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Abstract

Abstract

The goal of 6D object pose estimation is to find the 3D rotation and 3D translation
between a known object coordinate frame and a coordinate reference frame. It is
an important research topic in the field of computer vision, because knowing the
6D pose of an object is an important prerequisite for many robotic applications
such as grasping and dexterous manipulation. The majority of existing methods
mainly rely on color as the primary data modality. They either regard the depth
information as auxiliary information or completely ignore it. However, depth infor-
mation contains geometric information regarding the object surface, and it should
be a promising data modality for this topic. This thesis investigates what depth
information can contribute to the 6D object pose estimation problem. We focus
on developing learning-based approaches for 6D object pose estimation using only
depth information.

The first approach we present is CloudPose. CloudPose is a deep learning-based
system that regresses to 6D object poses from depth information represented by
point clouds. We use point clouds as the input and geometry-based pose refinement.
CloudPose uses separate deep networks for rotation and translation regression. We
argue that the axis-angle representation is a suitable rotation representation for
deep learning, and use a geodesic loss function for rotation regression. Ablation
studies show that these design choices outperform alternatives such as the quater-
nion representation and L2 loss, or regressing translation and rotation with the
same network. Although the structure of CloudPose is simple, experimental re-
sults have shown competitive results on public datasets.

One drawback of CloudPose is that it is not robust against noisy input data.
To overcome this drawback, another system called CloudAAE is further proposed.
CloudAAE is an autoencoder-based 6D object pose regressor especially robust
against the depth input data’s noise. The autoencoder learns a latent vector that
encodes the 6D object pose data and is invariant to noise in the input data. Then
the latent code is used as the input to two separate networks for rotation and trans-
lation regression. Comparing with CloudPose, CloudAAE has a better performance
on datasets with noisy depth data.

Both CloudPose and CloudAAE are supervised learning-based systems and
require a large amount of annotated training data. It is often desired to train
on synthetic data because the cost of manually annotating 6D object poses on
real data is very high. However, it is often expensive to synthesize RGB images
because of the large visual reality gap between synthetic and real RGB images.
In contrast, this visual reality gap is considerably smaller and easier to fill for
depth information. Hence, we present a lightweight data synthesis pipeline called
CloudSyn that creates synthetic point cloud segments for training. CloudSyn only
requires texture-less 3D object models and the desired viewpoints, and it is cheap
in terms of both computation time and the hardware storage. Our data synthesis
process is three orders of magnitude faster than the commonly applied approaches
rendering RGB image data.
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Abstract

When evaluating CloudPose and CloudAAE, we noticed that a clean segment
without background noise often results in a more accurate 6D pose estimate during
our experiments. In other words, the quality of the object segmentation has an
impact on the system performance. To this end, we present a point cloud over-
segmentation framework named SSV, which is short for saliency-guided adaptive
seeding for supervoxel segmentation. SSV uses visual saliency to guide the process
of supervoxel generation. This results in densely distributed, small, and precise
supervoxels in salient regions that often contain objects. In less salient regions that
often correspond to the background, the supervoxels are larger. Experiments show
that this approach improves the quality of the resulting supervoxel segmentation.

Finally, we test our approaches in an in-hand object pose estimation task.
The implementation process shows that it is easy and straightforward to adapt
CloudSyn to generate suitable training data for the in-hand object pose estimation
task. Moreover, the low cost of data generation time enables fast experimental
iterations, which is an essential advantage for robotic applications.
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Zusammenfassung

Zusammenfassung

Das Ziel der 6D-Objektposenschätzung (engl. 6D object pose estimation) ist es, die
3D-Rotation und 3D-Translation zwischen einem bekannten Objektkoordinaten-
system und einem Referenzkoordinatensystem zu finden. Dies ist ein wichtiges
Forschungsthema im Bereich der Computer Vision, denn die Kenntnis der 6D-
Pose eines Objekts ist eine wichtige Voraussetzung für viele Robotikanwendungen
wie das Greifen und die geschickte Manipulation (engl. dexterous manipulation).
Die Mehrheit der existierenden Methoden verlässt sich hauptsächlich auf Farbe
als primäre Datenmodalität. Sie betrachten die Tiefeninformation entweder als
Zusatzinformation oder ignorieren sie komplett. Jedoch enthält die Tiefeninfor-
mation geometrische Informationen über die Objektoberfläche, was eine vielver-
sprechende Datenmodalität für die 6D-Objektposenschätzung sein sollte. In dieser
Arbeit wird daher untersucht, welchen Beitrag Tiefeninformationen zum Problem
der 6D-Objektposenschätzung leisten können. Wir konzentrieren uns dabei auf die
Entwicklung von lernbasierten Ansätzen zur 6D-Objektposenschätzung, indem wir
nur die Tiefeninformationen verwenden.

Der erste Ansatz, den wir vorstellen, ist CloudPose. CloudPose ist ein auf Deep
Learning basierendes System, das aus Tiefeninformationen, die durch Punktwolken
repräsentiert werden, 6D-Objektposen schätzt. Wir verwenden Punktwolken als
Eingabe sowohl für tiefe Netzwerke als auch für die geometriebasierte Posenver-
feinerung. CloudPose verwendet separate Netzwerke für Rotations- und Transla-
tionsregression. Wir argumentieren, dass die Darstellung mittels Achse und Winkel
eine geeignete Rotationsdarstellung für Deep Learning ist, und verwenden eine
geodätische Verlustfunktion für die Rotationsregression. Weiterführende Analy-
sen zeigen, dass diese Designentscheidungen Alternativen wie die Quaternion-
Darstellung und L2-Verlust oder die Regression von Translation und Rotation
mit demselben Netzwerk übertreffen. Obwohl die Struktur von CloudPose einfach
ist, haben experimentelle Ergebnisse konkurrenzfähige Ergebnisse auf öffentlich
zugänglichen Datensätzen gezeigt.

Ein Nachteil von CloudPose ist, dass es nicht robust gegenüber durch Rauschen
gestörte Eingabedaten ist. Um diesen Nachteil zu überwinden, wird ein weit-
eres System namens CloudAAE vorgeschlagen. CloudAAE ist ein Autoencoder-
basierter 6D-Objektposenregressor, der besonders robust gegenüber dem Rauschen
der Tiefeneingabedaten ist. Der Autoencoder lernt einen komprimierten Vektor,
der die 6D-Objektpositionsdaten kodiert und invariant gegenüber dem Rauschen
in den Eingabedaten ist. Dann wird der komprimierte Vektor als Eingabe für zwei
separate Netzwerke zur Rotations- und Translationsregression verwendet. Im Ver-
gleich zu CloudPose hat CloudAAE eine bessere Leistung bei Datensätzen mit
durch Rauschen gestörte Tiefendaten.

Sowohl CloudPose als auch CloudAAE sind auf überwachtem Lernen basierende
Systeme und benötigen eine große Menge an annotierten Trainingsdaten. Es ist oft
gewünscht, auf synthetischen Daten zu trainieren, da die Kosten für die manuelle
Annotation von 6D-Objektposen auf realen Daten sehr hoch sind. Es ist jedoch
oft teuer, RGB-Bilder zu synthetisieren, da die visuelle Diskrepanz zwischen syn-
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thetischen und realen RGB-Bildern sehr groß ist. Im Gegensatz dazu ist diese
visuelle Diskrepanz bei Tiefeninformationen wesentlich kleiner und einfacher zu
überwinden. Daher präsentieren wir eine leichtgewichtige Datensynthese-Pipeline
namens CloudSyn, die synthetische Punktwolkensegmente für das Training erzeugt.
CloudSyn benötigt nur texturlose 3D-Objektmodelle und die gewünschten Kam-
erapositionen und ist sowohl hinsichtlich der Rechenzeit als auch des Speicher-
platzverbrauchs der erzeugten Daten kostengünstig. Unser Datensyntheseprozess
ist um drei Größenordnungen schneller als die üblicherweise verwendeten Ansätze,
die RGB-Bilddaten rendern.

Bei der Evaluierung von CloudPose und CloudAAE haben wir festgestellt, dass
ein präzises Segment ohne Hintergrundrauschen in unseren Experimenten oft zu
einer genaueren 6D-Positionsschätzung führt. Mit anderen Worten: Die Qualität
der Objektsegmentierung hat einen Einfluss auf die Leistung des Gesamtsystems.
Zu diesem Zweck präsentieren wir eine Übersegmentierungsmethode für Punkt-
wolken namens SSV. SSV nutzt die visuelle Salienz, um den Prozess der Gener-
ierung von Supervoxeln zu steuern. Das Ergebnis sind dicht verteilte, kleine und
präzise Supervoxel in auffälligen Regionen, die oft Objekte enthalten. In weniger
salienten Regionen, die oft dem Hintergrund entsprechen, sind die Supervoxel
größer. Experimente zeigen, dass dieser Ansatz die Qualität der resultierenden
Supervoxel-Segmentierung verbessert.

Schließlich testen wir unsere Ansätze in einer Aufgabe zur Schätzung der In-
Hand-Objektpose. Der Implementierungsprozess zeigt, dass es einfach und unkom-
pliziert ist, CloudSyn so anzupassen, dass es geeignete Trainingsdaten für die
In-Hand-Objektposenschätzung erzeugt. Darüber hinaus ermöglicht der geringe
Zeitaufwand für die Datengenerierung schnelle experimentelle Iterationen, was ein
wesentlicher Vorteil für Robotikanwendungen ist.
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Chapter 1

Introduction to 6D Object Pose
Estimation

1.1 Background and Motivation

Let’s fast forward to the year 2050, imagine you are waiting to see whether your
newly purchased household robot will bring you the morning coffee smoothly. The
hot coffee is on the kitchen counter and ready to be picked up. As depicted in
Figure 1.1, the robot is standing by the kitchen counter, looking down at the
coffee through its digital sensors. It is time to pick up the coffee with its robotic
hand. Although we humans need little to think about where the coffee is or which
part of the coffee cup we should reach for, this is not the case for your robot.

To avoid knocking the cup over and spilling the hot coffee or mistakenly picking
up the banana next to it, your robot needs to use a series of abilities in its artificial
intelligence package. First, from the captured sensor data of the coffee on the
kitchen counter, the robot needs to decide which part of the sensor input belongs
to the coffee. Second, after figuring out where the coffee is, the robot needs to
figure out its position. After knowing the cup handle’s position and orientation,
the robot starts to plan how it should move its robotic hand for a successful grasp.

Figure 1.1: The morning coffee scenario.
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Chapter 1. Introduction

Overall, the robot is expected to understand its surroundings and interact with
the environment without making a mess or harming anyone.

Thirty years ago, Moravec gave a concise description of this scenario [93]: “It
is comparatively easy to make computers exhibit adult level performance on in-
telligence tests or playing checkers, and difficult or impossible to give them the
skills of a one-year-old when it comes to perception and mobility.” In line with
Moravec’s paradox, although “locate and pick up the coffee cup” are very triv-
ial tasks for humans, they are among the most challenging tasks in the field of
computer vision and artificial intelligence [31]. Despite many advances in the field
during the past thirty years, the challenge still persists. Many factors contribute to
the challenge. For instance, with the traditional digital camera being the dominant
visual sensor for robotic systems, the visual inputs are essentially large matrices
filled with numbers. Specifically, a color image with video graphics array (VGA)
resolution contains three matrices with 480 × 640 dimension, and it has almost 1
million values [78]. To understand the environment, information on different se-
mantic levels needs to be extracted from those large matrices. For example, the
information could be “this pixel color is yellow”, “those pixels form a banana”, or
“those pixels form a banana, and the banana is edible.” Similarly, in order for your
robot to interact with the scene, patterns like ”the coffee mug is 1.5 meters away
and rotated 30 degrees along its up-right axis” need to be extracted. The research
areas that deal with this kind of questions are computer and robot vision.

In this thesis, we study a research topic named “6D object pose estimation”, a
topic emerged from computer vision and which is viewed as an essential prerequire-
ment for many robotic tasks. We investigate this problem from the joint perspective
of both computer vision and robot vision. This joint perspective is presented by
developing and evaluating algorithms on computer vision benchmarks, as well as
applying them to an application related to real-world robotics. We introduce back-
ground information such as the concept of computer vision and robot vision, and
the challenges of 6D object pose estimation are presented in Section 1.1. The the-
sis contribution is presented in Section 1.2. The thesis structure is presented in
Section 1.3 with figure illustration.

1.1.1 Computer Vision and Robot Vision

The human visual system is extremely good at extracting information from the
visual input. Without direct physical contact with the surroundings, vision provides
us with a remarkable amount of information about our environment [60]. Since the
MIT “Summer Vision Project”1, which was organized by Seymour Papert [96] in
1966, generations of researchers invested enormous effort into the field of computer
vision. They have been developing mathematical algorithms that can do similar
tasks as the human visual system [120].

1The project expected a group of 11 student workers (including a student coordinator) to
develop a robust object detection system during July and August in 1966. Rumour has it that
the student coordinator Gerald Sussman never worked in computer vision again after this project.
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Scene Image

Camera Computer
Algorithm

Description

(a) computer vision system

Scene Image

Camera Computer
Algorithm

Description

Application
feedback

(b) robot vision system

Figure 1.2: Illustration of (a) a computer vision system and (b) a robot vision
system. Adapted from [60].

The task of a computer vision system is to extract information from images.
Robot vision can be viewed as a subcategory of computer vision. It incorporates
aspects of robotics into the algorithms, for example a robot can physically affect
and interact with its environment. Figure 1.2(a) is an illustration of a computer
vision system. An image is taken by a camera from a scene, and a computer algo-
rithm is used to extract descriptive information from the image. The information
can be which objects the image contains or what the cat in the image is doing. In
comparison, a robot vision system contains more components [60]. Figure 1.2(b)
is an illustration. A robot vision system is a combination of camera hardware and
computer algorithms. This allows robots to process visual data and extract the
information needed for actions in the real world. Furthermore, the interaction be-
tween the robot and its environment may cause changes in the scene, which is
relevant to the next action.

Another difference worth noting between computer vision and robot vision is
benchmarking images. Figure 1.3(a) shows some example images from the Ima-
geNet dataset [22], which is often used for developing computer vision algorithms.
Figure 1.3(b) shows some examples from the OpenLORIS-Object dataset [112],
which is a dataset used for teaching robots about life long learning. Observing
those two image sets, we can spot three main differences. First, the image illu-
mination quality is generally better in the ImageNet dataset. This is mainly due
to that the human photographer tends to optimize the lighting condition before
taking an image, while a robotic system may block the light source and take an
underexposed photo (Figure 1.3(b), upper left). Second, the imaging angles are
generally better in the ImageNet dataset. This is caused again by the human pho-
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Chapter 1. Introduction

(a) (b)

Figure 1.3: Example images for a computer vision benchmark and a robot vision
benchmark. (a) Examples for a computer vision system, taken from the ImageNet
dataset [22]. (b) Examples for a robot vision system, taken from the OpenLORIS-
Object [112].

tographer, who tends to find a better angle to capture an appealing aesthetic image
of the target scene. It is not hard to understand why this is a very challenging task
for robots. Third, the scenarios are more diverse in the ImageNet dataset, while
it is more restricted in the OpenLORIS-Object dataset. This is because robotic
applications are usually collected from a real-life setup, such as a household or a
lab environment.

Overall, robotic applications deal with images that have a wider illumination
range and potentially less ideal imaging angles. Although the scenarios are less di-
verse for robotic vision than its counterpart in the computer vision dataset, it does
not mean that robot vision is easier. To operate in real-life scenarios, a robot vision
system should be robust to changes in its operating environment. Since 2012, when
Alex Krizhevsky and his colleagues won the ImageNet [22] challenge with a deep
convolutional neural network (CNN) [73], deep learning-based approaches start to
dominate vision-related research areas. One constraint of deep learning is that for
a task, the training and testing data should be drawn from the same probability
distribution [41]. Hence, this low diversity in datasets limits the applicability of
the system in real scenarios. For example, if a system is trained on data collected
from one apartment, it can not be guaranteed that this system works in a different
apartment with different lighting conditions and objects. In general, it is desired to
design a system that can generalize well or have a good ability to scale up to many
objects or environments. It is also important to find a balance between the speed
and cost of the robot vision algorithm. Furthermore, the accuracy and robustness
need to be guaranteed for good robot-environment physical interactions.

Apart from benchmarking images, there are also other differences in a broader
scope. For example, robots can be equipped with multiple vision sensors and the
sensory inputs can be combined for information extraction. This can be very useful
for many applications but also arise challenges such as sensor calibration and real-
time processing. Since robots can take actions upon perception, they can also
actively change their positions in the environment to obtain a better viewpoint.
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This active perspective of perception is beneficial in many robotic tasks, and it
also has challenges such as how to decide where to move for the next step. Those
differences are not in the scope of this thesis and will not be investigated here.

The task of 6D object estimation is a classical topic in computer vision and an
important task in the field of robot vision. In this thesis, we focus on developing
6D object pose estimation systems that are lightweight and easily deployable on a
robotic system. Ideally, our methods should be accurate, fast, and can easily scale
up to a large number of objects.

