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A Multi-size Superpixel Approach for Salient
Object Detection based on Multivariate Normal

Distribution Estimation
Lei Zhu, Dominik A. Klein, Simone Frintrop, Zhiguo Cao∗, and Armin B. Cremers

Abstract—This article presents a new method for salient object
detection based on a sophisticated appearance comparison of
multi-size superpixels. Those superpixels are modeled by multi-
variate normal distributions in CIE-Lab color space, which are
estimated from the pixels they comprise. This fitting facilitates an
efficient application of the Wasserstein distance on the Euclidean
norm (W2) to measure perceptual similarity between elements.
Saliency is computed in two ways: on the one hand, we compute
global saliency by probabilistically grouping visually similar
superpixels into clusters and rate their compactness. On the other
hand, we use the same distance measure to determine local center-
surround contrasts between superpixels. Then, an innovative
locally constrained random walk technique that considers local
similarity between elements balances the saliency ratings inside
probable objects and background. The results of our experiments
show the robustness and efficiency of our approach against 11
recently published state-of-the-art saliency detection methods on
five widely used benchmark datasets.

Index Terms—Saliency detection, Multi-size superpixels,
Wasserstein distance, Center-surround contrasts, Cluster com-
pactness, Random walk.

EDICS Category: 5. SMR-HPM, 2. SMR-SMD, 4.
SMR-Rep, 33. ARS-IIU, 8. TEC-MRS

I. INTRODUCTION

HUMAN vision is usually capable of locating the most
salient parts of the scene with a selective attention

mechanism [1]. From the perspective of computer vision,
salient region detection is still challenging since the human
attention system has not been fully understood. However, an
important attribute which makes a region salient is that it
stands out from its surroundings in one or more visual features.
In recent years, saliency detection has become a major research
area and many computational attention systems have been built
during the last decade that are based on this center-surround
concept [2]. Applications of saliency detection include object
detection [3], [4], image retrieval [5], [6], image and video
compression [7], [8], as well as image segmentation [9], [10].
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The classical approaches for saliency computation stem
from the simulation of human attention mechanisms. These
approaches compute the saliency of a pixel as the difference
of a center and a surround regions, both of which are centered
at the pixel and can be rectangular or circular [11]–[13]. There-
fore, we call these methods the local saliency approaches. The
selection of surrounding regions is always a difficult problem
for pixel-based or region-based methods due to the ambiguity
of unknown object scales. A reasonable solution is the multi-
scale scheme that computes the center-surround response at
several different scales [11], [12], [14], [15]. Some existing
approaches also explore the local contrast on single scale. In
this case, the surroundings can be chosen as the maximum
symmetric surround [16] or regions of the entire image with
spatial weighting [17], [18].

Alternative approaches consider the occurrence frequency
of certain features in the whole image, i.e., salient objects
are more likely belonging to parts with rare observations in
the frequency domain [19], [20]. We call these approaches
the global saliency approaches. Zhai et al. [21] evaluate the
pixel-level saliency by contrasting each pixel to all others.
Achanta et al. [9] directly assign the salient value of a pixel
with the difference from the average color. By abstracting the
color components, the global contrast is efficiently computed
in [17] at pixel level. Global saliency is also investigated via
the visual organization rule, which can be computationally
transformed into rating the color distribution [22].

Different from the methods based on the local or global
contrast, some researchers work on the priors regarding the
potential positions of foreground and background mathemat-
ically or empirically. Gopalakrishnan et al. [23] represent an
image as a graph and search the most salient nodes and
the background nodes using the random walk technique. By
analyzing photographic images, Wei et al. [24] found that
pixels located on four boundaries of an image contain the
background attributes and validated this prior on two popular
datasets. Recently, the assumption of boundary prior was
investigated in several graph-based saliency models [25]–[28]
and achieved impressive results.

In this work, a new segment-based saliency detection
method is proposed. We mainly address two problems that
are seldom discussed in previous work:

1) Saliency models which take color information as the
primary feature often simply compute the region contrast as
the Euclidean distance between the average colors of regions
or as the histogram-based contrast. The former is efficient and
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reasonable especially when regions are organized as superpix-
els. However, it might be imprecise when large regions are
considered. Conversely, the histogram-based contrast is more
precise in this case but still suffers from parameter problems
such as the number of bins and the selection of metric space.

Instead, we represent the color appearance of superpixels by
multivariate normal distributions. This bases on the assumption
that the color occurrences of the pixels in each region follow a
multivariate normal distribution. This assumption is especially
well suited for superpixels since the clustered pixels have
similar properties in the selected feature space. The difference
between two superpixels is measured with the Wasserstein
distance on the Euclidean norm (W2 distance), which was
firstly introduced to compute the pixel-based saliency in our
previous work [29]. Additionally, we also propose a fast
algorithm to compute theW2 distance on N-d (N ≤ 3) normal
distributions.

2) Holding a uniform saliency distribution of an object
interior is difficult in the local saliency computation that is
based on the center-surround principle. Typically, this problem
can be alleviated by combining multi-layer saliency maps or,
smoothing the single layer saliency map at pixel level [18].
We propose a locally constrained random walk procedure
to directly refine the local saliency map at region level and
achieve a more balanced rating inside of probable proto-
objects. On the one hand, this approach can improve the final
combination results. On the other hand, compared to the Gaus-
sian weight-based up-sampling [18], it avoids spreading the
error of saliency assignment to the background regions when
inappropriate Gaussian weights for controlling the sensitivity
to color and position are selected.

Thus, in a nutshell, the main contributions of this paper are
• A new representation of superpixels by multivariate nor-

mal distributions and their comparison with the Wasser-
stein distance, which is consistently used throughout the
approach for local as well as global saliency computation.
It enables to combine the advantage of the rich infor-
mation of probability distributions to represent feature
statistics with a computationally efficient method for
representation and comparison.

• A novel saliency flow method, which is a locally con-
strained random walk procedure to refine the local salien-
cy map. It achieves a more balanced rating inside of
probable proto-objects and improves the performance
significantly.

