS(µ,Σ),~cS = (x, y)

)t
i
,

where µt
i and Σt

i are the mean value and the covariance matrix of
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Fig. 2. Diagram of our proposed algorithm

the normal distribution NS
t
i in CIE-Lab space estimated by a ML-

fitting of the feature values associated with the pixels of the ith su-
perpixel, respectively. ~cS i is the spatial center of those pixels. Re-
cently, Klein and Frintrop [11] introduced theW2-distance in their
pixel-based saliency detection system. We follow this idea and apply
it for our segment-based measure to compute the distance between
superpixels. According to [13], theW2-distance between two nor-
mal distributions as used here for appearance models of superpixels
is computed as

W2(NS
t
i,NS

t
j)=

√
||µi−µj ||2+tr(Σi+Σj)−2 tr

(√
ΣiΣj

)
, (1)

where tr(·) refers to the trace of a matrix.

2.2. Global Saliency: The Spatial Distribution of Colors

For all color components in an image, the rare, spatially centralized
distributed ones always appear more salient. The spatial distribu-
tion of colors could be directly assessed based on the dissimilarities
between superpixels in the whole image [6]. Our method is more so-
phisticated in the way that we add a higher level clustering step based
on superpixels and rate the spatial intra-cluster distances. For this
purpose, we employ the APC (Affinity Propagation Clustering [14])
to identify clusters and estimate the intra-cluster probabilities by the
responsibilities between each superpixel and all cluster centers [15].
Hereby, the responsibility r(sti, c

t
k) denotes how well-suited super-

pixel ctk is to serve as exemplar for superpixel sti .
With the affinity matrix composed of negative squared W2-

distances based on Eq. (1), APC selects representative exemplar
superpixels as the cluster centers. Similar to the definition of super-
pixels, the kth cluster at scale t forms a tuple Ctk =

(
NC(µ,Σ),~cC

)t
k

,
where ~cCt

k is the center of gravity with respect to the membership
probabilities of all superpixels in image coordinates, which is com-
puted as ~cCt

k =
∑M(t)

i=1 Pg(Ctk|St
i ) · ~cSt

i , where M(t) is the number

of superpixels and Pg(Ctk|St
i ) refers to the membership probability

of the ith superpixel to the kth cluster at scale t.
Let Ct =

{
ct1, . . .

}
denotes the set of superpixels that has been

chosen as exemplars at scale t, while St =
{
st1, . . .

}
is the disjoint

set of non-exemplars, respectively. The membership probability of
the j th non-exemplar superpixel to the kth cluster is computed ac-
cording to how well the exemplar ctk matches with stj .

We first linearly normalize the range of responsibilities of all
superpixels in St to [−1, 0]

r̂(stj , c
t
k) =

r(stj , c
t
k)−maxst

i
∈St

{
r(sti, c

t
k)
}

maxst
i
∈St

{
r(sti, c

t
k)
}
−minst

i
∈St

{
r(sti, c

t
k)
} (2)

and, since r corresponds to log-probabilities, further exponentially
rescale them as

r̂e(stj , c
t
k) = exp

(
r̂(stj , c

t
k)
/

Varst
j
∈St

(
r̂(stj , c

t
k)
))

, (3)

where Varst
j
∈St

(
r̂(stj , c

t
k)
)

is the variance of the normalized re-

sponsibilities send to ctk. The rescaled responsibilities between two
exemplars are defined as

r̂e(ctj , c
t
k) =

{
1, if j = k

0, otherwise
. (4)

Eq. (3) and Eq. (4) define responsibilities from all superpixels to
each exemplar. With these, the intra-cluster probabilities of each
superpixel can be obtained as

Pg(Ctk|St
i ) = r̂e(St

i , Ctk)
/K(t)∑

k=1

r̂e(St
i , Ctk), (5)

where K(t) is the number of clusters at scale t. By weighting all
superpixels with their intra-cluster probabilities, the probability of
being salient for cluster Ctk is obtained by scoring the relative spatial
spreading between all superpixels and the kth cluster:

Pg(Ctk) = 1
/K(t)∑

j=1

M(t)∑
i=1

Pg(Ctk|St
i ) · ||~cSt

i − ~cCt
j ||2. (6)

Finally, the global, superpixel level saliency can be represented as
the joint probability of Eq. (5) and Eq. (6) as

Pg(St
i ) =

K(t)∑
k=1

Pg(Ctk) · Pg(Ctk|St
i ). (7)

2.3. Local Saliency: The Local Contrast of Superpixels

Sometimes, the global method cannot distinguish the salient object
from the background at every scale (cf. Fig. 3b). An alternative way
to solve this problem is introducing local information. We follow the
classical center-surround theory to compute the local saliency by re-
garding each superpixel as center and other superpixels as surround
which are weighted by their Euclidean distances to the center.