1.1.2 Challenges of 6D Object Pose Estimation

In our morning coffee example, the process of deciding how the mug is placed is
the task of 3 degrees of freedom (3D) object detection, or more recently known
as 6D object pose estimation. A reasonably precise definition of the 6D object
pose estimation problem appeared as early as 1985, and it is proposed by Besl
and Jain [9]. According to Besl and Jain, if given a known coordinate system, “the
coffee mug is 1.5 meters away” are the 3D location or translation parameters of
the mug. Moreover,“the mug is rotated 30 degrees along its up-right axis” is the
3D orientation or rotation parameters.

After more than 30 years of investigation, several challenges remain to be solved
for this topic. There are four main challenges. For systems that rely on color infor-
mation, the first challenge is illumination change. Slight changes in the illumination
condition can cause drastic changes in the red, green, blue (RGB) values of a pixel
even when it is not detectable by the human vision. Figure 1.4 shows an example
of how the change of illumination condition impacts the object’s appearance in the
YCB Video dataset [139]. Both images contain the same banana, the right image
is overexposed and the banana appears white instead of yellow. This kind of sce-
nario makes developing a robust system very challenging. Moreover, shadows from
other objects in the environment or the object’s reflective property also increase
the challenge.

Another challenge is occlusion, either self-occlusion or external occlusion. While
it is relatively easy to estimate the 6D pose when the object is fully observable,
missing parts of the object can cause the system to not work or provide inaccurate
results. Figure 1.5 shows examples of different kinds of occlusion. The self-occlusion
example (Figure 1.5(b)) illustrates how the black part of the drill head is occluded
by the orange part of the drill head. To detect the 6D pose of the power drill
without occlusion (Figure 1.5(a)) is easier than estimating in the case of self-
occlusion (Figure 1.5(b)) or external occlusion (Figure 1.5(c)).

The third challenge is the pose ambiguity. Most human-made objects have
certain degrees of rotational symmetry, such as a cubic or cylinder shape. It can
appear that although having the same visual appearance, the defined pose in its
object coordinate system is different, which presents ambiguity. Figure 1.6 shows a
rotational symmetric object, a foam brick. Although both images are very similar
visually, there is a 180◦ difference around the upper right axis. The difference in
viewpoint can be seen from the subtle differences on the brick’s left-side edges
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(a) Normal (b) Overexposed

Figure 1.4: The same banana appears to be in different colors due to different
illumination conditions. Images are taken from the YCB Video dataset [139].

(a) No occlusion (b) Self-occlusion (c) External occlusion

Figure 1.5: Examples of different kinds of occlusion of a power drill.

(a) View 1 (b) View 2

Figure 1.6: An example of rotational symmetry. These two images containing the
same foam brick look very similar. However, they are taken from two different
viewpoints, and this difference can be seen from the subtle differences on the brick’s
left-side edges.
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in the images. Furthermore, objects such as a coffee mug are almost symmetric
except for the handle, and when the handle is not observable due to occlusion, the
problem of ambiguity arises.

The fourth challenge is from the practical perspective. Among the state-of-the-
art deep learning-based approaches, it is common to have an individually trained
network for each target object, which is not practical if there are hundreds of
different objects. Also, as mentioned above, the existing datasets have a low diver-
sity of objects and environments, limiting the applicability of the system in real
scenarios. One reason for this low diversity is that the data collection process is
often expensive in terms of time and other resources such as human resources and
hardware storage.

The first three challenges impact the system performance, while the fourth
challenge impacts the difficulty level of applying a pose estimation system in real-
world scenarios, and they are all open research topics. Since we focus on using depth
information in this thesis, our systems are not impacted by the first challenge. The
second challenge is normally handled by introducing occlusions into the training
data [123]. The third challenge is investigated with various approaches [21, 100]
and it is not in the scope of this thesis. In this thesis, we mainly focus on the fourth
challenge while having an accurate system. We focus on developing a multi-class
system, i.e., one system that can handle all the objects in a dataset. We also focus
on decreasing the difficulty level of integrating our pose estimation system into
real-world applications.

1.1.3 Thesis Focus

As mentioned before, robot vision systems consist of cameras and algorithms, the
cameras provide input image data for the system and the algorithm converts the
input data into desired information. There is more than one design choice for
each component, and each choice leads to a different research focus for the task of
6D object pose estimation. In this section, we briefly discuss the options for each
component and describe the focus of this thesis.

Data modality. First of all, the two main data modalities for robotic visual per-
ception are color and depth. Color contains information such as RGB-valued color
and texture, and depth contains surface geometry information. Texture informa-
tion is very useful for capturing image details and recognizing, for example, hand
writings [77] or human faces [129]. However, color information is susceptible to illu-
mination changes, and it is very challenging to make a method robust against a big
range of illumination changes. On the other hand, surface geometry is very useful
for extracting shape information such as planes and cylinders [108], but it lacks de-
tailed texture information. In general, those two modalities have their advantages
and disadvantages and complement each other well in a multi-modality setting. For
the task of 6D object pose estimation, many deep learning-based methods have ex-
plored how to estimate accurate 6D object pose using color information [68, 14, 94].
Among other works that consider both color and depth information [139], depth is
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Figure 1.7: 3D data representations: point cloud (left), voxel grid (middle), mesh
(right). Adapted from [54].

often used as a secondary modality for pose refinement. In general, a lot of exist-
ing methods concentrate on using color, and the depth is understudied. Therefore,
to fill this gap, we focus on depth information and investigate what depth can
contribute to the task of 6D object pose estimation in this thesis.

Data representation. A suitable representation is needed for encoding depth
information. Depth information can be represented in an either 2.5D or 3D form.
The 2.5D representation is also known as the depth map. A depth map is essen-
tially a 2D image, and each pixel contains the distance information between the
surface point and the image plane. This kind of data can be easily obtained from
commercially available depth sensors such as the Microsoft Kinect2. One drawback
of this representation is that it is not a full 3D representation since it only contains
distance information.

Regarding full 3D representations, unlike 2D images with a dominant 2D pixel
grid representation, 3D data can be represented by many commonly used formats
such as voxel grids, meshes, and point clouds. Figure 1.7 shows an illustration of
the Standford bunny represented in a point cloud, a voxel grid, and a triangle
mesh. Since the computational cost for 3D data is very high due to the extra
dimension, it is important to choose a less expensive 3D representation. A voxel
representation is very simple but bulky. It contains many empty spaces, and the
quantization of the target space unavoidably leads to quantization artifacts and loss
of information. A 3D mesh is more efficient by only representing the object surface,
but it is a complicated representation containing vertices, edges, and faces. On the
other hand, a point cloud contains the full information from sensor input and it is
a very simple representation [101]. Hence, point clouds are computationally very
cheap and still encode the object shape information. Therefore, in this thesis, we
focus on developing 6D pose estimation systems that operate on point clouds.

Methodology. Before starting this thesis work, deep learning has gained its pop-
ularity in many visual recognition tasks. Compared to hand-crafted features, the
deep learned features have largely improved benchmark scores in many tasks [22].

2https://developer.microsoft.com/de-de/windows/kinect/
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This makes it intriguing to use deep learning methods in this thesis. On the other
hand, researchers still hold onto traditional non-deep learning approaches due to
their transparency and robustness. In this thesis, we mainly focus on using deep
learning approaches on depth data to handle the task of 6D pose estimation.
Meanwhile, we also combine deep learning approaches with traditional methods
for achieving better system performance.

1.2 Thesis Contributions

In this thesis work, we contribute to the field of 6D object pose estimation using
depth information represented by point clouds. Figure 1.8 illustrates the connec-
tions among the contributions. Here we present a summary of the main contribu-
tions:

• Introduction of the first supervised learning-based system that regresses 6D
poses from point clouds. We adapt an existing method for deep learning
on point clouds as the system backbone and design a simple system for 6D
pose regression on point clouds. Using only depth data during the pose infer-
ence stage, our system outperforms comparison methods that use both color
and depth information for pose inference. We name this work CloudPose
(Chapter 4, also published in [38, 36]).

• One drawback of CloudPose is that it is not robust against noise in the in-
put data. Hence, we introduce a hybrid system that combines self-supervised
learning and supervised learning. We use an augmented autoencoder to im-
plicitly learn a latent representation that encodes the 6D pose information.
Meanwhile, we directly regress 6D object poses from this latent vector in
a supervised learning setup. Experimental results show that there are both
advantages and disadvantages of this work. We name this work CloudAAE
(Chapter 5, also published in [35]).

• To generate training data more efficiently, we present a point cloud-based
online data synthesis pipeline that enables generating synthetic data in a
simple and cheap manner. Our pipeline is lightweight, and the cost is cheap
in terms of time and hardware storage. Moreover, this pipeline also enables
agile deployment of the 6D pose estimation system in robotic applications.
The efficiency of this pipeline is verified with public benchmarks. We name
this work CloudSyn (Chapter 6, also published in [35]).

• For CloudPose and CloudAAE, the accuracy of object segmentation affects
the accuracy of 6D pose estimation. When using color-based semantic seg-
mentation, the resulting object segments sometimes contain pixels that are
physically far away from the object. To improve the segmentation quality,
one potential idea is to integrate the results from a depth-based segmenta-
tion. Towards this end, we propose a point cloud-based over-segmentation
method that uses color saliency to guide the initial seeding process. Instead
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Figure 1.8: The structure of this thesis.

of uniform seeding, dense seeds are initialized in salient areas, and less dense
seeds are initialized in non-salient regions. This adaptive seeding helps the
system to preserve the object boundaries better. We name this work SSV
(chapter 7, also published in [37]).

• A case study in real-world experiments that examines the proposed 6D object
pose estimation systems in an in-hand object pose estimation task. By testing
our systems in a real-world setup, we verify our system’s usability and gain
insights about the important aspects when integrating a vision system with
a real-world setup (chapter 8).

1.3 Thesis Structure

The thesis structure is illustrated in Figure 1.8. The remainder of the thesis is
structured into eight chapters. Chapter 2 introduces the preliminary concepts and
Chapter 3 presents the state of the art of 6D object pose estimation. The following
five chapters present each contribution of this work:

• Chapter 4 introduces CloudPose, a simple and effective 6D object pose es-
timation system that operates on point cloud segments. The focus of this
work is proposing a system that can produce accurate 6D pose estimates us-
ing depth information. We describe the important factors and design choices.

• Chapter 5 introduces CloudAAE, which is another variant of point cloud-
based 6D object pose estimator. The main focus is to adapt the idea of
an augmented autoencoder for a point cloud system, which improves the
performance and robustness of the system.

10
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• Chapter 6 introduces CloudSyn, which is an on-line data synthesis pipeline.
The main advantage of our pipeline is its low cost in the sense of time and
hardware storage. Extensive ablation studies are investigated for pipeline
components.

• Chapter 7 introduces the point cloud-based over-segmentation work named
SSV. Visual saliency is used to guide the initial seeding process, and this
adaptive seeding helps boost the system performance.

• Chapter 8 examines the applicability of our developed system to a real-world
scenario. The main focus is to connect the data synthesis pipeline and the
6D object pose estimator with a real-world workspace setup.

Finally, Chapter 9 concludes the thesis. The main contributions are summa-
rized, with discussions on the strengths and limitations. An outlook on future work
is also included.

As illustrated in Figure 1.8, Chapters 1 and 2 present the background moti-
vation and basic introduction to the thesis topic, and 3 presents the recent devel-
opment in the field of 6D object pose estimation. Chapter 4 and 5 present two
approaches that learn 6D pose from point cloud segments. Chapter 6 presents a
pipeline that synthesizes point cloud segments for training a 6D pose estimation
network. Chapter 7 presents a work in the field of over-segmenting point clouds.
Combining the chapters on 6D pose estimation (5, 6), we conduct a real-world
experiment in Chapter 8. Theoretically, the over-segmentation approach in Chap-
ter 7 can potentially help to improve the performance of the real-world experiments.
However, it is not integrated into the real-world experiments in this thesis. The
main reason is that it is practically easier to use the recently developed semantic
segmentation methods for object segmentation.
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Chapter 2

Preliminaries to Learning 6D
Object Pose

In this chapter, we present a bundle of preliminaries that are relevant to this thesis.
First, the problem formulation of 6D object estimation is presented in Section 2.1.
The 3D rotation group and rotation representation are introduced in Section 2.2.
Section 2.3 presents how to conduct deep learning on unorganized data such as
point clouds. Finally, the commonly used datasets and evaluation metrics are in-
troduced in Section 2.4 and 2.5, respectively.

2.1 Problem Formulation

In this section, we provide a formal description of the problem that we address in
this thesis. We describe the input and output of a 6D pose estimation system. We
also describe the training and testing setup for a learning-based system.

2.1.1 6D Pose Estimation

In this thesis, we deal with the problem of estimating the 6D pose of known objects,
represented in a 3D point cloud. The 6D pose of an object is composed of the 3D
location t and the 3D orientation R. A 6D pose describes the transformation from
a local coordinate system of the object to a camera coordinate system. Figure 2.1
shows an illustration. We denote the local coordinate system withO and the camera
coordinate system with C.

We denote the point cloud object model with

PO =
{
xOi ∈ R3 | i = 1, . . . ,m

}
, (2.1)

where xOi is the ith point, and m is the number of points in the object model.
Figure 2.2(a) shows an illustration of an object model. The creator of the respective
dataset manually defines the position of the object coordinate system. For the
target object viewed by the camera, we denote the object in the camera view with

PC =
{
xCi ∈ R3 | i = 1, . . . , n

}
, (2.2)
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Translation + Rotation

Figure 2.1: The goal of 6D pose estimation is to find the translation and rotation
from the object coordinate frame O to the camera coordinate frame C.

(a) (b)

Figure 2.2: Illustration of the object model and object segment in the camera view.
(a) The object model PO at object coordinate O. (b) An object segment PC in
the camera view C.

where xCi is the ith point, and n is the number of points in the object segment.
Figure 2.2(b) shows the illustration of an object segment.

Given a set of points PC on the surface of a known object in the camera coor-
dinate, the aim of pose estimation is to find a 6D transformation that transforms
xi from the object coordinates to the camera coordinates

xCi = RxOi + t, (2.3)

where xCi and xOi are the corresponding points in the object segment and object
model, respectively. The commonly used unit for measuring the amount of 3D ro-
tation is radian or degree, and the unit for measuring the amount of 3D translation
is meter.
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2.1.2 Learning 6D Pose Estimation

Hodaň [56] et al. provide a formal definition of learning 6D object pose estimation.
In this section, we adapt their formulation and add more descriptions regarding
our scenario with point clouds.

For a learning-based 6D object pose estimator, there is a training phase and
a testing phase. At training time, the system is provided with a training set con-
taining a set T of known rigid objects

T = {T1, T2, . . . , Tk} , (2.4)

and the known objects are denoted with O = {1, 2, . . . , k}. k is the number of
object classes. In general, the training data Ti can be created synthetically with
3D object models or a set of real RGB or RGB-D images. Meanwhile, the ground
truth 6D object poses for each object in each image are also provided.

At the test time, the system is provided with a single test RGB or RGB-D
image I and the goal is to estimate the 6D pose for each visible object instance in
I. Image I contains a list of objects LI = {o1, o2, . . . , ok}, where oi ∈ O denotes
object classes presented in I. The test output is a sequence

EI = ((o1, t̂1, R̂1), (o2, t̂2, R̂2), . . . , (ok, t̂k, R̂k)), (2.5)

where 3D translation t̂i and 3D rotation R̂i are the estimated 6D pose of object
oi ∈ O.

In this thesis, the input to our pose estimation system Ti is a point cloud object
segment, accompanied by object class information. This segment can be obtained
either from a 3D object model or through semantic segmentation from an RGB-D
image.

2.2 3D Rotation Representation

A 3D rotation describes a transformation that rotates an object around an axis
with an angle. In this section, we introduce three 3D rotation representations, i.e.,
rotation matrix, axis-angle, and quaternion. Then, we will investigate a suitable
rotation representation for a supervised learning system.

Rotation matrix In a 3D Cartesian coordinate system, there are three basic
rotations. Each basic rotation rotates about one coordinate axis. Rotating about
x-, y-, or z-axis by an angle θ can be written as matrix

R(x̂, θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 , (2.6)

R(ŷ, θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , and (2.7)
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R(ẑ, θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 , (2.8)

where x̂, ŷ, ẑ denote the unit vectors along x-, y-, or z-axis, respectively.
An arbitrary rotation can be obtained by combining those basic rotations with

matrix multiplication. A rotation R that first rotates about z-axis by γ, then
rotates about y-axis by β, and finally rotates about x-axis by α can be obtained
by

R = R(x̂, α)R(ŷ, β)R(ẑ, γ), (2.9)

which also represents a rotation whose rotation angles are γ, β, α about axes z,
y and x, respectively. One constraint for the rotation matrix R is that it is an
orthogonal matrix with determinant one [43].