II. RELATED WORK

The detection of visual saliency is one of the two aspects of
human visual attention: bottom-up and top-down attention [1],
[30]. Bottom-up attention relates to the detection of salient
regions in the perceptual data by purely analyzing this data
without any additional information. Top-down attention on the
other hand considers prior knowledge about a target, the con-
text, or the mental state of the agent. While top-down attention
is an important aspect in human attention, prior knowledge is
not always available and many computational methods profit
from purely determining the bottom-up saliency. Among these

application areas are object detection and segmentation, that
we will consider here. Thus, we concentrate on the following
approaches that deal with bottom-up saliency detection.

A. Pixel-based Saliency

The local contrast principle assumes that the more different
an image region is compared to its local surround the more
salient it is. One of the first pixel-based methods to detect
saliency in a biologically motivated way was introduced by
Itti et al. [11]. Their Neuromorphic Vision Toolkit (iNVT)
computes the center-surround contrast at different levels in
DoG scale space and searches the local maximum responses
with a Winner-Take-All network. Harel et al. [31] extend the
approach of Itti by evaluating the saliency with a graph-based
method. In a recent approach, Goferman et al. [32] follow
several basic principles of human attention and assume that the
patches which are distinctive in colors or patterns are salient.
The algorithm proposed by Achanta et al. [16] produces an
original scale saliency map which can keep the boundaries
of salient objects by accumulating the information of the
surrounding area of each pixel. Milanfar and Peyman [33]
compute the center-surround contrast of each pixel using a
kind of local structure called LSK which is robust to the
noise and variation of luminance. The approach of Liu et
al. [14] combines local, regional, and global features in a CRF
based framework. Li et al. [34] propose a method using the
conditional entropy under the distortion to measure the visual
saliency, which is also a center-surrounding scheme.

The pure global approaches assume that the more infrequent
features occur in the whole image, the more salient they are.
In [19] and [35], Hou et al. assign higher saliency values to
those pixels which have higher response to the rare magnitudes
in amplitude spectrum, and identify others as the redundant
components. However, Guo et al. [20] found the image’s phase
spectrum is more essential than the amplitude spectrum to
obtain the saliency map. Achanta et al. [9] also assume that
the background has lower frequencies, and directly compared
each pixel with the entire image in color space.

The global principle only works well if the background is
free of uncommon feature manifestations. On the other hand,
the local contrast principle involves the difficulty to estimate
the scale of a salient object. To avoid this problem, such
methods usually define several ranges of a pixel’s neighbor-
hood or construct a multi-level scale space of the original
image. However, these local methods suffer more from the
boundary blurring problem, since on unsuitable scales the
foreground/background relation cannot be clearly decided.

B. Segment-based Saliency

Segment-based methods take homogeneous regions as the
basic element rather than pixels. Cheng et al. [17] segment the
image into regions with the algorithm proposed in [36], and
obtain the saliency map by computing the distance between
histograms which are generated by mapping the color vectors
of each region into a 3D space. The same pre-segmentation
method was also used in [13] and [37]. Instead of computing
the dissimilarity between regions directly, Wei et al. [13]
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Fig. 1. The overall algorithm flowchart of out method. The structure of the algorithm is exemplarily presented for two scales. (a): each region surrounded
by the red curves refers to one superpixel. (b): each superpixel is represented by the multivariate normal distribution estimated from its pixels. Based on the
L2-norm Wasserstein distance between every pair of superpixels, the local and global saliency are obtained. (c): global saliency computation: superpixels are
clustered according to their color similarity and exemplar superpixels (cluster centers) are determined. The two images show exemplarily two of the clusters,
the corresponding exemplar superpixels, and the cluster saliency scores that measure the spatial distribution of a cluster. (d) and (e): the local saliency is
computed by a local contrast approach based on superpixels, which is further refined by a saliency flow step. (h): the final saliency map is obtained by fusing
the global and local saliency maps ((f) and (g), respectively) over all scales.

obtain the saliency of an image window by computing the
cost of composing the window from the remaining image
parts. Park et al. [37] merge regions with their neighbors
repeatedly according to the similarity of their HSV histograms,
and update the saliency of joint regions in every combination.
Ren et al. [38] first extract the superpixels from the image
which are further clustered with GMM, and use the PageRank
algorithm to obtain the superpixel-level saliency. Perazzi et
al. [18] obtain the region-level saliency map by measuring
the color uniqueness and spatial distribution of each extracted
superpixel. A finer pixel-level saliency map is produced by
comparing each pixel with all superpixels in both color space
and location. Wei et al. [24] firstly proposed the background
prior which assumes that the boundaries of an image can
effectively represent the background components. Following
this idea, Yang et al. [25] consider saliency detection as a
graph-based ranking problem and use the label propagation to
determine the region-level saliency. A similar graph model is
employed in [26], which casts saliency detection into a random
walk problem in the absorbing Markov chain.

III. MULTI-SIZE SUPERPIXEL-BASED SALIENCY
DETECTION

We propose a superpixel based method for bottom-up de-
tection of salient image regions. An image is segmented into a
compound of visually homogeneous regions at different scale
levels for representing its fine details as well as large scale
structures. On each scale, two complementary approaches for
the determination of saliency are employed separately: 1) In
a global way, we measure the spatial compactness of similar-
looking parts. Superpixels are more salient if they form a

more coherent cluster within the image when categorized by
their color appearances. 2) In a local way, we compute the
center-surround contrast at the superpixel level. The more a
superpixel differs from its surrounding ones, the more salient
it is. Local contrast approaches usually grasp every pop-out
region whose scale fits the current center-surround structure.
That is, isolated background regions with an appropriate scale
are also emphasized. In our work, the boundary prior [24] is
used to eliminate the highlighted background regions. Further-
more, the local saliency map is refined by a locally constrained
random walk procedure that dilutes saliency in the background
and likewise balances it inside potential objects.

We assume that the appearance of pixels grouped into one
superpixel is well expressed by the associated ML-estimate
of a multivariate normal distribution in CIE-Lab space. This
representation enables to efficiently measure visual differ-
ence/similarity between superpixels using the Wasserstein dis-
tance on the Euclidean norm [29]. Figure 1 shows a flowchart
of our system.