At scale t, the local contrast of superpixel St
i is obtained by

accumulating all the appearance distances from other superpixels

Pl(St
i ) =

1

g

M(t)∑
j=1

W2(NS
t
i,NS

t
j) · exp

(
−
||~cSt

i − ~cSt
j ||2

σ2
c (t)

)
, (8)
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(a) image/result (b) global saliency (c) local saliency (d) saliency flow

Fig. 3. From top to bottom: (a) the original image and the final
saliency map. (b) the global saliency maps in lowest and finest scales
((c) and (d) correspond to the same scale). (c) the local saliency
maps. (d) the local saliency maps after the Saliency Flow.

where g =
∑M(t)

j=1 exp
(
−||~cSt

i − ~cSt
j ||2/σ2

c (t)
)

. To ensure the
spatial radius of neighbor range to be scaled proportionally, we as-
sociate σc(t) to the average distance between adjacent superpixels.

Inspired by the Random Walk related theories, we propose a
procedure called Saliency Flow to refine the local saliency map by
balancing the saliency values inside probable proto-objects as well
as smoothing the locally standing out background regions.

At each scale, we construct an undirected graph model Gt =
{Vt, Et} comprising a set of vertices with all superpixels: Vt ={
St
1, . . . ,St

M(t)

}
and edges Et = {ei,j;t} which represent the pair-

wise relations between superpixels in both color and spatial space:

ei,j;t =

exp
(
−W2(NS

t
i,NS

t
j)

2/σ2
d(t)
)

, if St
i connects to St

j

0, otherwise.
(9)

Here, we employ the Three-Sigma Rule and adaptively choose σd

following 3 · σd(t) = max
{
W2(St

i ,St
j)
}

. Each column of Et is
normalized by its L1 norm for a probability description of saliency
transferring from one superpixel to another. The balanced local
saliency after n steps of Saliency Flow can be expressed as:

f(0)t = ~p t =
(
Pl(Vt;1), . . . , Pl(Vt;M(t))

)T
f(n)t = f(n− 1)t · Et = ~p t · (Et)

n . (10)

In each step, the saliency of superpixels gravitates towards their simi-
lar looking neighbors. Taking superpixels located at both sides of the
object’s boundaries for example, the superpixels at the background
side have a high probability to flow to the adjacent regions of back-
ground while the superpixels at the object side will more likely flow
towards the inside of object.

We observed that the saliency differences between similar neigh-
bors are quickly smoothed after some iterations. However, the
flow continues to equalize the differences also between non-similar
neighbors which finally results in a uniform saliency distribution of
all superpixels when n→+∞. Therefore, an appropriate n should
not only ensure enough iterations to smooth the inner regions of
an object but also terminate the iteration in time to prevent much
”saliency mass” flowing between object and background. We intro-
duce a measure of locally absolute exchanged saliency to estimate
the effect of saliency flow and determine n as follows:

τf (n) = mean

∑
i,j

∣∣∣f(n)ti−f(n)tj

∣∣∣ ei,j;t
 ,

where St
i ,St

j ∈ Ctk, and (11)

argmin
n

{
τf (n− 1)− τf (n)

}
< cmin,
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Fig. 4. Precision-Recall curves to measure the effectiveness of
saliency segmentation based on fixed thresholds. Please see Fig. 5a-
5i for visual comparisons.

where cmin = 10−5 was chosen in our experiments. τf counts the
absolute exchanged ”saliency mass” between each pair of superpix-
els which not only spatially connect to each other but also are as-
signed to the same cluster. That is, it considers the locality both in
spatial and color space.

2.4. Feature Fusion and Multi-size Combination

At each scale t, both global map Pg(St
i ) and local saliency map

f(n)ti are normalized to [0, 1] and combined into the single scale
saliency map by superpixel-wise multiplication. Furthermore, the
arithmetic mean of the normalized pixel level saliency maps over all
scales is used to generate the final saliency map.