Axis-angle A 3D rotation can also be described with its axis of rotation and its
angle of rotation. As illustrated in Figure 2.3, in a 3D Euclidean space, the axis
of rotation is denoted with a unit vector ê ∈ R3, and the magnitude of rotation is
denoted with angle θ ∈ R. A rotation R defined with ê and θ can be written as

R(ê, θ) = θê. (2.10)

Therefore, the rotation R(ê, θ) in the axis-angle representation can be written as
(θex, θey, θez). Figure 2.3 shows an illustration of how a rotation is represented in
the axis-angle format.

Quaternion Quaternion is developed by W. R. Hamilton [44]. It is a convenient
mathematical notation for representing transformations of points in the 3D space.
For a standard orthonormal R3, its three unit vectors are î = (1, 0, 0), ĵ = (0, 1, 0),
k̂ = (0, 0, 1) [75]. A quaternion q is defined as the sum of q0 ∈ R and qv =
(q1, q2, q3) ∈ R3

q = q0 + qv = q0 + q1î + q2ĵ + q3k̂, (2.11)

where q0 is called the scalar part and qv is called the vector part. The scalars
q0, q1, q2, q3 are called the components of the quaternion. Assuming a rotation is
defined with angle θ around a unit vector ê,

ê = (ex, ey, ez) = exî + ey ĵ + ezk̂, (2.12)

then the corresponding quaternion representation q is

q = cos
θ

2
+ sin

θ

2
(exî + ey ĵ + ezk̂). (2.13)

Here q is a unit quaternion with ‖q‖ = 1, the rotation R(ê, θ) in the quaternion
representation can be written as the components (cos θ

2
, ex sin θ

2
, ey sin θ

2
, ez sin θ

2
).
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z-axis

y-axis

x-axis

Axis-angle

Quaternion

Figure 2.3: Illustration of axis-angle and quaternion.

Figure 2.3 shows an illustration of how a rotation is represented in quaternion
format.

For a learning system, the rotation matrix has 9 parameters, which is less com-
pact compared to the quaternion and axis-angle representation. Furthermore, the
rotation matrix is constrained to have a determinant of one, which could potentially
complicate the learning task. Similarly, the unit norm constraint also applies to
quaternions. Hence, we argue that axis-angle is a suitable rotation representation
for a deep learning system.

2.3 Deep Learning on Point Cloud

Since this thesis focuses on learning poses from point clouds, we describe the basic
methods for deep learning on point clouds in this section. Before diving into deep
learning on point clouds, we briefly touch on the history of deep learning on depth
data and motivate deep learning on point clouds.

As mentioned in Section 1.1.3, one common depth representation is the 2.5D
depth map. Before deep learning methods on point clouds are proposed, one com-
mon way for depth-based deep learning is using CNNs. A CNN is a specialized kind
of neural network used to process data with a grid-like structure, for example, an
image [41]. CNNs are very powerful at extracting features from color images. Due
to their promising performance in various visual recognition tasks, there are also
attempts to use CNNs for processing depth information. More specifically, a depth
map is often treated as an additional channel to a color image and is used for fea-
ture extraction with CNNs [69, 148, 80, 17]. However, depth maps only contain the
distance information on one out of three axes, and the complete 3D information
is not captured in those depth maps. Hence, it is desired to extract features from
point clouds that contain complete 3D information with deep networks.

A point cloud is essentially a set of unordered points, in contrast to an image
with a matrix structure. Compared to an image with a grid-like structure, point
clouds often appear in an irregular format, which cannot be processed by a system
with convolutional architecture [103]. Figure 2.4 shows an illustration of a regular
grid-like structure (2.4(a)) and an irregular point set (2.4(b)).
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(a) An image with grid-like structure, each
square represents one pixel

(b) A point set with an irregular structure

Figure 2.4: Illustration of a regular image grid and an irregular point set.

This section introduces the methods used for deep learning on point clouds
in this thesis. Section 2.3.1 introduces the first deep learning structure proposed
for the unordered point set, which is called PointNet [103]. Section 2.3.2 intro-
duces a variant of PointNet, which is called PointNet++. Compared to PointNet,
PointNet++ enlarges the local receptive field for each point. Section 2.3.3 intro-
duces a system structure that uses the Dynamic Graph (DG). Among those meth-
ods, we use PointNet as the building block in our system presented in Chapter 4
and Dynamic Graph in our system presented in Chapter 5.

2.3.1 PointNet

PointNet was proposed by Qi et al. [103] in 2017 and is the first deep learning
network for point clouds. It was initially proposed for applications such as object
classification and semantic segmentation, and this section uses the object classifi-
cation task as an example to introduce its feature extraction pipeline. It presents
a universal method for extracting deep features from raw point clouds and can be
adapted for other tasks.

Qi et al. pointed out three main properties of a point set that represents a point
cloud. The first property is the points in the set are unordered, and a network that
consumes a 3D point set with N points should be invariant to N ! permutations of
the input point order. The second property is the interaction among points. Since
the points together represent an object surface, they should not be treated isolated
and the network should be able to capture both local and global structures. The
third property is invariance under transformations. This means if a certain rotation
or translation is applied to the point set, the global point cloud category or the
semantic segmentation of the points should not be modified.

A point cloud is represented as a set of 3D points {pi|1, . . . , n}, and pi is
a vector of its 3D coordinate (x, y, z). For the task of classifying k objects, the
network outputs k scores for the k candidate classes. Figure 2.5 illustrates the
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Figure 2.5: PointNet Architecture for object classification. The network takes n
points as input and applies input and feature transformations. A mini network
(T-net) is used for predicting affine matrices. Each input point is processed indi-
vidually with MLP for feature extraction. A max-pooling layer is used to obtain
the 1024-dimensional global feature, and this feature is used for final class predic-
tion. The red annotations denote the functionality of each main building block.
Adapted from [103].

structure of PointNet, and the red annotations denote the functions of the main
building blocks, corresponding to the properties mentioned above. The input is
a matrix of dimension n × 3, in which n is the number of points in the point
set, and 3 corresponds to the 3D coordinate. This input is first processed with a
transformation block, which aims to transform the input point set into a canonical
pose by applying a 3×3 rotation transformation. This rotation matrix is predicted
by a mini network (T-net in Figure 2.5). This transform block is used to achieve
the invariance under transformation. To achieve the invariance under point order
permutations, all points are processed independently using multi-layer perceptrons
(MLP) with shared weights (MLP in Figure 2.5). After a series of feature extraction
with MLP layers, a 1024 dimension feature vector is obtained for each point (the
n×1024 block in Figure 2.5). To achieve the interaction among points, those feature
vectors are max-pooled to create a global feature representation of the input point
cloud. Finally, after some MLP layers, the network outputs a k-dimension vector,
which contains the classification scores.

2.3.2 PointNet++

One main drawback of PointNet is that it does not capture local structures [104].
Since PointNet only captures a global representation for the input point set, it
has limited ability to recognize fine-grained patterns and to generalize to complex
scenes [104]. To improve this aspect of a deep learning structure on point clouds,
the authors of PointNet proposed PointNet++ [104].
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Figure 2.6: Illustration of the hierarchical point set feature learning in PointNet++.
Each set abstraction level contains a Sampling layer, a Grouping layer, and a
PointNet layer. A set of points is processed and abstracted into a new set with
fewer elements after each set abstraction level [104].

In PointNet++, Qi et al. proposed the hierarchical point set feature learning.
The general idea is to group points hierarchically, and meanwhile progressively
abstract larger and larger local regions [104]. This hierarchical architecture is com-
posed of several set abstraction levels. A set abstraction level contains a sampling
layer, a grouping layer, and a PointNet layer. The Sampling layer selects a subset
of the input points and defines the subset as the centroids of local regions. The
grouping layer constructs local regions for each centroid by finding the near neigh-
bors. The PointNet layer uses a PointNet-like structure to encode each local region
into feature vectors.

Figure 2.6 shows an illustration of the hierarchical feature learning architec-
ture. The input is a point set of N points, with d-dimensional coordinates and
C-dimensional point features. With farthest point sampling (FPS), the Sampling
layer defines N1 centroids. The Grouping layer finds K nearest neighbors for each
centroid and groups each centroid with its corresponding neighbor. For each group,
a PointNet layer is applied to extract C1 features for the group, and one set ab-
straction level is completed. This level is repeated a desired number of times until
a global feature vector is obtained (with dimension (1, C3) in Figure 2.6). Finally,
some fully connected layers are used for obtaining the final class scores.

2.3.3 Dynamic Graph

An alternative method to capture the local structure is the Dynamic Graph pro-
posed by Wang et al. [132]. Instead of extracting point features directly from their
embedding, Wang et al. proposed to construct graphs with edge that describe the
relationships between a point or a feature and its neighbors [132]. The graph is
recomputed using nearest neighbours in the feature spaces computed by each pre-
vious layer, hence the system is named Dynamic Graph. The edge convolution
operation (EdgeConv) is used to extract features from the edges. The EdgeConv
operation also maintains permutation invariance.
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Figure 2.7: Illustration of edge feature and edge convolution, adapted from [132].
(a) An edge feature eij is computed from the point pair xi and xj. (b) The Edge-
Conv operation calculates the output by aggregating all the edge features corre-
sponding to each connected vertex.

Assume a p-dimensional set is denoted with X = {xi ∈ Rp | i = 1, . . . ,m}, in
which Rp can be either a 3D Euclidean space or an arbitrary feature space. For each
point xi, a directed graph G = (V , E) is first calculated. The vertices are denoted
with V = {1, . . . , n} and edges are E ⊆ V × V . A simple case for this direct graph
is the k-nearest neighbor graph. The k-nearest neighbor graph contains directed
edges (i, ji1), . . . , (i, jik), in which xji1 , . . . ,xjik are the k closest points to xi. The
edge feature eij is defined as

eij = hΘ(xi,xj) (2.14)

where hΘ is some parametric non-linear function parameterized by Θ, and Θ is a
set of learnable parameters. Figure 2.7(a) shows an illustration.

The edge features are then processed by an edge convolution operation (Edge-
Conv), which contains an edge function h and an aggregation operation � [132].
The aggregation operation can be a max pooling or average pooling operation. For
the i-th vertex, the output of EdgeConv is

x′i = �
j:(i,j)∈E

hΘ(xi,xj) (2.15)

where Θ is a set of learnable parameters. In this case, xi is the center point of the
graph, and {j : (i, j) ∈ E} represents its local neighbor patch. Figure 2.7(b) shows
an illustration of the EdgeConv operation.

2.4 Datasets

Many datasets have been proposed for benchmarking 6D object pose estima-
tion [139, 52, 55]. The general goal of those datasets is to provide a joint base to
test methods from one or several challenges (mentioned in Section 1.1.2) such as
whether the objects are textured, or are rotationally symmetric, or whether the il-
lumination condition varies a lot. With the development of technology and research
in this field, the proposed datasets tend to become larger and more challenging.
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In this thesis, we choose three datasets that are most commonly used and suit our
application for evaluation, namely, the LineMOD (LM), the Occluded LineMOD
(LMO), and the YCB video dataset (YCBV). All of the datasets contain a color
image and a depth image for each frame, and they are calibrated. The 6D poses
of the target object in the corresponding images are annotated. Furthermore, the
intrinsic camera parameters are also provided. Throughout this thesis, we use the
full names of the datasets and their corresponding abbreviations interchangeably.

2.4.1 LineMOD Dataset

Hinterstoisser et al. proposed the LineMOD dataset in 2012 [52]. It contains 15
objects from daily scenarios containing ape, bench vise, bowl, can, cat, cup, driller,
duck, glue, hole puncher, iron, lamp, phone, camera, and egg box. The 15 objects
are filmed in 15 videos, with more than 18, 000 frames. The 3D model of each object
is provided in both mesh and point cloud format, and the maximum diameters of
the objects are also provided. For training and testing the system, 15% of the
frames are training data and 85% of the frames are testing data. By convention,
only 13 out of 15 objects are used for system evaluation [68]. This is because the
object bowl and cup lack meshed models for creating synthetic training data.

The majority of the objects are low textured and do not have rotational sym-
metry. Figure 2.8(a) shows an original image from the bench vise sequence, where
the bench vise is placed in the middle and the background is cluttered with other
objects. Figure 2.8(b) shows the overlay of the bench vise object model in the
annotated 6D pose. It can be observed that the bench vise is not occluded and
that the main challenge is the textureless object appearance and the background
clutter. Figure 2.9(a) shows the meshed models for 13 out of the 15 objects.

2.4.2 Occluded LineMOD Dataset

One challenge missing from the LineMOD dataset is occlusion. To fill in this gap,
Brachmann et al. annotated the 6D pose for the background objects in the bench
vise sequence to introduce the occlusion challenge [14]. This generated the occluded
LineMOD dataset, which contains 8 objects from the LM dataset. Figure 2.8(c)
shows the overlay of the background object models in the corresponding anno-
tated 6D pose. Compared to LineMOD, the occluded LineMOD dataset is more
challenging.

2.4.3 YCB Video Dataset

The YCB video dataset is one of the largest datasets for benchmarking 6D object
poses, and it was proposed by Xiang et al. [139] in 2018. This dataset contains
21 everyday life objects, namely: master chef can, cracker box, sugar box, tomato
soup can, mustard bottle, tuna fish can, pudding box, gelatin box, potted meat can,
banana, pitcher base, bleach cleanser, bowl, mug, power drill, wood block, scissors,
large marker, large clamp, extra large clamp, and foam brick. Those 21 objects are
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(a) (b) (c)

Figure 2.8: Examples of LM and LMO dataset. The pose annotation is visualized by
transforming the target object model with the ground truth pose, and overlaying it
on the image. (a) An original image. (b) The pose annotation of the target object
in LM. (c) The pose annotations of the target objects in LMO.
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(a) Objects in the LineMOD dataset.
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(b) Objects in the YCB video dataset.

Figure 2.9: Examples of objects in the LineMOD (a) and the YCB video dataset
(b).
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selected from the YCB object set [19]. It contains 92 video sequences with a total
of 133,827 frames. The 3D model of each object is provided in the point cloud
format. The official train/test split uses 80 video sequences for training. Testing is
performed on the 2,949 keyframes chosen from the remaining 12 sequences. 80,000
frames of synthetic data are also provided by the YCBV dataset as an extension
to the training set. Figure 2.9(b) shows the objects models. The majority of the
objects are low textured and have rotational symmetry.

2.4.4 Discussion

Apart from the objects and dataset size, one major difference between the YCB
video dataset and the LineMOD dataset is the selection of test data. As mentioned
before, the train and test data are selected from the same video sequences in LM.
This means that the illumination conditions and object appearances are similar in
the train and test data. Figure 2.10 shows a comparison between a train and a test
image in LM. It can be observed that the illumination conditions are very similar.
This means that this dataset is relatively easy for color-based methods.

In contrast, the train and test data of YCBV are selected from different video
sequences. Figure 2.11 shows examples of train and test data of this dataset. It can
be seen that the illumination condition and object appearance are very different.
This implies that this dataset is potentially more challenging, especially for color-
based methods.

From the perspective of depth data quality, the depth data quality is as good
as expected in YCBV. On the other hand, the depth data is inaccurate in both
LM and LMO. This is because the intrinsic parameters are inaccurate and the
resulting pinhole camera model cannot provide an accurate depth estimation [68,
119]. This inaccurate depth information could potentially make the LM and LMO
more challenging for depth-based methods, compared to YCBV.

In this thesis, we will present a point cloud-based data synthesis pipeline that
generates training data in the point cloud representation. Our synthetic data is a
good complementary to existing datasets (see Section 3.3.2 for detailed discussion).
Our data synthesis pipeline is presented in Chapter 6.

2.5 Evaluation Metrics

This section answers the question of how we evaluate whether a 6D pose estimate
is accurate or not. This is conducted by comparing the estimated pose and the
ground truth pose with specific measures. There have been measures such as “5◦

and 5 cm” used for evaluating 3D rotation and 3D translation separately [52]. This
particular metric means that a rotation estimate is considered correct if the rotation
error is less than 5◦, despite the direction of the error. Similarly, a translation
estimation is considered correct if the translation error is less than 5 cm. This
metric is relatively easy, but it contains two values and those two values might
show conflicting results. Hinterstoisser et al. [52] proposed a pair of metrics that
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(a) Train. (b) Test.

Figure 2.10: An example of train and test example in LM. The target object is the
ape in the middle.

(a) Train. (b) Test.