A. Multi-size Superpixel Extraction

We use the SLIC superpixel extraction method introduced
in [39], which divides an image into adjacent segments of
about the same size containing as homogeneous colors inside
as possible. For a given number of superpixels, the image is
initially segmented into regularly sized grid cells. Then, iter-
ative K-Means clustering is performed on a feature space that
combines CIE-Lab colors and pixel locations. This clustering
of nearby, similar-looking pixels refines the cells into superpix-
els. As mentioned in Section I, we extract superpixels at multi-
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size levels. This is achieved by repeating the SLIC algorithm
with different numbers of desired clusters, thus initializing
with a coarser or finer grid. In our method, we increase the
number of superpixels in steps of factor 2 between scale levels.
The images in Figure 2a show examples of segmentation
results with different superpixel sizes. Notice that we ensure
a minimal cell size of 100 pixels when initializing the grid,
because with less pixels it becomes increasingly unlikely to
get meaningful appearance distributions. In our experiments,
we analyzed L = 3 scale levels.

B. Superpixel Representation and Superpixel Contrast

We express the occurrence of low-level features in each
superpixel by means of multivariate normal distributions. As
argued in Section I, the unimodal distribution assumption is
appropriate for superpixels. Different to [29], who splits the
feature space into a one-dimensional lightness plus a two-
dimensional color distribution, we directly use the original
three dimensions of CIE-Lab color space. For conversion from
RGB web images, we assume the D65 standard illuminant to
be most suitable. For the notations in the following sections,
the ith superpixel of scale t forms a set:

Sti =

{
NS(µ,Σ),~cS =

(
x
y

)}t
i

(1)

comprised of its feature distribution NS
t
i and spatial center ~cSti

in image coordinates.1

Several measuring techniques for distribution contrasts such
as the KL-divergence [12], the Conditional Entropy [34]
and the Bhattacharyya distance [40] have been employed
in previous methods to identify local differences. Recently,
Klein and Frintrop [29] applied the Wasserstein distance
on the L2-norm between feature distributions gathered from
Gaussian weighted, local integration windows. We continue
this idea, but instead, employ the Wasserstein metric to score
contrasts between superpixels. The Wasserstein distance on the
Euclidean norm in real-valued vector space is defined as

W2(χ, υ) =

(
inf

γ∈Γ(χ,υ)

∫
Rn×Rn

||X − Y ||2 dγ(X,Y )

) 1
2

, (2)

where χ and υ are probability measures on the metric space
(Rn, L2) and Γ(χ, υ) denotes the set of all measures on
Rn × Rn with marginals χ and υ. Briefly worded, the Wasser-
stein distance represents the minimum cost of transforming
one distribution into another, taking into account not only the
individual difference in each point of the underlying metric
space, but also how far one has to shift probability masses.
In machine vision, the discretized W1 distance is also well
known as Earth Mover’s Distance and widely used to compare
histograms.

The calculation of Eq. (2) is very demanding for arbitrary,
continuous distributions, but thankfully can be solved to a

1Note that NS denotes the normal distribution representing a superpixel,
while NC , that will be introduced in Section III-C, denotes the normal
distribution representing a cluster.

more facile term in case of normal distributions. As intro-
duced in [41]2, an explicit solution for multivariate normal
distributions N1(µ1,Σ1) and N2(µ2,Σ2) is

W2(N1,N2) =

(
||µ1 − µ2||2 + tr

(
Σ1 + Σ2 − 2

√
Σ1Σ2

)) 1
2

=

(
||µ1 − µ2||2 + tr(Σ1) + tr(Σ2)− 2 tr

(√
Σ1Σ2

)) 1
2

.

(3)

In general, there is no explicit formula to obtain the square
root of an arbitrary n × n matrix for n > 2, which would
lead to an iterative algorithm for determining

√
Σ1Σ2 in

Eq. (3). However, noticing the relationship between the trace
and the eigenvalues of a matrix, the trace of

√
Σ1Σ2 can be

represented as

tr
(√

Σ1Σ2

)
=

n∑
k=1

λΣ1Σ2
(k)

1
2 , (4)

where λΣ1Σ2
(k) is the kth eigenvalue of Σ1Σ2.

Considering a n = 3 dimensional space such as CIE-Lab,
given a 3 × 3 matrix A, its characteristic polynomial can be
represented as

det(λAI −A) =

λ3
A − λ2

A tr(A)− 1

2
λA
(

tr(A2)− tr2(A)
)
− det(A) ,

(5)

where λA is an eigenvalue of A. λA can be directly determined
using a trigonometric solution introduced in [43] by making
an affine change from A to B as

A = pB + qI . (6)

Thereby, B is a matrix with the same eigenvectors as A

∀p ∈ R\0, q ∈ R⇒ ~vA = ~vB , (7)

thus from the definition of eigenvalues it holds that
Def., Eqs. (6), (7)⇐⇒ λA = p · λB + q, (8)

where λB is an eigenvalue of B.
Choosing p =

√
tr((A− qI)2/6) and q = tr(A)/3 3 as

well as considering Eq. (5) to Eq. (8), the characteristic
equation of B can be simplified to

det(λBI −B) = λ3
B − 3λB − det(B) = 0. (9)

By directly solving Eq. (9), one can get all three eigenvalues
of B as

λB(k) = 2 cos

(
1

3
arccos

(
det(B)

2

)
+

2kπ

3

)
, (10)

where λB(k) is the kth eigenvalue of B with k = 0, 1, 2.
Thus, Eq. (3) can be applied to quickly compute meaningful

2A slightly different term was later introduced in [42], claiming that Eq. (3)
is only valid in case of commuting covariances. However, we could show that
both solutions are equivalent, because Σ1Σ2 =

√
Σ1(
√

Σ1Σ2) has the same
characteristic polynomial as (

√
Σ1Σ2)

√
Σ1, thus has the same eigenvalues.