3. EXPERIMENTS

In this section, we evaluate our salient region detection method
with 6 recently proposed saliency detection approaches (the num-
bers following the names of these methods indicate their publishing
years): CoDi12 [11], SF12 [6], XL12 [10], Rare12 [16], RC11 [9],
IG09 [17]. All methods are evaluated on 1000 images from the
subset of the MSRA Salient Object Database [17, 18]. All result
images of other methods except Rare12 [16] directly came from
their project home pages, and we produced the result of Rare12 [16]
using their published code.

3.1. Saliency Region Segmentation by Fixed Thresholds

We normalize all the saliency maps to the range of [0, 255] and ob-
tain 256 binary results by varying the segmentation threshold. The
precision and recall rates are firstly computed for each image at every
threshold then averaged over the overall benchmarks. Fig. 4 com-
pares the precision versus recall curves of our method with other
algorithms. It is clear that our method achieves a higher precision
value at every given recall than other methods. Notice that, com-
pared to others, XL12 [10] has a much larger minimum recall value,
which means that it produces a quite uniform saliency distribution
inside its detected foreground and Fig. 5e shows an example with this
situation. However, the higher false positives make it still achieving
a much lower precision than our method achieved at all recalls.
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(a) original (b) IG09 (c) RC11 (d) Rare12 (e) XL12 (f) CoDi12 (g) SF12 (h) Ours (i) GT

Fig. 5. Visual comparison of all evaluated methods (”GT” in column i refers to the ground truth).
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Fig. 6. Precision, Recall, F-measure and MCC to measure the effec-
tiveness of saliency segmentation based on adaptive threshold. From
left to right, all methods are sorted by descending MCC measures.

3.2. Saliency Region Segmentation by Adaptive Thresholds

Instead of using all possible thresholds for testing every image,
Achanta et al. [17] proposed a simple and adaptive way of selecting
a threshold only depending on the saliency values, which defines
the threshold as 2 times of average gray value in the saliency map.
Furthermore, based on the obtained precision and recall values, the
F-measure is computed for each image and averaged over the whole
database, which is defined as (1 + β2) × P × R/(β2 × P + R),
where P and R refer to the precision and recall, respectively. Similar
to [17] and [6], β2 is fixed at 0.3 in our evaluation. Fig. 6 compares
the precision, recall and F-measure (the green bars) values of all
evaluated approaches. As one can see, our method is also ahead of
the others in this evaluation.

From the perspective of precision, recall and F-measure compu-
tations, neither of them considers the impact of true negative saliency
assignments. These evaluations bias to benefit the approaches which
can correctly find the true foreground rather than others which fail
to do it but can avoid pushing the not salient regions forward. A fair
comparison may be achieved by computing the Matthews correla-

tion coefficient (MCC) [19], which is defined as:

MCC =
tp× tn− fp× fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
, (12)

where tp, tn, fp, and fn refer to true positives, true negatives, false
positives and false negatives, respectively. MCC is regarded as a
fair measurement in binary classifications especially for two unbal-
anced categories. Eq. (12) returns a value ranging in [−1, 1] which
stands for a continuous measure from totally irrelevant (−1) to pre-
cisely overlapping (+1) in our evaluation. The violet bars in Fig. 6
show the MCC values of each evaluated method. Again, our method
outperforms others in this evaluation. It is also interesting that the
evaluation result of the MCC measure differs from the one according
to the F-measure for several approaches.

4. CONCLUSION

We have presented a bottom-up region based saliency detection by
evaluating two attributes of pre-segmented regions: global rareness
and local prominence with an effectiveW2-distance measure. In the
global part, by taking advantage of APC, several practical problems
caused by non-Euclidean metric are solved properly. In the local
part, we also proposed the ”Saliency Flow” procedure to address the
problem of discontinuous saliency assignment inside proto-objects.
The used two evidences work in different ways and the experiments
also show that they usually give prominence to same salient objects
while suppress different background regions in an image. That is,
the global and the local considerations independently contribute to
the final result with equivalent importance.

On average, our algorithm takes 0.7s for processing an image.
The whole project is implemented in C++ and timings have been
tested on an Intel Core i5-2410M(obile) at 2.3 GHz. Most process-
ing time is spent on the distance computation and the clustering. In
the future, we plan to use a sparse affinity matrix based on clipped
distances to achieve real-time performance.
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