Figure 2.11: An example of train and test example in YCBV. The target object is
the power drill.

evaluate rotation and translation simultaneously. Those two metrics use the 3D
object models. The first is called the average distance (ADD) of model points.
Given a 3D model represented as a set PO with n points x ∈ PO, ground truth
rotation R and translation t, as well as estimated rotation R̂, and translation t̂,
the ADD is defined as:

ADD =
1

n

∑
x∈PO

∥∥∥(Rx + t)− (R̂x + t̂)
∥∥∥

2
. (2.16)

The other is called average distance for a rotationally symmetric object (ADD-
S). ADD-S is computed using the closest point distance. It provides a distance
measure that considers possible pose ambiguities caused by rotational symmetry:

ADD-S =
1

n

∑
x1∈PO

min
x2∈PO

∥∥∥(Rx1 + t)− (R̂x2 + t̂)
∥∥∥

2
. (2.17)
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A 6D pose estimate is considered correct if ADD and ADD-S are smaller than
a given threshold. Typically, the area under the error threshold accuracy curve
(AUC) for ADD and ADD-S is calculated with a distance threshold. For YCBV, a
6D pose estimate is considered correct if ADD and ADD-S are smaller than a given
threshold of 0.1 m. This means the AUC for ADD and ADD-S is calculated with
a maximum threshold of 0.1 m. For LM and LMO, a pose is considered correct if
the error is less than 10% of the maximum diameter of the target object [52].
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Chapter 3

State of the Art in 6D Pose
Estimation of Known Objects

6D pose estimation is a well-studied topic in the computer vision literature since
the early 2000s. In general, it can be divided into instance-level and category-
level object pose estimation. The instance-level pose estimation assumes the target
objects are known, for example, a particular mug or a particular power drill. The
category-level pose estimation assumes the target objects are from specific known
categories, but the exact object models are unknown. For example, if the known
categories contain the category “mug”, the system is expected to deal with mugs
with various shapes, sizes, and textures. The majority of the research focuses on
the instance-level object pose estimation during the past decade, and category-
level object pose estimation is receiving more and more attention recently. This
thesis focuses on the classic instance-level object pose estimation and deals with
known target objects.

Some pioneer works were able to use sparse features detected in RGB images to
give reliable object pose estimation [84]. However, those target objects are mostly
well-textured, and the approaches proposed during this period make good use of
the textures to develop fast and scalable methods. With the commercially avail-
able Kinect depth sensors in 2010, researchers started investigating this problem
using RGB-D images. With the additional depth channel, the pose estimation of
textureless objects was enabled [50]. Since then, researchers focused on challenges
such as clutter [52], occlusion [14], and object symmetry [55] from RGB-D images.
Meanwhile, some also try to achieve the same performance with only RGB im-
ages [90]. Moreover, with the rise of deep learning from other visual recognition
tasks, many deep learning-based approaches also focus on achieving state-of-the-art
performance with RGB images [68]. Apart from RGB or RGB-D representations,
point clouds have also been used to extract features for object pose estimation [25].

In this chapter, we categorize the existing approaches according to the meth-
ods they use for inferring the 6D pose. In general, there are multi-stage methods
and single-stage methods. Multi-stage methods normally contain multiple process-
ing stages in their pipelines, and their pipelines often contain non-deep learning
components. Single-stage methods refer to deep learning-based methods and they
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Figure 3.1: Overview of the literature chapter.

are typically trained end-to-end. We refer to them as the single-stage approaches
in this thesis. Multi-stage approaches extract intermediate features or templates
from the input images for obtaining the 6D pose estimate. Single-stage approaches
directly infer the 6D pose from the input images. Previously, the multi-stage ap-
proaches were very dominating in the literature. With the rise of deep learning,
some competitive single-stage approaches were also proposed.

Multi-stage methods based on 2D-3D or 3D-3D correspondence are discussed
in Section 3.1.1. Multi-stage methods based on template matching are discussed
in Section 3.1.2, and methods based on voting are presented in Section 3.1.3. The
single-stage approaches are discussed in Section 3.2. Figure 3.1 gives an overview
of the related work. The work presented in this thesis belongs to the single-stage
category. Within each category, we discuss how the key aspects of each stream of
methods have evolved and what their advantages or disadvantages are. On top of
reviewing the methods, we mostly follow a chronological order when introducing
the works to reveal the history of this research field.

Apart from the related work in estimating 6D poses, we also provide a review of
how the training data is generated for 6D pose estimation. This is a relevant topic
in this thesis because we are interested in integrating pose estimation systems into
robotic applications and may encounter novel objects or pose distribution. In this
case, it requires to collect or generate new training data. In this thesis, we also
present a point cloud-based data generation pipeline. We review the existing data
generation methods in Section 3.3.

3.1 Multi-stage Approaches

For multi-stage approaches, the popular representations are sparse features, dense
features, and holistic templates. From those intermediate feature representations,
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different methods such as correspondence, template matching, or voting are used
to obtain the final 6D object pose.

3.1.1 Correspondence-based Approaches

Correspondence-based methods often have three stages: Firstly, some key features
are extracted from the input data. The key features can be sparse features such as
local image patches or dense per pixel features. Secondly, based on the features,
the correspondences between the input image and the object model are estab-
lished, and a pool of pose hypotheses is generated. Finally, with some similarity
measures and geometric constraints, they search for an optimized hypothesis that
best aligns the correspondences. Figure 3.2 shows an illustration of the multi-stage
correspondence-based approach using sparse features as an example.

Sparse feature-based. Early methods for 3D object pose estimation rely on
simple image features such as edges and corners. For example, a pioneer work [47]
describes the target object as a set of shape primitives such as lines and matches the
lines with the edge contours detected in the image to find a good 3D pose estimate.
However, edge-based approaches are not robust and reliable in practice [78], as
they cannot handle partial occlusions and background clutter can easily mislead
the matching process. Comparing with using only contours, Lowe [84] proposes a
much richer descriptor known as the scale-invariant feature transform descriptor
(SIFT). A staged filtering approach is used to detect stable points in the scale
space and forms SIFT keys. Those SIFT keys are local feature coordinates that
are invariant to translation, rotation, scale, etc. With pre-defined training images,
the SIFT features can be used for the nearest neighbor search to identify objects
and their poses. Following this concept, faster descriptors such as SURF [8] and
ORB [107] features were also proposed. Since those descriptors are discriminative
local features robust to the change of viewpoint and illumination, they can be used
for complicated scenarios [20].

Since only a small number of correspondences are required for recovering a 6D
pose, those methods are generally robust to occlusion. Although it is very impres-
sive that those local descriptors can handle very complicated real-life scenarios, it
relies on a strong prior assumption that all the target objects are textured. Since
this is not always the case with many objects in real life, research focus in this
field has shifted to textureless objects.

Dense feature-based. For textureless objects, sparse features are not suffi-
cient and error-prone, hence denser features are desired. Motivated by the work
in the field of articulated human pose estimation, Brachmann et al. and Zach et
al. [14, 147] adapt the idea of object coordinate representation for 6D object pose
estimation. The hypothesis is that although the individual correspondences pre-
dicted for areas with less texture may be inaccurate, the large quantity of them can
still contribute to an accurate pose estimate [13]. In the object coordinate repre-
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Figure 3.2: Correspondence based methods with sparse features [13]. The key fea-
tures are extracted and used for prediction correspondences with the object model
with an input image. Correct correspondences are denoted with green and false
ones with red. A pool of pose hypotheses is generated from the correspondences.
Some scoring functions are used to give scores to each hypothesis. The pose hy-
pothesis with the best score is selected to be the final pose estimate.

sentation, each pixel in the image selects a coordinate on the object in a canonical
pose [14]. Comparing with the aforementioned sparse feature, this per-pixel object
coordinate feature is referred to as dense features.

To give a detailed example, Brachmann et al. [14] use a random forest to learn
the object class and object coordinate for each pixel in an RGB-D image. This
information together with the depth information is used to form an energy function.
A RANSAC-based algorithm is used to sample pose hypotheses, and the final
pose estimate is found by energy minimization. An interesting method is used
for calculating the energy for each pose hypothesis. A synthetic depth image is
rendered with an estimated pose and compared with observed depth values. This
rendering and comparing approach is usually referred to as analysis-by-synthesis.

Building on the analysis-by-synthesis idea, the energy function is replaced by
a CNN in [74]. This is one of the first works that uses deep learning in a 6D
pose estimation system and it was proposed in 2015. Their motivation is that
the energy function has only a few parameters, the CNN used in [74] has around
600K. The richness of parameters can potentially help the method to achieve better
performance. By using a CNN, it shifted from designing how to compare to learning
how to compare. The CNN is used as a probabilistic model and trained with a
maximum likelihood objective [74]. Using this data-driven module for comparison,
the performance of the pipeline is largely improved, which shows the potential of
deep networks in this field. Recently, He et al. proposed a method to use deep
networks for feature extraction from both color and depth information and use the
extracted features for keypoints detection [49]. The keypoints are then used for
least-squares fitting for finding the 6D pose.
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So far, all of the approaches are using RGB-D images, and the popular bench-
marking dataset at the time (LineMOD) is getting closer to be “solved”. To raise
the bar, Brachmann et al. [15] propose a method that uses only RGB information
to achieve good performance. Similar to [14], per pixel object coordinates and class
labels are obtained via a random forest, followed by RANSAC pose sampling and
refinement. The major difference to [14] is that the random forest is extended to
an auto-context random forest, with which the uncertainties of the learned class
labels and object coordinates are also considered in the iterative learning process.
The uncertainty-driven technique boosts the method performance. This approach
shows that it is also possible to predict accurate object poses with only RGB in-
formation. Up to the time of writing this thesis, one of the main research trends
in this field was to attempt solving benchmarks with only RGB information.

3.1.2 Template Matching Based Method

In this section, we introduce an alternative representation to image features, which
is called the template. The main difference between templates and image features
is that a template is a global object representation while a feature is a local repre-
sentation. The template can either be handcrafted or learned with deep networks.

Hinterstoisser et al. are the first to propose using templates for representing
texture-less objects in 2011 [50, 51, 52]. The main idea is to use the image gradient
as the templates. The image gradient contains color and depth gradient. More-
over, the image gradient is proven to be more discriminant than descriptors such
as SIFT and robust to illumination changes [50]. Apart from color images, the gra-
dient from depth information is also extracted to create a multi-modal template.
Figure 3.3(a) is an example of the template collection setup. Given a 3D object
model, the templates are collected at fixed distances and cover the half-sphere of
the viewpoints. Approximately 2000 templates are needed for detecting an object.
Figure 3.3(b) shows an example of the multimodal template. For pose estimation,
similarity measures are applied to calculate the similarity between a reference tem-
plate and an input image. The detection results are further improved by adding
additional tests using color and depth information to reject outliers [52].

One recent development in the deep learning domain for template-based object
pose estimation is the augmented autoencoder (AAE) [119]. Proposed by Sunder-
meyer in 2018, the AAE is used for 3D rotation estimation and it is a variant of
the Denoising Autoencoder [128]. For estimating a 6D object pose, the authors
first use 2D bounding boxes for translation estimation and then use the AAE for
3D rotation estimation. The key idea of the AAE is to control which properties are
encoded by the latent representation and which ones are ignored [119]. Properties
that shall be ignored are treated as data augmentation and applied to the original
input images of the encoder. The decoder is then trained to produce an output
without those augmentations. For example, if the AAE shall be color invariant, all
kinds of color augmentation should be applied to the original input image. The task
of the decoder is to reconstruct the original input image without any color aug-
mentation. On the other hand, the properties that shall be encoded are controlled

31



Chapter 3. Literature
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Figure 3.3: (a) Setup for template collection. The vertices represent the virtual
camera centers used for template generation. (b) An example of multi-modal tem-
plate.

by the reconstructed target of the decoder. In [119], the decoder reconstructs an
image that contains the target object in the same 3D rotation as the input image.
In this way, the latent representation encodes the 3D rotation information of the
input image, hence it can be used as a template representing the 3D pose of the
input. In other words, rather than explicitly mapping from an input image to a
pose label, the AAE learns the implicit representation of object orientation in a
latent space. A codebook of latent representation is created off-line, and they use
the nearest neighbor search to compare a test representation within the codebook.

For the handcrafted template, since it uses the whole object image as the
template, those approaches are also referred to as holistic methods in the litera-
ture. Comparing with the early approaches mentioned above, this holistic template
matching scheme is much more robust in cluttered scenes for texture-less objects.
However, due to their holistic nature, the templates are not robust to occlusion.
Nonetheless, this holistic template inspired researchers to adapt it for a more oc-
clusion resistant representation. The deep-learned templates can be robust towards
occlusion if the training data was augmented with occlusion. Due to the flexibility
of data augmentation, it has a lot of potential to be extended. For example, the
AAE is improved by [134] by adding edge priors.

3.1.3 Voting Based Methods

As mentioned above, holistic templates are not robust to occlusion. To deal with
this shortcoming, researchers propose to adapt it to a local patch descriptor. In-
stead of comparing the templates or looking for correspondences for estimating
poses, those local patch descriptors are used in a voting scheme. Tejan et al. [121]
first adapt the multimodal template idea and create scale-invariant local patch
features. The scale-invariance is achieved by using the depth of the patch center
to scale the offset. These local patch features are integrated into a random forest
framework and used for voting 6D object poses. They have shown that using local
patch features helps to handle occlusions.

However, since templates are hand-crafted features, it is challenging to make
them discriminative for a large range of everyday objects [24]. Hence, more scalable
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approaches are desired. Therefore, Doumanoglou et al. [24] propose to learn the
local patch features in an unsupervised manner with deep sparse autoencoders.
Moreover, instead of using similarity measures for voting, the learned features are
fed to a Hough Forest, and 6D Hough voting is used to determine object class and
6D poses. Kehl et al. [69] propose a similar approach where they use convolutional
autoencoder (CAE) to learn local RGB-D patches and a k-nearest neighbor (k-NN)
search for vote casting.

Above mentioned methods all rely on RGB-D images. There are also works
focusing on estimating object poses from depth information represented by point
clouds. One of the pioneering works on pose estimation with point clouds is from
Drost et al. [25] in 2000. They propose a global descriptor based on oriented point
pair features (PPF). During testing, point pair features are extracted locally and
matched to the model descriptor. The matches are used in a fast voting scheme for
finding an optimal object pose. This method is further improved by Hinterstoisser
et al. using a novel sampling and voting scheme [53]. It is worth mentioning that
this point cloud-based feature is still used by the winning method in a recent
benchmark challenge in 2019 [58].

3.2 Single-stage Approaches

The methods mentioned above are multi-stage methods, and their pipelines contain
non-deep learning approaches. In recent years, methods that rely mostly on deep
learning components have been proposed. Because they are typically trained end-
to-end, we refer to them as the single-stage approaches. Approaches in this category
can be divided into regression-based methods and classification based methods.
Regression-based methods assume their output is in a continuous space and directly
regresses to the desired values. The regress target can either be 6D object poses or
the image coordinate of 3D bounding boxes. Classification based methods assume
their output space is discrete and treat the 6D pose estimation as a classification
task.

One example of the regression-based methods is PoseCNN proposed by Xi-
ang et al. [139]. Using RGB images and CNNs, they regress to object centers for
translation estimation and quaternion values for rotation prediction. It is worth
mentioning that they further refine the pose with iterative closest point (ICP) using
depth information. This is a common way to combine forces from color and depth
information. Wang et al. propose a different way to combine color and depth infor-
mation [130] in a system named DenseFusion. They use CNNs to extract features
from RGB images and PointNet to extract features from point cloud segments.
Those features are combined for translation and rotation regression.

Kehl et al. propose SSD-6D to “make RGB-based 6D object pose estimation
great again” with CNNs in a classification manner [68]. They extend the popular
single shot detector (SSD) paradigm [83] and classify the sampled viewpoints and
in-plane rotations of target objects. Similarly, Qi et al. also formulate rotation
estimation as classification and discretize the rotation angles to bins [102]. They
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use a variant of PointNet for rotation classification on point cloud segments. Li et
al. also propose a classification-based approach that extracts features from RGB
images and depth information separately [80]. They tried out an interesting idea
to convert the depth map to a point cloud and format the point cloud as a matrix
with 3D coordinates as 3 image channels named XYZ map. This XYZ map was
then processed with CNNs.

It can be seen that existing approaches mainly exploit color information [139,
68], or combine color and depth information [80]. The main difference between the
approaches presented in this thesis and those existing ones is that we mainly exploit
depth information. Regarding the depth-based method by Qi et al. [102], they only
report experimental data for pose estimation for a single angle as opposed to all
three as we do. Furthermore, they formulate rotation estimation as classification
and discretize the rotation angles to bins. It is not clear if this approach would scale
up to three rotation angles. In contrast, our methods predict the full 6D object
pose, including the 3D rotation. The methods presented in this thesis fill the void
of what depth information can contribute to 6D object pose estimation.

Although the single-stage approaches are not currently the best performing
methods on benchmarks, these single-stage approaches gained popularity due to
their end-to-end nature and simplicity. Overall, it is still intriguing to explore and
improve the performance of single-stage methods.

3.3 Data Generation

In this section, we review existing data generation methods. There are two ways
of obtaining training data, and one is to collect real images of target objects and
annotate the 6D object poses. Another way is to generate synthetic images using
target object models, and there is no need for manual pose annotation. The advan-
tage of collecting real training data is that the training data is visually similar to
real-world testing data, and the disadvantage is that 6D object pose annotation is
difficult. Generating synthetic data omits the need for pose annotation. However,
there is often a difference in appearance between real and synthetic data, it is
called the visual reality gap. Hence, some effort is required to bridge this gap and
make synthetic images visually similar to real-world testing images.