3This choice guarantees the validity of Eqs. (6) and (8) also in the special
case p = 0, since this would imply A = qI , thus it has a triple eigenvalue
λA = q = tr(qI)/3.
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(a)

(b)

Fig. 2. An example of multi-size superpixel segmentation and the corre-
sponding global saliency maps. (a): from left to right, the initial grid area in
superpixel extraction decreases approximately in steps of 2. (b): the images
are the obtained global saliency maps corresponding to each scale in (a).

appearance distances between two superpixels using Eqs. (4),
(6), (8), and (10).

In the following, we use the W2 distance coherently in
the different aspects of saliency computation: it first serves
as a similarity measure in the clustering approach for global
saliency computation (Section III-C), second, it measures the
local contrast of a superpixel to its neighbors (Section III-D),
and third, it provides the similarity metric required for the ran-
dom walk process that enables the saliency flow computation
introduced in Section III-E.

C. Global Saliency: The Spatial Distribution of Colors

In natural scenes, the colors of regions belonging to the
background are usually more spatially scattered in the whole
image than in salient regions. In other words, the more the
color is spread, the less salient it is [22]. To determine
the spatial spreading, a further clustering is needed. This is
computed much more efficiently on superpixels than would
be possible on pixel level, since there are much less elements.
Thereby, the spatial distribution of colors can be estimated in
terms of a higher cluster-of-superpixels level by comparing
the spatial intra-cluster distances. GMM method is widely
used to represent the probabilities of color appearance, such
as in [14], [38], [44]. However, it may be inappropriate to
assign a fixed number of clusters for different images, since
this should depend on the image complexity. e.g., a cluttered
scene has much more dominant colors than one showing
a monotonous background. We employ the APC algorithm
(Affinity Propagation Clustering) introduced in [45] to identify
clusters. Here, it is not necessary to initialize the cluster centers
as well as the number of clusters.

APC is based on the similarities between elements (super-
pixels). It tries to minimize squared errors, thus in our method,
we use −(W2(NS

t
i,NS

t
j))

2 obtained by Eq. (3) between each
pair of superpixels Sti and Stj . Figure 1(c) shows exemplarily
two identified clusters. Compatible to superpixels, the kth

cluster on scale t forms a set

Ctk =
{
NC(µ,Σ),~cC

}t
k

. (11)

APC selects so called exemplar superpixels to become cluster
centers. Thus, we define the cluster appearance model NC to
equal the one of its corresponding exemplar superpixel. The
spatial center of a cluster in image coordinates is computed
from a linear combination of superpixel centers weighted by
their cluster membership probability:

~cC
t
k =

∑M(t)
i=1 Pg(Ctk|Sti ) · ~cSti∑M(t)
i=1 Pg(Ctk|Sti )

, (12)

where M(t) denotes the number of superpixels on scale t.
Note that APC is also employed to group GMMs in [46].

Different from that work, the inherent message exchanged
in APC is further explored to facilitate the computation of
Pg(Ctk|Sti ). The membership probability of a superpixel to
each cluster can be computed from its visual similarity to the
exemplar of that cluster. Converting distances to similarities
using Gaussian function has been widely adopted by numerous
methods [18], [25], [26], [46], [47]. However, the fall-off rate
of the exponential function is often selected empirically. In this
section, we take advantage of the messages that are propagated
between superpixels for directly determining the membership
probabilities [48].

Let X tk denote the exemplar of cluster Ctk and then, let
r(Sti ,X tk) denote the exchanged message named responsibility
which represents how well-suited superpixel X tk is to serve as
the exemplar for superpixel Sti . Actually, r(Sti ,X tk) implies the
logarithmic form of the cluster membership probability [45].
Let Bt denote the set that is composed of all non-exemplar
superpixels. We first normalize all responsibilities between the
superpixels in Bt and exemplar X tk to [−1, 0] (denoting as
r̂(Bt,X tk)) then exponentially scale them as

r̂e(Bti ,X tk) = exp

(
r̂(Bti ,X tk)

/
Var

(
r̂(Bt,X tk)

))
, (13)

where r̂(Bti ,X tk) refers to the normalized responsibility be-
tween the non-exemplar superpixel Bti and exemplar X tk, and
Var (·) refers to the variance. For exemplars, we simply assign
their scaled responsibilities as

r̂e(X ti ,X tk) =

{
1, if i = k

0, otherwise
. (14)

Eqs. (13) and (14) construct the scaled responsibilities be-
tween all superpixels to each cluster. Then, the intra-cluster
probabilities of each superpixel can be computed as

Pg(Ctk|Sti ) = r̂e(Sti ,X tk)
/K(t)∑
k=1

r̂e(Sti ,X tk), (15)

where K(t) is the number of clusters on scale t. Next, we
compute the probability of being salient for cluster Ctk. This
probability value is obtained by scoring the relative spatial
spreading between the superpixels within the cluster:

Pg(sal |Ctk) = 1

/K(t)∑
j=1

∑M(t)
i=1 Pg(Ctk|Sti ) · ||~cSti − ~cCtj ||2∑M(t)

i=1 Pg(Ctk|Sti )
, (16)

where Sal = {sal ,¬sal} is a binary random variable, in-
dicating whether something is salient, that means, whether
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it belongs to the salient object in the image. This cluster
saliency score Pg(sal |Ctk) is shown for two example clusters
in Figure 1(c).

Finally, the global, superpixel-level saliency can be repre-
sented as the joint probability of cluster-level saliency and the
cluster membership probability of that superpixel:

Pg(sal |Sti ) =

K(t)∑
k=1

Pg(sal |Ctk) · Pg(Ctk|Sti ). (17)

On each scale, the global saliency maps are computed by
employing Eq. (17) with the aid of Eq. (12) to Eq. (16).
Some global saliency maps of single scale levels are shown in
Figure 2b. As expected, the global saliency maps exhibit that
an object behaves salient in some but not all scales depending
on its own size.

D. Local Saliency: The Local Contrast with Boundary Prior

If the salient object is homogeneous inside and shows
a distinct color to a relatively clean background, it would
often be sufficient to evaluate the superpixel saliency using
the global method introduced in the last section. However,
it is less effective if the background is cluttered or partially
similar to the objects in terms of colors. An alternative
way to solve this problem is introducing local information.
For the scale t, the local contrast of superpixel Sti can be
obtained by accumulating all the appearance distances from
other superpixels as

Pl(Sti ) =

∑M(t)
j=1 W2(NS

t
i,NS

t
j) · g(i, j, t)∑M(t)

j=1 g(i, j, t)
, (18)

spatially Gaussian weighted with

g(i, j, t) = exp

−( ||~cSti − ~cStj ||
σc(t)

)2
 .

The parameter σc(t) controls the spatial radius of neighbor
range, and a higher value means that the contributing local
surround is larger. The dependence on t ensures that the
influence of neighbors is scaled proportionally. We choose this
value according to the average distance of superpixels which
is defined as follows:

σc(t) = κ ·

∑M(t)
i=1

∑M(t)
j=1

(
||~cSti − ~cStj || · ai,j;t

)
||At||F

, (19)

where || · ||F denotes the Frobenius norm which equals the
number of ’1’ entries. κ is a damping constant and we set
κ = 4 in our experiments. At is the symmetric adjacency
matrix which uses binary values to indicate the connecting
relationship between all superpixels of scale t:

ai,j;t =

{
1, if Sti is connected to Stj
0, otherwise

. (20)

As shown in Figure 3b, a local-contrast-based approach
usually has two drawbacks: 1) it grasps all pop-out structures
with the appropriate scale but doesn’t particularly emphasize

(a) (b) (c) (d)

Fig. 3. From top to bottom: (a): the original image, ground truth and final
saliency map. (b)-(d): the superpixels are extracted at 3 scale layers with
descending sizes. (b): the local saliency maps. (c): the local saliency maps
weighted by the boundary prior. (d): the refined local saliency map after the
saliency flow step at different scales.

the most salient objects; and 2) it has difficulties of holding
an analogous saliency scoring inside of objects [9].

As the regions on the boundaries of an image usually
contain the characteristics of the background [26], 1) can be
effectively solved by weighting each superpixel with respect to
the ones that lay on the image boundaries. We simply employ
the idea proposed in [24] to get the weights. For facilitating the
computation, the W2 distance is used to measure the region
contrast. Let wti denote the boundary weight of superpixel Sti ,
the refined local salient score of Sti is

Pl(sal |Sti ) = Pl(Sti ) · wti . (21)

Figure 3c shows the examples of incorporating the boundary
prior to refine the local contrast maps in Figure 3b.

E. Saliency Flow: Region-based Smoothing on Single Scale

Improving the local saliency computation by incorporating
the boundary prior still remains the problem of holding an
analogous saliency scoring inside of objects. As a solution,
we propose a procedure called saliency flow to refine the local
saliency map by balancing the saliency values inside probable
proto-objects. Different to [31] and [38], which setup a global
random walk process, we use a locally constrained random
walk process that the saliency is only allowed to flow between
neighboring superpixels.

We construct a weighted graph model Gt = {Vt, Et} with
Vt =

{
St1, . . . ,StM(t)

}
and Et is the matrix of edge weights

based on the W2 similarity metric and connectivity between
superpixels:

ei,j;t = exp

−(W2(NS
t
i,NS

t
j)

σd

)2
 · ai,j;t, (22)

where ai,j;t is the adjacency matrix which is defined in E-
q. (20). σd nonlinearly controls the fall-off rate of theW2 dis-
tances and we adaptively set σd = maxi,j

(
W2(NS

t
i,NS

t
j)
)
/3

in the experiments. Finally, each row of Et must be normalized
to become a flow probability distribution. In each step of the
random work, the saliency of superpixels at both sides of the
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boundary between the background and the object attempt to
move in two directions: The superpixels at the background
side have a high probability to flow to the adjacent regions of
background while the superpixels at the object side will flow
towards the inside of object. The balanced local saliency after
n steps of saliency flow can be expressed in vector and matrix
notation as a special kind of power iteration:

f(0)
t

= ~p t

=
(
Pl(sal |St1), . . . , Pl(sal |StM(t))

)T
f(n)

t
= f(n− 1)

t · Et
= ~p t · (Et)n (23)

We found that the value of n crucially controls the final
result. On the one hand, sufficient iterations are required to
ensure a smoothed interior of objects. On the other hand,
excessive iterations drive an inverse flow from objects to the
background. In the extreme case, e.g., n → ∞ produces
a uniform saliency distribution that all superpixels have a
consistent salient value. We introduce the ’Saliency Exchanged
in Grouped Regions’ (SEGR) to evaluate the effect of saliency
flow. SEGR must be a descending function of n as saliency
flow always tries to balance both sides involved in an exchang-
ing process. Let f (n)

t
i denote the salient value of superpixel

Sti after n iterations. The average value of SEGR can be
measured as

T(n) = mean

∑
i,j

∣∣∣f (n)
t
i − f (n)

t
j

∣∣∣ · ei,j;t
 ,

where Sti ,Stj ∈ Ctk. (24)

T(n) counts the absolute saliency mass that is exchanged
between neighboring superpixels only when they are in the
same cluster identified in our global saliency computation.
We observed that T(n) decreases sharply in the initial rounds
of saliency flow and the rate of decline significantly slows
down when the inside regions of objects are well smoothed.
Therefore, an appropriate value of n can be selected as

argmin
n

{
T(n)

T(n− 1)
× 100%

}
> cmin (25)

where cmin = 95% was chosen in our experiments. Figure 3d
shows the refined local saliency map after our saliency flow
operation on different scales.

F. Feature Fusion and Multi-size Combination

On each scale t, we normalize both global and local saliency
maps to the range of [0, 1] and obtain the combined saliency
map by superpixel-wise multiplication as follows:

s(Sti ) =
Pg(sal |Sti )

max
M(t)
j=1 Pg(sal |Stj)

·
f(n)

t
i

max
M(t)
j=1 f(n)

t
j

, (26)

where Pg(sal |Sti ) is the global saliency obtained in Eq. (17)
and f(n)

t
i is the ith component of the saliency flow result

vector obtained in Eq. (23), thus corresponds to the balanced
local saliency of superpixel Sti . The multiplication is used here

because a salient object should be outstanding in both saliency
measurements on the same scale [18], [49].