3.3.1 Real Data

Although challenging, there are ways to annotate 6D object poses in real images.
Marion et al. proposed a pipeline for generating RGB-D data with pixel-precise
labels and 6D object poses [88]. They collect a sequence of images of a scene
and produce a 3D scene reconstruction. Then they label the object poses using
a human-assisted ICP on the scene reconstruction. Finally, they obtain the pose
labels for all RGB-D images by reprojecting the pose labels. Xiang et al. use a
similar approach to annotate the YCB Video Dataset [139]. They manually label
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the object poses in the first frame and use the camera trajectory to find the relative
object poses in other frames.

3.3.2 Synthetic Data

Although there are ways to manually label poses, researchers attempt to invest
less effort in data annotation and look into generating synthetic data. To create
synthetic data, the viewpoint and the object’s appearance from that viewpoint
must be determined. Object appearance can be obtained from either textured 3D
object models or real-world training datasets. Viewpoints are selected using some
simple or dataset-based heuristics.

Hinterstoisser et al. propose an approach that defines spheres around the tex-
tured 3D object model with fixed radii and sample viewpoints from a hemisphere
that covers the upper part of the object mode [52]. The object model is then ren-
dered in the target viewpoint onto the plain or random background. This simple
approach is also used in other works [149, 119, 134]. The advantage of this method
is that it provides good coverage for 3D rotation. The limitation is that using
fixed radii puts constraints on the coverage of 3D translation. This approach can
be extended to render object models in arbitrary poses on a random image [123].
Figure 3.4(a) shows an example.

Another way to obtain the object’s appearance and viewpoint is by segment-
ing foreground objects from an existing training set [122, 105, 98]. This is also
known as the “cut&paste” approach, which works well for tasks such as 2D ob-
ject detection and instance segmentation [59]. More data augmentation, such as
background noise, can be applied to the rendered image for reducing the visual
reality gap [123]. However, due to the visual reality gap, this strategy tends to be
insufficient by itself for the 6D object pose estimation task and causes performance
drop [57]. Moreover, this approach also relies on having the annotated real training
data. Figure 3.4(b) shows an example image.

Some approaches synthesize data with photo-realistic appearance and physi-
cally plausible object poses [123, 59, 91, 23]. This approach requires a render to
create object appearances with realistic lighting and reflection and physics simu-
lators to provide physically plausible poses. Rendering is computationally expen-
sive, and the data created off-line requires large amounts of hardware storage.
Figure 3.4(c) shows an example image of a photo-realistic image.

Comparing with existing methods, the main difference is that ours is a depth-
based data generation pipeline. Although methods such as BlenderProc [23] also
provides synthetic depth map as a byproduct, the main focus of such method is the
color information. Overall, existing methods focus on using textured object models
or segments to generate color-based synthetic data, and there are no depth-based
generation methods. Hence, this thesis fills this gap.
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(a) Rendered object
models onto a random
background. Adapted
from [123].

(b) Cut & paste object
segments onto a random
background. Adapted
from [122].

(c) Photo realistic rendering.
Adapted from [59].

Figure 3.4: Examples of synthetic data. Synthetic images created by rendering
object models (left), cut & paste existing object segments (middle), and photo
realistic rendering (right).

3.4 Discussion

The research field started with relatively simple scenarios with textured objects,
and the researchers showed that this task can be handled with hand-crafted fea-
tures [84]. The bar is then raised to texture-less objects, and it is still the main
focus to this day [50]. Data modality wise, the commonly used modalities are color
and depth [50, 130]. At the moment, one main trend is using only color informa-
tion to achieve good results on benchmark datasets [68], and the other is using
both modalities to achieve even better results [130]. Methodology wise, the cur-
rent trend is to combine both non-deep learning and deep learning approaches in
a multi-stage pipeline and attempt to use the best of both worlds [139]. On the
other hand, the single-stage paradigm is still attractive due to its simplicity and
competitive performance [68].

Having been created in 2012 and 2014, LineMOD and Occluded LineMOD
dataset became the most popular benchmarks for 6D pose estimation. Researchers
started with solving those datasets with color and depth data [14, 74]. As a result,
the test data in LineMOD is almost solved, and the state-of-the-art performance on
the challenging Occluded LineMOD is approaching 80%. To increase the challenge
and make use of the popular CNN, the research focus shifted from RGB-D data to
RGB only. With the larger and more challenging YCB video dataset coming into
the game, researchers start to bring back the depth modality into a deep learning
framework [139, 130, 49].

There is hardly any work investigating what depth information can solely con-
tribute to 6D pose estimation in a deep learning framework. We focus on filling
this missing piece in this field. Furthermore, we will evaluate our methods on all
datasets mentioned above for more insights. Methodology wise, we will follow the
trend and attempt to integrate both traditional and deep learning methods in the
same pipeline for good performance.
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CloudPose: Learning 6D Object
Pose Regression on Point Clouds

In the previous chapter, we introduced the state-of-the-art deep learning-based
methods for estimating 6D object pose. All of those methods rely on either color [68,
94, 123] or color and depth information [139, 130]. Inspired by the success of CNNs
in other visual recognition tasks, it is common to learn deep features from color
images and use the features for object pose inference. On the other hand, when
depth information is considered, it is usually treated as an additional channel to the
RGB image and processed with CNNs [69, 148, 80, 17]. We also introduced some
methods that use depth information represented by point clouds for 6D object
pose estimation. However, in existing methods, point clouds are used for geometry
based pose refinement [109, 111, 139, 63] or template matching with hand-crafted
point cloud features [25, 53].

In general, comparing to color information, depth information is usually re-
garded as auxiliary information. However, depth contains rich geometric informa-
tion of the object shape, and intuitively it is very useful for inferring the object
pose. Current approaches that use CNNs to process depth information require the
unnatural matrix structure of depth information and can not be applied to unstruc-
tured depth data (e.g., from a laser range finder). On the other hand, deep-learned
depth features should be used since they are usually more effective than their hand-
crafted counterpart. Moreover, existing methods tend to use point clouds only in
the registration stage, which confines its usage scope.

Basing on those observations, we investigate the task of estimating the 6D
object pose from depth information represented by point clouds in this chapter.
We present a supervised learning framework that infers 6D object poses from point
clouds. The point clouds are used as input for both deep networks and geometry-
based pose refinement. Since this was the first framework that directly regresses
to 6D object poses from depth information, we consider four fundamental aspects
for designing the system. Moreover, inspired by the success of PointNet [103] in
classification and segmentation tasks, we decided to use a PointNet like structure
as the basic building block.

37



Chapter 4. CloudPose

The four aspects for system design are presented in Section 4.1. Based on the
design choices, we present the system architecture in Section 4.2. The formulation
of loss functions for 6D pose regression is described in Section 4.3. We describe the
pose refinement method in Section 4.4. We show the effectiveness of the proposed
system with experimental results in Section 4.5. The evaluation of each system
component is also provided in this section. Some system insights are also presented.
Finally, we summarize this chapter with discussion and insights on the proposed
system in Section 4.6.

4.1 Design Choices

For designing a supervised learning system for 6D object regression on point clouds,
we consider four aspects. The first aspect is: “what is a suitable representation
for depth information in a deep learning-based system?”. As mentioned before,
treating depth as an additional channel to RGB information and using CNNs for
feature extraction is useful for specific tasks. However, color and depth are two
inherently different data modalities, so it is unclear whether it is an efficient way
to treat depth information as a structured matrix. A depth map only contains the
distance information along one (z-axis) out of three axes (x, y, z-axis). In contrast,
its corresponding point cloud contains the full 3D information. To this end, we
argue that the point cloud representation provides more useful information for a
deep learning system. Furthermore, to exploit the point cloud structure, it should
be used in the scope of both deep networks and geometry-based optimization.

The second aspect is whether translation and orientation should be estimated
with separate networks or a single network in a supervised learning system. During
supervised learning, a network learns the mapping from its input to the desired
output guided by a loss function. If one network shall learn to map to a 6D pose, it
needs to cope with rotation and translation losses simultaneously. Since the metric
units for translation and orientation are different (i.e., meters and radius), it is
potentially very challenging for one network to cope with two inherently different
metrics. We hypothesize that regressing them using separate networks and loss
functions is a more suitable choice.

The third aspect is the choice of rotation representation. Due to its popularity
in robotic applications, quaternions have been a popular choice for many learning-
based systems [139, 130]. However, as introduced in Section 2.2, quaternions have
the unit-norm constraint. While this constraint may not impact non-learning meth-
ods, it imposes a limit on the network output range. This means a range of the
network output is not a valid rotation representation and makes the learning task
more complicated. On the other hand, the axis-angle representation is constraint-
free, and we argue that it is a more suitable choice for a learning-based method.

The fourth aspect is choosing a suitable loss function for measuring the dis-
tance between two rotations. Euclidean distance (L2 distance) is a popular choice
for measuring the distance between two rotations [130, 70]. However, comparing
to the L2 distance, geodesic distance measures the distance between two rotations.
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Geodesic distance

Euclidean distance

manifold

Figure 4.1: Illustration of geodesic distance and Euclidean distance between two
rotations R and R̂ in SO(3).

Figure 4.1 shows an illustration of geodesic and Euclidean distance for two rota-
tions R and R̂ in SO(3). SO(3) stands for the special orthogonal group with 3
dimensions, and it is a group that contains all the 3D rotations. Details regarding
SO(3) can be found in A.2. We argue that the geodesic distance is a more suitable
choice because it is more mathematically justified.

4.2 System Architecture

After considering the design choices, we propose a multi-class system for object 6D
pose estimation. A multi-class system means that we can use the same system to
predict poses for objects of different classes. The required input to the pose esti-
mation networks is an object segment and its corresponding class information. For
obtaining the object segment and its class information, semantic segmentation can
be used. As RGB-based semantic segmentation is a well-studied problem and it is
not in the scope of this thesis, we assume the object segment and class information
is provided by an off-the-shelf method and focus on the object pose estimation
from a point cloud segment. Here, we use the semantic segmentation from [139].

The original segment obtained from the semantic segmentation normally con-
tains a large number of points, and it is computationally expensive to process.
Therefore, it should be downsampled before further processing. There are several
ways to downsample a point cloud segment, such as random downsampling, voxel
downsampling, and Farthest Point Sampling [27]. Figure 4.2 shows an original seg-
ment and its downsampled version with random downsample, voxel downsample,
and FPS, respectively. Among those methods, the random down sample can not
ensure even coverage of the object surface, and voxel down sampling introduces
quantization artifacts. In contrast, with more than 30 times fewer points, the FPS
segment preserves the surface structure of the original segment with more con-
sistency. To ensure a consistent surface structure representation, we process the
segment with FPS.
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(a) Original segment
with 36396 points

(b) Randomly down
sampled segment
with 1024 points

(c) Voxel down sam-
pled segment with
2805 points

(d) FPS segment
with 1024 points

Figure 4.2: A original segment and a down sampled segment.
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+
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Figure 4.3: System overview. A point cloud PC is created using the depth data and
the output from a semantic segmentation method. This segment is processed with
farthest point sampling to obtain a downsampled segment with a consistent surface
structure. The segment with object class information is fed into two networks
for rotation and translation prediction. BaseNet is a variant of PointNet. The
geometry-based iterative closest point algorithm is used for pose refinement.

An overview of the system is shown in Figure 4.3. From a depth map and its cor-
responding semantic segmentation, we can obtain the target object segment from
the depth map. Assuming the intrinsic camera parameters are known, we can cal-
culate the corresponding point cloud segment PC in the camera coordinate system.
The resulting point cloud segment is downsampled to create a segment with fewer
points. Since they represent the same object surface, we also use PC to present the
downsampled segment for notational simplicity. This downsampled segment and
class information are combined as the input for two separate networks for rotation
estimation in axis-angle representation and translation prediction through transla-
tion residual regression. The 6D pose is refined with a geometry-based optimization
process to produce the final pose estimate.

The BaseNet in the overview (Figure 4.3) is the basic building block of our
system. BaseNet is an adapted version of PointNet [103], and Figure 4.4 shows its
detailed structure. Assuming the total number of object classes is k, we convert the
class labels into a one-hot encoding vector with size k. Given a point cloud segment
with n points as input, we concatenate the one-hot encoding class information to
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Figure 4.4: The architecture of BaseNet. The numbers in parentheses are numbers
of MLP layers. Numbers not in parentheses indicate the dimensions of intermediate
feature vectors. A feature vector for each point is learned with shared weights. A
max-pooling layer aggregates the individual features into a global feature vector.
A regression network with 3 fully-connected layers outputs either the translation
or the rotation.

each point. This results in an input matrix with dimension n×(k+3), where 3 comes
from the 3D (x, y, z) coordinates of each point. Each point with class information
is processed independently using a series of multi-layer perceptrons (MLPs) with
shared weights ((64 − 64 − 64 − 128 − 1024) in Figure 4.4). A 1024-dimension
feature vector is learned for each point (the n× 1024 matrix in Figure 4.4). These
feature vectors are max-pooled to create a 1024-dimension global feature vector,
which is the global representation of the input point cloud. Finally, we use a three-
layer regression MLP ((512− 256− 3) in Figure 4.4) on top of this global feature
to predict the poses. Since we are interested in predicting the 6D object pose,
compared to PointNet, we remove the spatial transformer blocks.

With the building block BaseNet, Figure 4.5 shows a detailed diagram of our
system. We use two separate networks to regressing translation and rotation, re-
spectively. As described above, the input to both networks is the n×(3+k) matrix
containing both the 3D point coordinate and its class information. The output of
the rotation network is the estimated rotation in axis-angle representation.

Unlike the amount of rotation, which is in a fixed range between 0 and 2π, the
amount of translation can be in various ranges depending on the data collection
process. For example, the distance between the target object and the camera can
be as near as 1 meter or as far as 5 meters. This is a large range space for tasks
that require sub-centimeter or even sub-millimeter precision. In other words, the
learning space for rotation network is fixed in the reasonable range of [0, 2π) while
the learning space for translation network can be much larger. To simplify the
learning task, we adapt the normalization technique, which reduces the numeric
data values into a small scale, without losing information [41]. To reduce the vari-
ance in learning space, we normalize the 3D point coordinates by removing its
coordinate mean for the translation network. The translation network estimates
the translation residual, and the full translation is obtained by adding back the
coordinate mean. More details on this can be found in Section 4.3.

41



Chapter 4. CloudPose

n
 x

 3

3

axis-angle

3
translation

residual

mean

translation

BaseNet

BaseNet

…
 n

 ..
.

…
 n

 ..
.

P
o

in
t 

C
lo

u
d

  
k

   
cl

as
s 

o
n

e-
h

o
t

n
 x

 (
3+

k)
n

 x
 (

3+
k)

Figure 4.5: Diagram for input and output of our pose networks. For the rotation
network, the input is point coordinate information concatenated with class infor-
mation per point, and the output is rotation in axis-angle representation. For the
translation network, the input coordinates are normalized by removing the mean.
It outputs translation residual. The full translation is obtained by adding back the
coordinate mean. The number of input points is n, and k is the total number of
classes.

4.3 Loss Functions for 6D Pose Regression

We formulate the 6D pose estimation problem as a supervised learning problem,
in which the network takes in a point cloud segment of a known object as the
input and outputs the 6D pose of this segment. This section describes how the loss
functions for 6D pose regression are formulated.

Recall from Section 2.1.1, given a known object represented by set PO ={
xOi ∈ R3 | i = 1, . . . ,m

}
and a set of points PC =

{
xCi ∈ R3 | i = 1, . . . , n

}
on

the surface of this known object in the camera coordinate C, the aim of pose esti-
mation is to find a transformation that transforms xOi from the object coordinate O
to the camera coordinate C. This transformation is composed of a 3D translation
t and a 3D rotation R.

For supervised learning, suitable loss functions are required to measure the
differences between predicted poses and ground truth poses. In our case, we need
to define the loss for translation and rotation separately. We use the axis-angle
representation r ∈ R3 as the learning target for rotation learning. Geodesic distance
is used as the loss function for rotation regression. For translation learning, we
predict the residual of translation.

Rotation estimation As shown in Section 2.2, in the axis-angle representation,
a vector r ∈ R3 represents a rotation of θ = ‖r‖2 radius around the unit vector

r
‖r‖2

[48]. Given an axis-angle representation r =
[
r1 r2 r3

]T
, the corresponding

rotation matrix R is obtained via the exponential map exp :

R = exp(r×) = I3×3 +
sin θ

θ
r× +

1− cos θ

θ2
r2
×, (4.1)
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where I3×3 is the identity matrix and r× is the skew-symmetric matrix

r× =

 0 −r3 r2

r3 0 −r1

−r2 r1 0

 . (4.2)

For rotation learning, we regress to a predicted rotation r̂ ∈ R3. Prediction r̂
is compared with ground truth rotation r via a rotation loss function lr, which is
the geodesic distance between R̂ and R [62, 48]:

lr(r̂, r) = arccos

(
trace(R̂RT )− 1

2

)
, (4.3)

where R̂ and R are the two rotation matrices corresponding to r̂ and r, respec-
tively. This loss function directly measures the magnitude of rotation difference
between R̂ and R, so it is convenient to interpret. Furthermore, the network can
make constraint-free predictions with axis-angle representations, in contrast to,
e.g., quaternion representations, which require normalization.

Translation residual estimation As mentioned in Section 4.2, to reduce the
variance in learning space, the input 3D point coordinates are normalized for the
translation network. So, instead of learning the full translation, the network only
needs to learn the displacement of the input coordinates with respect to the object
center. In other words, the network learns the residual of translation, which is a
simpler learning task. Figure 4.6 shows an illustration. The camera, object, and
normalized coordinate frames are denoted with C,O andN , respectively. Assuming
a target object (denoted with the grey square) is viewed by the camera from
viewpoint C, and the red lines denote its visible part from the C, the full translation
is the distance between O and C (denoted with blue and green dotted line). By
removing the coordinate mean of the visible part, the object coordinate is moved
to a normalized frame N (denoted with dotted gray and red lines). The translation
residual is the distance between N and C (denoted with green dotted line).

Given a translation residual ∆̂t, the full translation prediction t̂ is obtained via

t̂ = ∆̂t + µt, (4.4)

where µt is the mean of PC . L2-norm is used to measure the distance between
prediction t̂ and ground truth t, resulting in the translation loss function lt(t̂, t):

lt(t̂, t) =
∥∥t− t̂

∥∥
2
. (4.5)

Total loss function for 6D pose regression The total loss is defined as the
combination of the translation and the rotation loss:

l(t, t̂, r, r̂) = αlt(t̂, t) + lr(r̂, r), (4.6)

where α is a scaling factor. The total loss is used for training the pose estimation
networks.
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Figure 4.6: Illustration of translation residual. Camera, object, and normalized
coordinate frame are denoted with C, O and N , respectively. The full translation
is denoted with the blue and green dotted line, and the translation residual is in
the green dotted line.

4.4 Iterative Closest Point

Iterative closest point is a method for minimizing the positional difference between
two sets of point clouds. It is original proposed by Arun [3] and further improved
by Besl and McKay [10]. There are several variant of ICP, here we introduce the
vanilla point-to-point ICP that we use for pose refinement.

Assuming there are two point sets, the reference set P = {xi ∈ R3 | i = 1, . . . , n}
and the source set P ′ = {x′i ∈ R3 | i = 1, . . . , n}, and,

x′i = Rxi + t + ni, (4.7)

where R is a 3D rotation, t is a 3D translation and ni is a noise vector. The aim
of ICP is to find R and t that minimize

Σ2 =
n∑
i=1

‖x′i − (Rxi + t)‖2. (4.8)

The first step is to find the nearest point in P for each point in P ′ with the
distance d, which is

d(x′i, P ) = min
j∈{1,...,n}

d(x′i,xj). (4.9)

To ensure plausible correspondence, the nearest point pair is removed if

d(x′i,xj) > τ, (4.10)

where τ is a predefined threshold.
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Based on the remaining corresponding pairs, a rotation R′ and a translation t′

is found using Singular Value Decomposition (SVD). Then, P ′ is transformed to
P ′′ with

x′′i = R′x′i + t′ (4.11)

and P ′′ = {x′′i ∈ R3 | i = 1, . . . , n}.
Now, P ′′ is the new source set and processes in Equations 4.9, 4.10, 4.11 are

iterated as the the method’s name suggested. The algorithm reaches convergence
when the overall point distance between the source and the reference set is below
a certain threshold.

4.5 Experiments

We evaluate the proposed system on the LineMOD, Occluded LineMOD, and YCB-
Video datasets and compare the performance with the state-of-the-art methods
PoseCNN [139] and DenseFusion [130]. We choose to compare with those two
methods because they have the best performances on those datasets at the time of
this work. Because YCB Video dataset was proposed by the authors of PoseCNN,
methods earlier than PoseCNN such as SSD-6D [68] does not report on YCBV for
comparison. We also compare the performance on a subset of the object classes
with a state-of-the-art RGB-based method DOPE [123] on the YCBV dataset. Be-
cause the authors of DOPE only report their results on a subset of objects [123].
Besides the prediction accuracy (Section 4.5.2) and performance under occlusions
(Section 4.5.3), we also investigate the impact of using different network struc-
tures, as well as the influence of different rotation representations (Section 4.5.4).
We present insights regarding the number of points used by a trained system for
rotation and translation regression (Section 4.5.5). The time performance is pre-
sented in Section 4.5.6.

4.5.1 Experiment Setup

During training, the Adam optimizer is used with a learning rate of 0.0008. The
batch size is 128. For the total loss, we use α = 10, which is given by the ratio
between the expected error of translation and rotation at the end of the training
[71]. The number of points of the input point cloud segment is n = 256. Batch
normalization is applied to all layers. No dropout is used. For refinement, we use
the Point-to-Point ICP registration provided by Open3D [151] and refine for 10
iterations. The initial search radius is 0.01m and is reduced by 10% after each
iteration. For a fair comparison, all methods use object segmentation provided by
PoseCNN during testing.

For YCBV, we follow the convention [139, 131] to train on the official training
split as well as the provided 80, 000 synthetic data. All of the networks for YCBV
are trained for 90 epochs. For LM, we also follow the official split, in which 15% of
the dataset is used for training while 85% is used for testing. There is no official
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RGB Depth ICP ADD ADD-S <1 cm

PC w/o ICP [139] 3 51.5 75.6 26.1

PC [139] 3 3 3 77.8 93.6 88.4

DF w/o ICP [130]1 3 3 74.7 93.9 87.6

DF [130]2 3 3 3 76.3 94.7 89.0

Ours w/o ICP 3 76.0 91.3 80.9

Ours 3 3 82.7 94.7 90.3

Table 4.1: Quantitative evaluation of 6D pose on the YCB-Video Dataset [139].
Best performance is in bold font.

synthetic training data. For LM, we generate synthetic validation data and train
the network until we see convergence on the validation set.

4.5.2 Prediction Accuracy

YCB Video Dataset. We report the AUC score for ADD and ADD-S. The
maximum thresholds for both curves are set to 0.1m. Furthermore, we also pro-
vide ADD-S accuracy with a threshold 0.01m (<1cm) to illustrate the performance
accuracy under a smaller error tolerance. We first show the comparison of predic-
tion accuracy of our method and the state-of-the-art methods. Evaluation results
averaged for all 21 objects in the YCB-Video dataset are shown in Table 4.1.
PoseCNN [139] uses RGB information to provide an initial pose estimate (PC w/o
ICP), then uses depth information with a highly customized ICP for pose refine-
ment (PC). DenseFusion [130] (DF w/o ICP) uses both color and point cloud
features extracted by deep networks to give per-pixel pose estimate for final pose
voting, and iterative pose refinement is performed with an extra network module.
For a fair comparison, we also perform the ICP refinement on DF w/o ICP results
(DF). Ours w/o ICP is the estimated pose from the proposed system architec-
ture (Section 4.2), and Ours is the result after ICP refinement. For the overall
performance in Table 4.1, we highlight the best performance in bold font. Details
regarding the data type used by pose regression networks and the post process are
also presented.

Our method achieves state-of-the-art performance using only depth informa-
tion. In terms of ADD, we outperform both PC and DF. We observe that DF
shows a small improvement compared to DF w/o ICP. One possible reason is the
sensitivity of ICP to the initial pose guess, if the method already performs well
without refinement, ICP can provide further gains. If the initial guess is poor,
ICP can even make the results worse. This result indicates that features learned
from depth information represented by unordered point clouds are sufficient for
accurately regressing the 6D pose. Furthermore, this also shows that the proposed
approach is an efficient way to use depth information in a deep learning framework
for pose regression.

1This results are with iterative refinement.
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DOPE [123] PC [139] DF [130] Ours

ADD-S <1cm ADD ADD-S <1cm ADD ADD-S <1cm ADD ADD-S <1cm

002 master chef can — — 68.1 95.8 99.5 73.2 96.4 100 46.9 95.4 95.4

003 cracker box 62.7 29.6 83.4 92.7 84.8 94.2 95.8 97 76.7 93 80.4

004 sugar box 85.0 33.4 97.1 98.2 100 96.5 97.6 100 97.5 98.5 99.7

005 tomato soup can 88.5 74.5 83.6 96.6 99 87.4 96.6 99.1 72.7 96.5 96.8

006 mustard bottle 90.7 65.3 98 98.6 98.9 94.8 97.3 97.8 79.2 97.7 94.1

007 tuna fish can — — 83.9 97.1 97.6 81.8 97.1 99.5 72 97.7 100

008 pudding box — — 96.6 97.9 100 93.2 95.9 98.6 94.4 97.3 91.1

009 gelatin box 84.6 36.9 98.1 98.8 100 96.7 98 100 98.6 99 100

010 potted meat can 32.0 3.7 86 94.3 87.5 87.8 95 92 90.6 95.7 93.7

011 banana — — 91.9 97.1 95 83.6 96.2 98.2 95.1 97.7 95.5

019 pitcher base — — 96.9 97.8 99.6 96.6 97.5 99.5 96.1 97.9 100

021 bleach cleanser — — 92.5 96.9 95.1 89.7 95.8 99.4 95.4 97.4 98.4

024 bowl — — 14.4 81 42.9 5.9 89.5 55.7 83.9 97.7 99.3

025 mug — — 81.1 94.9 97.6 88.8 96.7 98 93.9 97.8 99.7

035 power drill — — 97.7 98.2 99.3 93 96.1 97.8 94.9 97.7 96.7

036 wood block — — 70.9 87.6 74.4 30.9 92.8 88.8 90 94.9 97.5

037 scissors — — 78.4 91.7 68 77.4 91.9 71.3 75.8 91.3 63

040 large marker — — 85.3 97.2 97.1 93 97.6 100 92.2 98 100

051 large clamp — — 52.2 75.3 67.4 26.4 72.6 33.3 68.5 77.4 69.6

052 extra large clamp — — 25.9 74.9 48.2 16.6 77.4 10.9 25.3 66.4 22

061 foam brick — — 48.1 97.2 99.7 59 92 100 92.9 98 99.3

Table 4.2: Pose estimation accuracy per object class on the YCB-Video
Dataset [139]. Best per class performance for ADD(-S) is in bold font. Ours achieves
the best performance on a majority of object classes.

Performance for individual objects is shown in Table 4.2. We use the trained
network of six objects provided by the authors of DOPE [123] and report the re-
sults. The ADD results are not available because the object coordinate frames used
in the YCB object dataset [19], YCB video dataset for PoseCNN [139] and DOPE
are different. As our method uses the frames from [139], and the transformation
between [19] and [139] is not publicly available, we can not find the correspondence
between model points required for ADD. We also applied ICP to DOPE pose esti-
mates, but the performance was not improved. A possible reason is the sensitivity
of ICP to the initial pose estimate. Figure 4.7 illustrates the input object segments
and the overlay to the corresponding object model using the predicted 6D pose.
With 256 points, although the input segment appears to be sparse, it is enough for
capturing the surface geometry. We also denote the noise from imprecise segmenta-
tion and occlusion with arrows. From the overlay, we can see that the network can
handle imprecise segmentation and occlusion. Some qualitative results are shown
in Figure 4.8. Pose estimates from PC, DF, and our method are used for projecting
object models onto 2D images.

2We apply ICP to DF results after iterative refinement.
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Segmentation
Noise 

Occlusion

(a) power drill

Occlusion

(b) pitcher base

Figure 4.7: Illustration of input object segment transformed with accurate 6D
pose estimates and overlay with the corresponding object model. Colored points
represent the object segment (the color is for visualization only), and green points
are the object model. The visible occlusion and segmentation noise are denoted
with arrows.

PC [139] DF [130] Ours

Figure 4.8: Qualitative results for 6D pose estimation. From left to right: PoseCNN
(PC) [139], DenseFusion (DF) [130], and ours. The colored overlay indicates the
predicted pose of the target object. Our method gives more accurate translation
estimates, and also is able to give accurate rotation estimation for texture-less
object (e.g. the red bowl).
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ape bvise cam can cat driller duck e.box glue holep iron lamp phone avg

PC w/o

ICP [139]
- - - - - - - - - - - - - 62.7

DF [130] 92.3 93.2 94.4 93.1 96.5 87.0 92.3 99.8 100.0 92.1 97.0 95.3 92.8 94.3

Ours w/o

ICP
15.6 24.6 9.3 27.2 28.5 28.5 6.3 99.3 93.1 21.5 24.2 42.8 33 34.9

Ours 54.4 47.5 37.3 50.8 60.4 44.8 44.4 99.2 99.6 55.9 38 67.6 57.5 58.3

Ours w/o

ICP (Color)
28.2 19.8 20.2 34.8 37.3 44.5 18.5 99.9 77.9 35.5 52.3 49.5 42.5 43.2

Table 4.3: Performance on the LineMOD dataset. E.box and glue are reported with
ADD-S, others with ADD.

LineMOD dataset. Table 4.3 shows the evaluation result on LM. To follow the
convention of other methods that report on this dataset, we report the ADD-S
scores for egg box and glue, and report the ADD scores for the other objects. All
methods use the same training data without additional synthetic data. We also
compare with PC and DF. The result of PC is taken from [82]. Ours without
ICP refinement performs poorly on this dataset. Even with pose refinement, the
performance is still far from other methods.

This shows that this dataset is challenging for the depth-only method since both
comparison methods use color information. One possible explanation is that since
the training and testing data are taken from the same video sequence, learning the
color feature from the train set is helpful for inference of the 6D object poses in the
test set. To verify this hypothesis, we simply appended color information to the 3D
coordinates and trained a network with both color and depth information. The re-
sults are in the last row of Table 4.3. It can be observed that using color does boost
the performance, but the performance is still far from being competitive. It should
be noted that this is not the most efficient way to use color information, and the
color information is also very coarse (with only 256 color pixels). Another possible
reason is that as reported in [68, 119], the intrinsic parameters are inaccurate, and
the resulting pinhole camera model cannot provide an accurate depth estimation.
This inaccurate depth information could also make the task more challenging.

One possible way to improve is to improve the amount of training data by
adding synthetic data. The official LM dataset does not contain synthetic training
data. On average, there are approximately 1200 frames for each object, and this
split yields around 200 training frames and 1000 testing frames. For a deep learning
system, this is a relatively small amount of training data. In Chapter 6, we will
introduce a data synthesis pipeline for this purpose.

Occluded LineMOD dataset. We evaluate the same network used in the LM
dataset also on the LMO dataset. Similar to the LM dataset, we report the ADD-
S scores for egg box and glue, and report the ADD scores for the other objects.
Table 4.4 shows the results. As expected, the performance of our method is also
poor on this dataset.
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RGB Depth ape can cat driller duck e.box glue holep avg

PC w/o ICP 3 9.6 45.2 0.93 41.4 19.6 22.0 38.5 22.1 24.9

PC 3 3 76.2 87.4 52.2 90.3 77.7 72.2 76.7 91.4 78.0

Ours w/o ICP 3 1 2.6 0.1 1.8 0.8 72.8 46 2.2 15.9

Ours 3 12.2 16.1 4.1 3.8 15.2 73.7 62.8 15.6 25.4

Table 4.4: Percentage of correctly estimated poses on Occluded LineMOD. E.box
and glue are reported with ADD-S, others with ADD.

4.5.3 Occlusion

For a given target object in a frame, the occlusion factor O of the object is defined
as [38]

O = 1− λ

ν
, (4.12)

where λ is the number of pixels in the 2D ground truth segmentation, and ν is the
number of pixels in the projection of the 3D object model onto the image plane
using the camera intrinsic parameters and the ground truth 6D pose, when we
assume the object would be fully visible. The occlusion factor of the YCB-Video
dataset ranges from 0.8% to 87%. Figure 4.9 shows the histogram of occlusion
factor. Figure 4.10 shows examples of different occlusion factors, the target objects
are denoted with green masks.

We divide this range into 8 bins with a bin width of 10% and report the pre-
diction accuracy (ADD-S) with a threshold of 1 cm. Figure 4.11 illustrates the
results. It can be observed that our method (Ours) has competitive performance
when the occlusion is lower than 40%, then both ours and PC start to suffer as the
amount of occlusion increases. One possible reason is that DF outputs per-pixel
prediction with confidence scores, while ours and PC provide only one pose pre-
diction. This per-pixel prediction may have helped to provide better performance
when the amount of occlusion is higher than 40%.

4.5.4 Ablation Study

Network architecture. To investigate whether translation and rotation should
be regressed with the same or separate networks, we compare the performance of
different architectures. We alter the network architecture by incrementally sharing
the layers between translation and rotation networks. Table 4.5 shows the results
in terms of ADD, ADD-S, and accuracy for translation and rotation under certain
thresholds. None denotes the proposed architecture which regresses translation and
rotation with two separate networks. The numbers in the first column denote the
number of shared layers between translation and rotation BaseNet. We compare
performance without ICP refinement. When sharing layers, the performance is
worse than using two separate networks.
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Figure 4.9: Histogram of occlusion factor of 2, 949 key frames in YCBV test dataset.