We assign the saliency value s(Sti ) to all pixels of superpixel
Sti for generating the pixel-level saliency map. Furthermore,
the arithmetic mean of the normalized pixel-level saliency
maps over all scales is used to generate the final saliency map
as follows:

saliency(x, y) =
1

L

L∑
t=1

M(t)∑
i=1

{
s(Sti ), if (x, y) ∈ Sti
0, otherwise

. (27)

IV. EXPERIMENTS

In this section, we evaluate our salient region detection
method. We compare it with 11 most recently proposed
state-of-the-art saliency detection approaches: AMC [26],
CHM [50], MR [25], HSD [51], SIA [46], BMS [52],
STD [53], LMC [47], GS [24], SF [18], RC [17]. All methods
are evaluated on images from 5 widely used datasets:
ASD [9]: this dataset contains 1000 images from MSRA
dataset and Achanta et al. created accurate binary maps
for each image that provide accurate, object-contour-based
reference data [9].
MSRA-B [14]: this dataset is an extension of ASD, which
contains 5000 images. Each image was originally labeled
from 9 users with a bounding box that enclosing the most
salient objects [14]. Furthermore, Jiang et al. [27] manually
segmented the salient objects and obtained the exact binary
ground truth for this dataset.
SOD [54]: this dataset is based on the 300 images Berkeley
segmentation dataset [55] and the foreground salient object
masks were obtained by several subjects in the work of [54].
However, consistent foreground salient object masks weren’t
provided in this literature. In our evaluation, we follow the
strategy that is introduced in [24] to generate the final ground
truth annotations.
SED1 and SED2 [56]: SED1 is a single object database while
two objects exist in each image from SED2. Both datasets
contain 100 images which were labeled by several subjects and
we consider a pixel salient if it is annotated by all subjects.

Figure 7 shows several examples of saliency maps to enable
a visual comparison of the different approaches. Quantitative
experiments follow in this section, which is organized as
follows. In Section IV-A, the internal baseline methods of our
approach are separately evaluated. We segment the saliency
maps with fixed thresholds and evaluate them in terms of
the precision versus recall measure. In Section IV-B, similar
measure is taken to compare our approach with other methods
on 5 benchmarks described above. Furthermore, instead of
using a constant value, each image is segmented with a
threshold dependent on the saliency map. The results are
evaluated with the F-measure in Section IV-C. Our saliency
detector is employed for facilitating the object segmentation
task in Section IV-D. The test images are segmented by the
GrabCut algorithm [57] which is initialized by our saliency
maps. The comparative results of other methods are also
included in this subsection. The whole evaluations as well as
the computation complexity of our algorithm are discussed in
Section IV-E.
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1:  final saliency with SF (0.9288)

2:  final saliency (0.9182)

3:  final saliency with SF (no BW) (0.8928)

4:  final saliency (no BW) (0.8805)

5:  local saliency with SF (0.9065)

6:  local saliency (0.8856)

7:  local saliency with SF (no BW) (0.7206)

8:  local saliency (no BW) (0.6759)

9:  global saliency (0.8503)

Fig. 4. Evaluations of the baseline methods of our approach on ASD.
Values of Area Under Curve (AUC) are labeled in the parentheses after their
corresponding legends. ’BW’ indicates that the local saliency is weighted by
incorporating the boundary prior that is described in Section III-D. ’SF’ refers
to the saliency flow refinement which is introduced in Section III-E.

A. Evaluations of internal baseline methods

Our approach evaluates two attributes of pre-segmented
regions: the global rareness and the local prominence with
an effective W2 distance measure. Both evidences work in
different ways independently and usually give prominence
to same salient objects while suppress different background
regions in an image. In this section we use the precision
versus recall (PR) scores to evaluate the individual contribution
of each component of our approach. For each sample, 256
binary maps are obtained by segmenting its saliency map
with all possible thresholds. Then 256 pairs of precision and
recall values are computed by comparing each binary map
with the human-masked ground truth. Finally, we average both
precision and recall of all images in the database to get an
overall evaluation of the selected benchmarks.

Figure 4 shows the PR scores that are obtained by indepen-
dently using each baseline method of our approach to compute
the saliency maps of images from ASD. For exploring the
contribution of each component more explicitly, the results
are produced on single scale that each image is segmented
into about 200 regions. It is interesting that the performance of
local saliency computation is greatly boosted by incorporating
the boundary prior (see the 6th and the 8th curves in Figure 4),
which was proved to be a reasonable assumption on this
dataset [24]. However, the boundary prior might be more ef-
fective in certain applications such as analyzing photographic
images than the others. Therefore, the performance of our local
saliency computation using simple center-surround cue is also
evaluated. As the 3rd curve in Figure 4 illustrating, without
the boundary prior, our approach based on single scale also
achieves similar performance with several methods that are
evaluated in the following section. Additionally, the 7th and
the 8th curves in Figure 4 proves that the proposed saliency
flow technique also improves the performance significantly.
The 5th and the 6th curves show another example. Although
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1:  Combine 1 to 3 (0.9414)

2:  Level 1 (0.9264)

3:  Level 2 (0.9292)

4:  Level 3 (0.9254)

5:  200 (0.9288)

6:  200 (Euclidean) (0.9222)

7:  50 (0.8890)

8:  50 (Euclidean) (0.8783)

Fig. 5. Evaluations of the impacts induced by using different scales and
distance measures on ASD. The scales from level 1 to 3 refer to descending
initial sizes of superpixels. The names of legends starting with 50 and 200
refer to the additional layers which respectively segments each image into
about 50 and 200 regions. Euclidean in the parentheses indicates that the
Euclidean distance is used as the basic metric.

the result of local saliency computation with the boundary
prior is quite acceptable, it is still promoted by the saliency
flow technique considerably.