(a) no occlusion, with occlu-
sion factor 0.02

(b) moderate occlusion, with
occlusion factor 0.45

(c) high occlusion, with occlu-
sion factor 0.87

Figure 4.10: Illustration of different degrees of occlusion.

Figure 4.11: Effect of occlusion compared to PC [139] and DF [130]. The horizontal
axis denotes the upper limit (occlusion in %) of each bin. Width for each bin is
10%. Numbers in parentheses denote the number of samples in corresponding bin.
Ours is competitive with state-of-the-art methods when occlusion is lower than
40%.
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shared layers ADD ADD-S rot err<10◦ tran err<1 cm

none 76.0 91.3 41.3 73.0

1 75.2 91.1 39.5 72.0

2 75.5 91.1 38.6 69.8

3 75.1 91.1 41.2 69.6

4 75.5 91.2 39.4 70.3

5 75.2 91.1 39.1 69.7

all 63.0 87.8 23.3 69.3

Table 4.5: Accuracy with different network structures. Best performance is in bold
font. Using two separate networks performs best.

Rotation representation <10◦ <15◦ <20◦

Axis-angle 41.3 52.7 59.6

Quaternion 37.1 48.5 56.7

Table 4.6: Different rotation representations. Geodesic distance is used as the loss
function for both cases.

Loss function <10◦ <15◦ <20◦

Geodesic 41.3 52.7 59.6

L2 40.8 52.5 58.4

Table 4.7: Different loss functions for rotation regression. Axis-angle representation
is used for both cases.

We also tested an architecture that shares all the layers while having the same
number of parameters as the proposed structure with a doubled layer width. The
performance is similar to the architecture with the single width, and this verifies
that the performance deterioration is not caused by insufficient network capacity.
This result verifies that using separated networks for translation and rotation is a
more suitable design choice.

Rotation representation and loss function. We investigate the impact of
different rotation representations and loss functions. For comparing quaternion to
axis-angle, we adapted our rotation network to have 4-dimensional output instead
of 3. The output is normalized and then converted to the axis-angle representation.
For comparing L2 loss with Geodesic distance, we keep the rotation representation
in axis-angle format and apply different loss functions. Table 4.6 shows the accuracy
of rotation prediction with different thresholds. With the same loss function, using
axis-angle yields a better result than the quaternion. This indicates that the axis-
angle is a better choice for rotation learning. Table 4.7 shows that, with the same
rotation representation, geodesic loss outperforms L2 loss. Since geodesic distance
also has a better mathematical justification, this makes it a better choice. It is
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worth noting that the axis-angle representation has discontinuities at 180◦, which
may hurt the system performance. Hence, addressing this issue can potentially
improve the system performance. However, this is out of the scope for this thesis
and more insights regarding this can be found in [152].

4.5.5 Active Points

With the max pooling operation, only the points which have the max value for
one or many feature dimensions are considered for final pose inference. This means
only a portion of the input segment is contributing to the final pose estimation.
We name those points the “active points”.

We investigate how many active points the translation and rotation BaseNet
have. On average, out of 256 points, the translation BaseNet uses around 200
points for translation regression. The rotation BaseNet uses around 150 points
for rotation regression. We show the relationship between the number of active
points and translation, rotation error, respectively (Figure 4.12). It can be observed
that the number of active points is in the same range for those objects. For non-
rotational symmetric objects such as power drill and banana, the rotation error is
low on average. On the contrary, with the rotational symmetric master chef can,
the rotation error varies a lot. This is because our method does not deal with
rotational symmetry.

Figure 4.13 shows some examples for active points. All point cloud segments
have 256 points. For each point cloud segment, the active points are denoted with
red and the others with black. The object model is shown in cyan wire-frame in the
object coordinate, and the point cloud segment is transformed into object coordi-
nate with ground-truth poses. For additional information, the estimation rotation
and translation errors are provided in the captions. The segments presented here
have segmentation noise as well as occlusions. In general, the active points are rel-
atively uniformly distributed in the segment, and there are no particular regions
on the objects that are more active than others. It is interesting to see that the
networks also consider the background points for pose inference. This implies that
the networks also rely on the “errors” made by the segmentation methods. This
is not desired because this means if the segmentation methods used for the train-
ing and testing phase are different, the networks may perform poorly during the
testing phase.

4.5.6 Time Performance

We measure the time performance on an Nvidia Titan X GPU. The system is
implemented with Tensorflow. Training the proposed model takes approximately
22 hours. Pose estimation by a forward pass through our network takes 0.11 seconds
for a single object. The 10 iterations of ICP refinement require an additional 0.3
seconds.
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(a) power drill
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(b) banana
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(c) master chef can

Figure 4.12: Illustration of number of active points and pose estimation errors.
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Translation Rotation

(a) 216 active points, error
0.4 cm

(b) 175 active points, error
2.27 radian

(c) 217 active
points, error 0.14
cm

(d) 137 active
points, error 0.07
radian

(e) 201 active points, error 0.4 cm (f) 152 active points, error 0.1 radian

Figure 4.13: Examples of active points. Active points are denoted with red, and
other points in the object segment with black. The object model is drawn with the
cyan wire frame.
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4.6 Summary

In this chapter, we have proposed a system for fast and accurate 6D pose estimation
of known objects. We formulate the problem as a supervised learning problem,
use two separate networks for rotation and translation regression, and use point
clouds as input for the regression. We use axis-angle as rotation representation and
geodesic distance as the loss function for rotation regression. Ablation studies show
that these design choices outperform the commonly used quaternion representation
and L2 loss. Experimental results show that the proposed system outperforms two
state-of-the-art methods on a public benchmark at the time of this work. This
work verifies that features extracted from point clouds with deep networks can be
used for accurately regressing the object pose.

From the perspective of system building blocks, one major limitation of this
work is that the PointNet-like structure can not capture information about the local
neighbourhood. It is interesting to investigate whether structures such as Point-
Net++ (Section 2.3.2) and EdgeConv (Section 2.3.3) can give better performance.
Furthermore, although it performed well on the YCBV dataset, the evaluation re-
sults on LM and LMO are really poor. As mentioned in Section 2.4.4, the accuracy
of depth information in LM is poor, which might be one of the causes for this
poor performance of our depth-based method. In the next chapter, we attempt to
improve those aspects by investigating a hybrid structure, which is a mixture of
fully supervised and self-supervised learning for this task.
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CloudAAE: Learning 6D Object
Pose Regression with an
Augmented Autoencoder

In the previous chapter, we presented a simple and effective framework that re-
gresses 6D object poses from depth information represented by point clouds in a
supervised learning manner. In this chapter, we investigate a hybrid framework
that combines supervised learning and self-supervised learning for the same task.
For the supervised learning aspect, we follow a similar scheme as the previous
chapter and regress to 3D rotation and 3D translation using deep features from
point clouds. For the self-supervised learning aspect, we use an autoencoder and
conduct a reconstruction task. Specifically, we use an augmented autoencoder for
learning a latent code that encodes 6D object pose information for pose regres-
sion. The latent code of the autoencoder contains the pose information, and it is
used as the input to two pose regressing networks. We present a new framework
for regressing the 6D object pose from point cloud segments. A point cloud-based
augmented autoencoder is used to learn a latent code that encodes object pose
information. This code is used for regressing the 6D object pose.

We introduce the motivation of using an autoencoder structure in Section 5.1.
The system architecture is present in Section 5.2. Loss functions used for training
and testing the proposed system are described in Section 5.3. Experiment results
are shown in Section 5.4 and Section 5.5 provides the concluding remarks and
discussion for this chapter.

5.1 Why Autoencoder?

Recalling from previous chapters, we are dealing with the task to estimate a 6D
object pose from an input point cloud segment with class information. The input
point cloud segment has a dimension n × (3 + k), in which n is the total number
of points and k is the total number of classes. For example, assuming we have
256 points and 21 classes (as for the YCBV data set), then the total input data
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Figure 5.1: Illustration of (denoising) autoencoder.

dimension is 6144. This is approximately 1000 times bigger than the output di-
mension, which is 6 (3D rotation and 3D translation). Hence, the 6D object pose
information is very sparsely encoded in the input point cloud data. This makes it
difficult for the network to extract the essential information about the object pose.

One classic approach to deal with this problem is dimension reduction [72].
In the above example, the input data dimension is 6144, and it is referred to
as the superficial dimensionality. The task of dimension reduction is to extract a
feature with a smaller intrinsic dimensionality from the input with minimal loss of
information [72]. In machine learning, this can be achieved by using neural networks
with “encoder & decoder” structure or generally referred to as autoencoder (AE).
The key trait of an autoencoder is that it contains a “bottleneck” layer, which is of
smaller dimension than either the input or the output [72]. This bottleneck layer
is often referred to as latent code or latent representation. By training the network
to perform identity mapping and approximating the input at the output layer, the
latent code learns to encode the essential information about the input. Figure 5.1(a)
shows an illustration of an autoencoder presented with 3 fully connected hidden
layers. Input and output are denoted with X and X ′, respectively. The hidden
layer in the middle is the latent code z.

However, the risk of learning an identity mapping is that there is an obvious
solution by “simply copying the input” [128], especially when the dimension of
the “bottleneck” is large. In this case, the network does not learn anything useful
but an identity function. One way to tackle this is to make the reconstruction
more challenging by corrupting the input and let the decoder output the clean
input, or “denoises” the corrupted input. This kind of autoencoder is referred as
the denoising autoencoder (DAE). In this case, since the latent code facilitates the
reconstruction of the clean input, it is invariant to the noise used for corrupting
the input [119]. Figure 5.1(b) is an illustration of denoising autoencoder, where the
input to the network is X̂, and it is obtained by adding noise to X. As mentioned
in Section 3.1.2, Sundermeyer et al. proposed the augmented autoencoder, which
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is a generalization of a denoising autoencoder [119]. The idea of an augmented
autoencoder is that by applying augmentations to the input, the encoding becomes
invariant to those augmentations. Meanwhile, by setting the reconstruction goal
accordingly, it is possible to control what information the latent code encodes. In
general, by using an AAE, it is possible to control which properties the latent code
encodes and which properties are ignored [119].

In this chapter, we propose to adapt the augmented autoencoder proposed by
Sundermeyer et al. [119] for a point cloud-based system. We focus on learning
a latent code that encodes the 6D pose information. The task of the AAE is to
reconstruct a point cloud segment in the desired 6D pose. Moreover, this segment
is noise and occlusion free. In this way, the latent code contains the necessary
information for regressing the object pose. Using the latent code as the input,
we use two separate networks for regressing 3D rotation and 3D translation, as
suggested by the previous chapter. There are three main differences between our
approach and [119]. First, they use a 2D color image as input, while ours uses
point clouds. Second, our approach does not require creating off-line codebooks.
Third, we use the latent code from the AAE for both 3D translation and 3D
rotation estimation. Instead of using the latent code from AAE for nearest neighbor
search with a codebook, we use it for direct 6D pose regression with two separate
networks. Regarding the “augmented autoencoder”, we focus on introducing the
“autoencoder” aspect by describing the system structure and its performance in
this chapter. The “augmented” aspect will be investigated in the next chapter
when introducing our data synthesis pipeline.

5.2 System Architecture

We introduce our data synthesis pipeline and an augmented autoencoder based
6D pose estimation system, referred to as CloudAAE. CloudAAE is a multi-class
system, which means we use the same system to predict poses for objects from
different classes. Given a known object represented by a set of points in the camera
coordinate C, a 6D pose estimation system aims to find the translation t and
rotation R that describes the transformation from the object coordinate system O
to C.

Figure 5.2 shows an overview of CloudAAE. Similar to the input of CloudPose
(Chapter 4), assuming we have a depth image and its corresponding semantic
segmentation, it is possible to obtain the class and point cloud segment of a target
object. The target objects are known objects, and we have a 3D object model of
them. We denote the point cloud segment as PC . Before inputting to the AAE,
we normalize PC by removing its coordinate mean µp and denote the normalized
segment as PN . Moreover, PC often contains some sensor noise or only represents a
partially visible object due to external occlusion. The AAE is expected to output a
noise and occlusion free object segment ∆PC

recon at the same 6D pose as PN . PC
recon

is obtained by adding back µp to ∆PC
recon. On the other hand, constrained by

the reconstruction task, the latent vector encodes the 6D object pose information.
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Figure 5.2: The class information and point cloud segment PC of a target object
is obtained from a pair of depth and semantic segmentation images. After down-
sampling PC with FPS, it is normalized by removing its coordinate mean µp. The
resulting PN and the corresponding class information are used as the network in-
put. The expected ∆PC

recon is a noise and occlusion free segment. By adding µp

to ∆PC
recon, we obtain PC

recon at the desired 6D pose. Meanwhile, the latent code
is used with two separate 3-layer multi-layer perceptrons (MLP1 and MLP2) for
regressing 3D rotation R̂ and 3D translation r̂.

The latent code is used as the input to two separate pose regressing networks for
regressing 3D rotation R̂ and 3D translation t̂. Overall, CloudAAE contains an
augmented autoencoder and the 6D pose regressors.

Augmented autoencoder (AAE) We adapted the idea of AAE proposed in
[119] for point clouds and use an adapted version of the Dynamic Graph (DG) [132]
as the encoder. We also evaluated different choices for the encoder and the ablation
study results are presented in Section 5.4.3. Figure 5.3 illustrates the architecture
of our point cloud-based AAE. The AAE consists of an encoder and a decoder. The
3D coordinate of each point in PN

occ is concatenated with one-hot class information.
This is used as the input to the encoder. The encoder computes a latent vector,
and the desired output from the decoder is a noise and occlusion free segment in
the 6D pose defined by R and t. The input is of dimension n × (3 + k), in which
3 represents 3D coordinates, and k is the total number of classes.

Our encoder is an adapted version of Dynamic Graph, which is a deep network
processing unordered point sets and is introduced in Section 2.3.3. Recall that, in
contrast to the PointNet structure [103] we used for CloudPose (Chapter 4), where
all features are extracted based only on a single point, DG explicitly considers
the local neighbors of individual points. For each point qi in a point set, a k-
nearest neighbor graph is calculated. In all our experiments, we empirically use
k = 10. For the edge function, we use an MLP layer with shared weights for
each edge feature. To consider all edge features information for the reconstruction
task, we use average pooling as the aggregation operation. The ablation study on
choosing the aggregation operation is presented in Section 5.4.3. This EdgeConv is
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Figure 5.3: The point cloud based Augmented Autoencoder. The numbers of neu-
rons in EC-MLP and MLP layers are indicated in parentheses. EC is short for
EdgeConv. Dimensions of intermediate features are indicated without parentheses.
Skip connections denote the concatenation of edge features. A 1024-dimensional
feature vector for each point with its local neighbors is learned with shared weights
for the encoder. An average pooling layer aggregates the individual features into
a 1024-dimensional latent code. Finally, three fully-connected layers output noise
and occlusion-free point cloud segment.

repeated, calculating the nearest neighbor graph for the feature vectors of the first
shared MLP layer and the subsequent layers. Finally, the edge features from each
EdgeConv are concatenated and processed with an MLP layer. This concatenation
is illustrated with skip connections in Figure 5.3. A 1024-dimensional feature vector
is learned for each point. These features are average pooled to obtain a global
representation of the input point cloud segment. We use four EdgeConv layers
on edge features and one EdgeConv layer on the concatenated edge feature. The
encoder outputs a latent code with a dimension of 1024. The decoder contains 3
fully connected layers with dimensions of 1024, 1024, and n× 3.

6D pose regressors We additionally add two networks for regressing the 6D
poses. Since the decoder is able to reconstruct the segment in the same 6D pose
from the latent code, the latent code contains the object pose information. Hence,
the latent code is used as the input to two networks for regressing 3D rotation
and 3D translation, respectively. Each network contains three MLP layers with
dimensions 512, 256, and 3, respectively.

5.3 Loss Function and Testing Phase

We normalize PC
occ by removing its mean µp before inputting to the AAE (Fig-

ure 5.2). The output of AAE is the residual 3D coordinates of the reconstructed
point cloud segment. The output of translation prediction is the residual of trans-
lation. The full 3D coordinates and 3D translation are obtained by adding back
µp.
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Figure 5.4: Illustration of the learning target and the output of AAE. (a) The learn-
ing target PC

vis. (b) Examples of AAE output for objects in the YCB video dataset
during testing. The input to the AAE is denoted in red, and the reconstructed
noise free and occlusion free point cloud segment are denoted in blue.

Augmented autoencoder (AAE) Assuming the AAE outputs residual 3D
coordinates ∆PC

recon, the full 3D coordinate is PC
recon = ∆PC

recon + µp. The learning
target PC

vis is obtained by applying hidden point removal (HPR) to PC without
introducing any occluders, as illustrated in Figure 5.4(a). We will describe HPR in
detail in Section 6.2.3. The Chamfer distance [28] is used to measure the difference
between PC

recon and PC
vis. We also tried the Earth Mover’s distance [28], which is

more computationally expensive and gives a similar performance. The difference
between PC

recon and PC
vis is:

lCD(PC
recon, P

C
vis) =

1

m

∑
x∈PC

recon

min
y∈PC

vis

‖x− y‖2

+
1

n

∑
y∈PC

vis

min
x∈PC

recon

‖y − x‖2. (5.1)

The number of points in PC
vis and PC

recon are denoted by m and n, respectively.
The desired PC

recon is a denoised, unoccluded object segment. Figure 5.4(b) shows
examples of PC

recon output by a trained AAE.