The most important parameter of our algorithm is the
number of scales that is used for the superpixel extraction.
As shown in Figure 2b, different color components are em-
phasized in the global saliency map at different scales. In
addition, taking more scales also means a great increase in
the computation complexity. As introduced in Section III-A,
the restriction of the number of pixels per superpixel in the
finest scale ensures a correct estimation of Gaussian distribu-
tion. On the other hand, the clustering of color components
also requires a proper number of superpixels in the largest
scale. Considering the resolution of images in the datasets,
in total, 3 scale levels are investigated in our experiments
so far, generated by increasing the area of the initial grid
in steps of factor 2. In contrast, Figure 5 shows the PR
scores of our method using different numbers of superpixels.
Our algorithm evaluated individually for each scale achieves
similar performance (see the 2nd, the 3rd and the 4th curves).
When combining 3 scale levels, our method outperforms each
of them across the entire range of recall values.

Many segment-based methods simply use the L2-norm to
measure the pairwise dissimilarities between segments. Rep-
resenting segments by distributions enables to capture more
information about the statistics of the feature distributions.
Figure 5 shows several PR curves of our algorithm when
replacing the W2 distance to the Euclidean distance. For
exploring the relationship between the impacts induced by
different measures and the size of associated regions, two
additional layers are designed to respectively segment each
image into about 50 and 200 regions. It is clear that there
is a drop in PR scores when simplifying the W2 distance to
the Euclidean distance, e.g., about 0.01 off in AUC is found
when segmenting each image into 50 regions. Figure 5 also
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Fig. 6. PR curves for all evaluated methods using fixed thresholds on 5 popular saliency datasets: (a) ASD, (b) MSRA-B, (c) SOD, (d) SED1, (e) SED2,
and (f) Overall evaluation on 5 datasets. All methods are sorted by descending AUCs. Please see Figure 7 for the visual comparison of selected sample results
of all evaluated methods (this figure is best viewed in color).

illustrates that the impact is decreasing along with reducing the
size of regions. However, our experimental results consistently
demonstrate that measuring the region contrast based on the
W2 distance always performs better than the one based on the
Euclidean distance.

B. Salient region segmentation using fixed thresholds

With the method introduced in Section IV-A for computing
the precisions and recalls, Figure 6 compares the PR scores
of our method with other algorithms on 5 datasets. It is
worth noting that, decreasing the threshold Tf from 255 to
0 corresponds to increasing the recall from 0 to 1. Several
methods such as LMC [47] and BMS [52], have a significant
larger minimum rate of recall than other methods, which
means that they have a uniform saliency assignment in the
detected salient regions. In contrast, the minimum recalls of
other methods which are near 0% usually obtain continuous
saliency maps [37]. On the right side, the far right ends of the
curves all approaching ∼0.2 to 0.3 exhibit that, on average,
the salient regions take about 20% to 30% of pixels in the
images from all datasets.

As shown in Figure 6b, our approach outperforms other
evaluated methods for all given recalls on MSRA-B which is
the largest dataset that is used in our experiments. Also on
its subset ASD, our approach achieves the highest AUC value
from all 12 methods. On the datasets SOD and SED1, our
method is among the top three methods, with only a small

difference in AUC value to the top methods. The results on
SED2, in which our method also achieves the highest AUC
value of all methods, show that our approach is also able to
cope with multiple objects per image. Figure 6f shows the
overall evaluations on the dataset that combines all 5 datasets,
which demonstrates the robustness of our approach.

C. Salient region segmentation by adaptive thresholding

Instead of using a constant threshold value when binarizing
different images, a simple, yet adaptive way to extract the
foreground objects is to set the threshold dependent on the
average saliency. In this part, we evaluate the performance of
our proposed algorithm with the adaptive thresholding method
introduced in [9], which defines the threshold as follows:

Ta =
2

W ·H

W∑
x=1

H∑
y=1

saliency(x, y) (28)

where W and H are width and height of each tested saliency
map, respectively. Furthermore, based on the obtained preci-
sion and recall value, the F-measure is computed to compare
the performance of each method over the whole database,
which is defined as

Fβ =
(1 + β2)× precision× recall
β2 × precision + recall

. (29)

Similar to in [9] and [18], β2 is set to 0.3 in our evaluation.
Figure 8 compares the precision, recall and F-measure values
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Fig. 7. Visual comparison of other approaches to our proposed method. From left to right: original image, ground truth, our approach, AMC [26], CHM [50],
MR [25], HSD [51], SIA [46], BMS [52], STD [53], LMC [47], GS [24], SF [18], and RC [17].

of all evaluated approaches. We observed that AMC [26],
MR [25] and our approach are with similar performance
on ASD, MSRA-B, SOD and SED1. As demonstrated in
Figure 8e, our approach shows better performance than the
others on SED2 which is a consistent two-objects dataset.
Similar to Figure 6f, Figure 8f shows the overall evaluations
of all methods on 5 datasets.

The evaluations of F-measure also show that our approach
always achieves higher precision values than the others, that
is, usually capable of avoiding annotating background regions.
Taking several samples that are illustrated in Figure 7 for
example, our saliency maps have relatively clean background.
It is worth noting that, our approach gets lower recall values
than some methods with the thresholds selected by Eq. (28).
Distinct regions of an object may be emphasized with varying
degrees in our salient map. As shown in the 4th row of
Figure 7, regions of the ball are assigned with different salient
scores by our saliency computation. Unlike some methods that
uniformly annotate the whole ball, high threshold values may
cause incomplete segmentations to our saliency map.

D. Interactive segmentation using saliency maps

Compared to the unsupervised segmentation, the interactive
manner is more useful since the extraction of foreground
objects often greatly depends on the selective human vision.
The supervised segmentation is usually initialized by one or
several manually marked regions which can be also selected
by saliency detection approaches. Cheng et al. [17] iteratively
perform the GrabCut algorithm [57] on the original image
and take a binarized saliency map instead of manually selected
regions in each iteration. Federico et al. [18] and Xie et al. [47]
use their saliency map to initialize the graph and employ the
min-cut algorithm introduced in [58] as the post segmentation.

We follow the method introduced in [17] in this subsection.
Instead of using a manually labeled rectangle, the GrabCut
algorithm is initialized by a four-valued mask which is pro-
duced by pre-segmented saliency maps. The saliency maps are
first segmented with that fixed threshold which achieves 85%
recall on average with regard to the examined approach (cf.
Figure 6). For the foreground of each segmented map (Sf ),
the erosion and dilation operations are performed for obtaining
two resized regions based on Sf . The foregrounds produced
by erosion operation (Ef ) and the dilation operation (Df ) as
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Fig. 8. The precision, recall and F-measure of all evaluated methods using adaptive thresholding on 5 saliency datasets: (a) ASD, (b) MSRA-B, (c) SOD.
(d) SED 1, (e) SED2, and (f) Overall evaluation on 5 datasets. All methods are sorted by descending F-measure.

Fig. 9. The images in the first row, from left to right, refer to the
original image, the saliency map, the segmentation result and the ground
truth, respectively. The images in the second row, from left to right, refer to
the initial four-valued mask and three segmentation results after each iteration.
Each image in the second row is divided into 4 regions which are labeled with
different colors: red (foreground), pink (probably foreground), gray (probably
background) and dark gray (background).

well as Sf divide the mask into 4 regions. Each pixel of the
four-valued mask belongs to one of the regions Ef , Sf −Ef ,
Df − Sf , and outside of Df , hence is labeled as foreground,
probably foreground, probably background, and background,
respectively. We iterate the GrabCut algorithm several times
(3 in our experiments). After each iteration, the intermediate
result of segmentation is used to update Sf and further to
obtain new Ef and Df for the next time. Figure 9 shows an
example of the initial four-valued mask and the segmentation
results after each iteration.

Several segmentation results are shown in Figure 10. It is
evident that our saliency maps work well for interacting with
the GrabCut algorithm. Taking the images in the 1st column for

Fig. 10. From top to bottom: the original images, our saliency maps,
segmentation results of the GrabCut algorithm initialized with the pre-
segmented saliency maps, and the corresponding ground truths.

example, without prior knowledge, the segmentation methods
are more likely to extract the entire printer as the foreground
since the original image has a very clean background. By
giving a labeled foreground offered by our saliency map, the
GrabCut algorithm can successfully find the manually labeled
salient object. Conversely, the post segmentation significantly
improves the result of our saliency detection method even
when the saliency maps are not as good as expected. e.g., sev-
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Fig. 11. The precision, recall and F-measure of all evaluated methods using
the GrabCut algorithm as the post segmentation on ASD.

eral background regions are highlighted in the saliency maps
in the 2nd and the 3rd columns of Figure 10, as well as some
parts of the salient object behave to be much less salient in
the last column. Figure 11 compares the precision, recall and
F-measure of all evaluated approaches that use the GrabCut
algorithm as the post segmentation on ASD.

E. Discussion

The evaluations on these benchmarks show that none of
the methods outperforms all other ones on all datasets, while
Figure 6f and Figure 8f demonstrate that our approach is in
general more robust than the other methods. We believe that
the multi-cue integration helps to achieve this performance.
Taking HSD [51] for example, it computes the region-level
saliency using a multi-scale, local-contrast-based approach that
is similar to our local saliency model. the results of HSD [51]
in the 7th and the 9th rows of Figure 7 show that background
regions that stand out from their surroundings could be eas-
ily annotated as salient objects when solely considering the
local contrast principle. Other single-cue approaches such as
MR [25] and AMC [26] follow the hypothesis of the boundary
prior [24] and formulate the saliency detection problem as a
graph-based similarity propagation process. However, back-
ground regions that are near the center of an image usually
have lower rankings (e.g., in MR [25]) or longer absorbed time
(e.g., in AMC [26]) than the similar-looking regions that are
near the image boundaries. Those center-located background
regions may present competitive saliency when the salient
object is near the image boundaries or has low contrast to
them. Such examples are illustrated in their results in the 3rd,
the 5th and the 10th rows of Figure 7. Another interesting
method is CHM [50], which groups the superpixels into multi-
scale cliques and scores the clique saliency according to the
length of its boundaries. However, a large superpixel clique
may contain both the salient and background regions. the result
of CHM [50] in the 1st row of Figure 7 shows that, several
background regions are also highlighted as they have similar
appearances to the salient object.

The described failure cases show that, saliency detection
models using single principle may produce unsatisfactory
results in some cases. However, integrating the local, global
and boundary priors with an effective W2 measure enables
our approach to obtain more precise saliency maps than the
results of the methods that are exemplarily analyzed above.

With the parameters chosen in our evaluation, on average,
our algorithm takes about 0.85s for processing an image
around the resolution of 300×400. Timings were tested on an
Intel Core i7-4770 at 3.4 GHz with 4 GB RAM using double
precision computations. The computational complexity of our
algorithm relies essentially on the number of used scales,
e.g., the processing time on level 1 to 3 scale is 0.07s, 0.18s
and 0.60s, respectively. Most time is consumed on the distance
computation and the clustering, which respectively occupies
40% and 43% of the processing time for an image. As the
codes haven’t been optimized, we are confident to make this
system close to real-time performance by standard optimiza-
tions and parallelization (e.g., in the distance computation).

V. CONCLUSION

In this paper, we have presented a new computational salient
object detection method based on multi-size superpixels. Each
superpixel is represented by a multivariate normal distribution
in CIE-Lab color space and their perceptual similarity is
measured by the Wasserstein metric on the Euclidean norm.
This distance measure is coherently used in the different parts
of saliency computation. The overall saliency is composed of
a global and a local component that capture different aspects
of saliency: the global saliency assigns higher saliency values
to compact image regions, while the local saliency emphasizes
segments that visually stand out of their local environment. Ex-
perimental results demonstrate that our method achieves better
performance than 11 recently published saliency detectors in
overall comparisons on 5 widely used datasets.

In future research, we plan to integrate non-color descriptors
such as gradient histograms into the local saliency part of
our approach. It will improve the performance in the scene
when the object isn’t discriminative in color. Followed by our
superpixel-level saliency map, a further pixel-level refinement
will be also taken into account for obtaining a more detailed
representation of objects. We are also interested in introducing
the current approach into some high-level vision tasks such as
object detection and recognition.
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