6D pose regressors For rotation regression, the axis-angle representation is
used as the regression target. An axis-angle is a vector r ∈ R3 that represents a
rotation of θ = ‖r‖2 radians around the unit vector r

‖r‖2
. Geodesic distance is used

as the loss function for measuring the distance between prediction r̂ and ground
truth r [38]. With R̂ and R being the corresponding rotation matrices for r̂ and r
respectively, the rotation loss function lr(r̂, r) is defined as

lr(r̂, r) = arccos

(
trace(R̂RT )− 1

2

)
. (5.2)
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The regression target for translation is the residual of translation. Given ∆̂t as
the translation residual, full translation prediction is t̂ = ∆̂t + µp. With t being
the ground truth translation, the translation loss function lt(t̂, t) is measured with
L2-norm lt(t̂, t) =

∥∥t− t̂
∥∥

2
.

Total loss function The total loss ltotal used for training the AAE and pose
regressors is the combination of above losses:

ltotal = αlCD + βlt + lr, (5.3)

where α and β are scaling factors.

Testing phase In the testing phase, the trained CloudAAE is used for estimat-
ing 6D object poses. If the input is an RGB-D image, semantic segmentation is
used to obtain the object segment and the corresponding class information. After
segmenting the depth image, the point cloud is obtained using the depth value
and the intrinsic camera parameters. The point cloud segment is normalized and
concatenated with one-hot class information. This is used as the CloudAAE input.
As semantic segmentation is a well-studied topic [4], we assume the object segment
and class information is provided by an off-the-shelf method. After obtaining the
pose estimates, we further refine the poses with ICP.

5.4 Experiments

We evaluate the proposed system on the LineMOD [52], Occluded LineMOD [14]
and YCB-Video [139] datasets. Besides the prediction accuracy (Section 5.4.2), we
also investigate the impact of using different network structures as the encoder
and different dimensions of the latent code (Section 5.4.3). We further investigate
whether the reconstruction error of AAE can be used as an uncertainty measure
of the network pose prediction (Section 5.4.4). The time performance is presented
in Section 5.4.5.

5.4.1 Experiment Setup

The experiment setup is mostly the same as we have in Chapter 4. The Adam
optimizer is used during training with a learning rate of 0.0008. The training batch
size is 128. The number of points of the input point cloud segment is n = 256. For
the total loss, we use α = 1000 and β = 10, which is given by the ratio between the
expected errors of the reconstruction, translation, and rotation at the end of the
training [36]. Batch normalization is applied to all layers, and no dropout is used.
For refinement, we use the Point-to-Point ICP registration provided by Open3D
[151] and refine for 10 iterations. Similarly, the initial search radius is 0.01 m and is
reduced by 10% after each iteration. DenseFusion, CloudPose, and pur CloudAAE
use object segmentation provided by PoseCNN during testing. The training details
regarding the dataset split are the same as described in Section 4.5.1.
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RGB D RGBD

PoseCNN1

[139]

CloudPose

[36]

CloudAAE

[35]

PoseCNN

[139]

DenseFusion

[131]

PVN3D

[49]

LM 62.7 58.3 86.7 - 94.3 -

LMO - 25.4 54.9 78.0 - -

YCBV - 94.7 94.0 - 93.2 96.1

Table 5.1: Performance on LM, LMO and the YCBV dataset. For LM and LMO,
we report the average AUC in the case that E.box and glue are reported with
ADD-S, others with ADD. We report the AUC of ADD-S metric on YCB-Video
dataset. The result for the RGB case of PoseCNN is without ICP refinement, all
the other results are with ICP refinement.

5.4.2 Prediction Accuracy

The comparison results on all three datasets are summarized in Table 5.1. We will
discuss those results in this section.

YCBV We compare the performance with the state-of-the-art methods Dense-
Fusion [130] and PVN3D [49], which is the most recent state-of-the-art method.
Moreover, we compare with CloudPose, which is the framework we proposed in
Chapter 4. We follow the convention in [49] to show only the ADD-S scores for
comparison. Since the YCBV dataset contains mostly rotational symmetric ob-
jects, this measure is more representative compared to ADD. In general, using
only depth for pose inference, Ours still shows comparable performance to the
RGB-D based performance. On the other hand, Ours has a similar performance
as our previous system CloudPose. The slight performance drop of Ours can be
caused by sharing a certain number of layers for 3D rotation and 3D translation
regression. Although we dedicated two separate networks for rotation and trans-
lation regression, since they both use the latent code as the input, they do share
the network layers in the encoder. As shown in the ablation study in the previous
chapter (Table 4.5), sharing some layers does hurt the performance.

LM We compare the performance with PoseCNN [139] and DenseFusion [130].
PoseCNN without ICP uses only color information for pose inference. DenseFusion
uses both color and depth information for pose inference. We report the ADD-S
scores for the egg box and glue, and ADD scores for the other objects. Using
only depth for pose inference, Ours achieves an average estimation accuracy of
86.7%. Although this is still around 8% performance difference comparing to DF
(94%), it is a huge improvement comparing to CloudPose (58.3%). This shows the
effectiveness of using the latent code as the input to both rotation and translation

1Result is without ICP refinement.
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regressors. The latent code contains much condensed information about the input
segment, and it is instructed to encode 6D object pose information using the AAE.

LMO We compare the performance with PoseCNN [139]. Like LM, we report
the ADD-S scores for the egg box and glue, and ADD scores for the other ob-
jects. The results on this dataset show a similar story as the LM dataset. For this
dataset, Ours has a larger performance gap with RGB-D based PC (54.9% com-
paring to 78.0%). One potential reason for the large gap is that the occlusion is
more challenging to handle with only depth information. On the other hand, the
performance of Ours achieves more than two folds of improvement compared to
CloudPose (54.9% comparing to 25.4%). This again verifies the efficiency of using
an augmented autoencoder based system.

5.4.3 Ablation Study

In this section, we first investigate the impact of using different network structures
as the encoder. We then show how the size of the latent code impacts the system
performance. We also use a different aggregation operation on the edge features to
see how the performance is impacted.

Encoder Recalling from Section 2.3, there are three popular deep networks for
learning on point clouds. They are PointNet (PN), PointNet++ (PN++) and
Dynamic Graph (DG). The main difference among those structures is that the
PN does not explicitly consider the neighborhood information of input points,
while the other two consider it. In our previous experiments, we used DG as the
encoder. This experiment replaces DG with PN and PN++, respectively, and trains
the networks until convergence. The performance results are shown in Table 5.2.
Overall, using DG shows the best performance. However, although PN does not
consider neighbourhood information, the performance is only around 3% worse.
Given its much lighter structure and shorter training time, PN can be viewed as a
competitive candidate for use as the encoder. On the other hand, it is surprising
that the performance is significantly worse when using PN++ as the encoder.
One significant difference between PN++ and DG when considering the neighbour
information is that PN++ simply locates neighbourhood points and uses a PN
structure for feature extraction, while DG explicitly constructs edges between the
center point and its neighbour points for feature extraction. Moreover, we use the
default parameters for the range of the nearest neighbour for PointNet++, which
might be suboptimal for our task. More investigation in setting proper parameters
may improve the performance.

Latent code size We also investigate how the performance is impacted by the
latent code size. We train networks with different sizes for the latent code. All the
networks are trained on the same synthetic data and trained until convergence.
The results without ICP are shown in Table 5.3. The generalization ability of
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encoder PN PN++ DG

avg 70.7 49.6 73.6

Table 5.2: Results (w/o ICP) with different encoders on LM.

Figure 5.5: T-SNE visualization of latent code for the LineMOD dataset.

Dimension 512 1024 2048 4096

avg 69.5 73.6 73.4 72.4

Table 5.3: Results (w/o ICP) with different latent code sizes on LM.

a network is the best when the latent code is of size 1024 (73.6%), while the
performance with size 2048 is also good (73.4%). With a smaller size of 512, it
seems the latent code is too small to capture all the required information for pose
estimation. The performance is also decreasing with size 4096 (72.4%.) We pick
1024 for our system. We show a t-SNE [126] visualization of the latent code for the
LineMOD dataset in Figure 5.5. The t-SNE is short for t-distributed stochastic
neighbor embedding and it is a method for visualizing data in high-dimensional
space by giving each data point a location in a low-dimensional space of two or three
dimensions. The similarity and dissimilarity of data point in the high-dimensional
space are preserved in the low-dimensional space. As it can be seen from the figure
(5.5), the latent codes are well clustered for each class.

Aggregation operation The operation we used for aggregating edge features
is average pooling. The intuition is to summarize all the information instead of
picking only a subset for reconstruction. To verify this hypothesis, we replace all the
average pooling with max-pooling and train a network. We show the performance
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aggregation

function

max

pooling

average

pooling

avg 64.6 73.6

Table 5.4: Results (w/o ICP) with different aggregation functions on LM.

in Table 5.4. With max pooling, the performance is dropped by almost 10% (from
73.6% to 64.6%). This verifies our hypothesis that it is not optimal to use only a
subset of edge features for reconstruction and pose estimation tasks.

5.4.4 Reconstruction and Confidence Measure

We want to investigate whether the reconstruction output can be used as an un-
certainty measure for the 6D pose estimation. Since we have the input segment
and the “clean” reconstruction of the input segment, we can measure the difference
between those two segments and check its correlation with 6D pose errors. Fig-
ure 5.6 shows some examples of the input segment (in red) and the corresponding
reconstructed segment (in blue). All segments are transformed with the ground
truth 6D pose to be superimposed on the object model, which is shown in the
cyan wire frame. It can be seen that with the ape, the input depth is deviated
from the object surface due to inaccurate camera intrinsic. A similar problem can
also be viewed on the examples of drill and can. The reconstructed segments can
compensate for the inaccurate depth information and respect the object surface.
On the other hand, the segmentation noise presented in the input segments of drill
and can is also removed by the reconstruction.

As mentioned above, during testing, we calculated the Chamfer loss between
the input and the reconstructed segments and the ADD and ADD-S loss. We then
plot the histogram of the Chamfer loss with respect to the ADD and ADD-S loss,
separately. Ideally, we expected a positive correlation between the Chamfer loss
and the 6D pose loss, which means when the Chamfer loss is low, the 6D pose
error is also low. If this is the case, we can use the Chamfer loss as a confidence
measure of the 6D pose estimate during testing. However, as shown in Figure 5.7,
this positive correlation can not be found in the LM dataset. The 6D pose error can
vary in a large range at a very low Chamfer loss. Similarly, this positive correlation
is also not found on the YCBV test set. Overall, the Chamfer loss between input
and reconstructed segments can not be used as a confidence measure for 6D pose
estimation. One possible reason is that the Chamfer loss is a point-to-point loss
rather than a point-to-surface loss [2]. Since the reconstructed point cloud segments
is expected to represent object surfaces, Chamfer loss can not measure how well
the reconstruction adhere to the object surface. One possible improvement is to
use an additionally point-to-surface quadric loss [2] for both training and testing
the pose estimation network.
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(a) ape

(b) drill

(c) can

Figure 5.6: Examples of input segment (left column), reconstructed segment (mid-
dle column), and overlays of input and reconstructed segments (right column). The
object model is shown in cyan wire frame. All the objects are from the LM dataset.

5.4.5 Time Performance

We measure the time performance on an Nvidia Titan X GPU. Our system is
implemented with Tensorflow. Pose estimation by a forward pass through our net-
work takes 0.07 seconds for a single object. The 10 iterations of ICP refinement
require an additional 0.03 seconds.

5.5 Summary

In this chapter, we proposed an augmented autoencoder based system CloudAAE
for accurate and fast 6D pose estimation of known objects represented by point
clouds. We use an augmented autoencoder as the base structure for the pose esti-
mation system. We enforce the latent code to encode 6D object pose information
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(a) Chamfer v.s. ADD (LM) (b) Chamfer v.s. ADD-S (LM)

(c) Chamfer v.s. ADD (YCBV) (d) Chamfer v.s. ADD-S (YCBV)

Figure 5.7: Histogram of Chamfer loss with respect to ADD (a, c) and ADD-S
losses (b, d) on the LM and YCBV test set respectively.

and to ignore noise and occlusion. The latent code is used as the input to two pose
regressors for regressing 3D rotation and 3D translation. Compared to CloudPose,
CloudAAE reduces the sparsity of pose information from the input point clouds by
learning a latent code encoding the pose information. Although CloudAAE does
not reach state-of-the-art performance, the experiment result shows that it is more
robust to noise in depth information.

As mentioned before, we focus on introducing the “autoencoder” aspect in
this chapter. In the next chapter, we will investigate the “augmented” aspect.
More specifically, we propose a data synthesis pipeline that enables us to add
different data augmentation to the training data and study its impact on the system
performance. Moreover, it is of interest to investigate whether the performance of
CloudAAE can be improved by adding synthetic training data.
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CloudSyn: Online Data Synthesis
with Point Clouds

In the previous two chapters, we investigated two methods for learning 6D object
poses from point clouds. Compared to the previous two chapters, which focus on
the problem of 6D pose estimation itself, we look into generating synthetic training
data for learning 6D object poses in this chapter. The main reason is that deep
learning-based methods have become the most popular method for tackling the
problem of 6D object pose estimation. Furthermore, among numerous deep learning
technologies, supervised learning is commonly used for this task [68, 130]. To enable
training a deep learning-based system, a vast amount of annotated data is required.
Commonly, there are two kinds of training data, namely, real training data and
synthetic training data. We have already briefly touched on the difference between
them and why researchers use synthetic data in Section 3.3. In this chapter, we
dive into more details to motivate the need to use synthetic training data for the
problem of 6D object pose estimation. We present a lightweight data synthesis
pipeline that creates synthetic point cloud segments for training.

We motivate the use of synthetic training data and the general drawbacks
of existing data sets in Section 6.1. Our data synthesis pipeline is presented in
Section 6.2. Experimental results are shown in Section 6.3. Section 6.4 concludes
this chapter.

6.1 The Whys

There are several motivations which will be introduced in this section. The moti-
vation of synthetic data is describe in Section 6.1.1. The motivation of using point
clouds as the data modality is presented in Section 6.1.2. The motivation of having
an on-line data synthesis pipeline is presented in Section 6.1.3. Figure 6.1 shows
an illustration of the practical aspects that motivate this work.
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Deep learning 
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Figure 6.1: Overview of the practical aspects that motivate this work.

6.1.1 Why Synthetic Data?

Deep learning-based methods are data-hungry. Therefore, to facilitate this require-
ment, the first common step is to collect a vast amount of training data from real-
world setups. More importantly, those training data should be annotated according
to the target applications. This means if the target application is 2D object de-
tection, the corner and size information of 2D bounding boxes around the target
objects should be annotated. Similarly, if the target application is 6D object pose
estimation, the 3D translation and 3D rotation of target objects should be anno-
tated. Figure 6.2 shows the illustration of those two annotations. The 6D pose is
illustrated by first transforming the corresponding object model with the 6D pose
and overlaying the transformed model onto the image for visual inspection. It can
be inferred that compared to a 2D bounding box, the annotation for a metrically
accurate 6D pose is very expensive. It takes a couple of seconds to annotate a 2D
bounding box. On the other hand, it can take up to several minutes for annotating
a 6D pose; with a sophisticated tool, the annotation time can be reduced to 30
seconds per object [88]. Furthermore, synthetic data can potential help to mitigate
the dataset bias problem which we will elaborate on in Section 6.1.3.

As introduced before (Section 3.3), real datasets have been created for learning
6D object pose [139, 52]. Although those real-world datasets are very valuable
contributions to the field, they have two main drawbacks. The first is the cost of
data annotation as described above. The second is that sometimes the full accuracy
of pose annotation can not be guaranteed. Figure 6.3 shows three examples of pose
annotation, one accurate (a) and two slightly inaccurate (b,c) annotations. For the
inaccurate annotations, it can be seen that the transformed object models in green
do not fully cover the target objects. Since deep learning methods are data-driven,
inaccurate pose annotations set an unsatisfying upper limit for model performance.
In general, deep learning-based methods benefit from large amounts of high-quality
training data. To this end, creating synthetic data not only eliminates the need for
manual labeling but also can guarantee the accuracy of labels.
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(a) 2D bounding box (b) 6D pose overlay

Figure 6.2: Illustration of 2D bounding box and 6D pose overlay. Images taken
from LM dataset [50].

(a) Accurate annotation (b) Inaccurate annotation (c) Inaccurate annotation

Figure 6.3: Examples of 6D object pose annotations. Images taken from YCBV
dataset [139].

6.1.2 Why Point Clouds?

Recalling from Section 3.3.2, there are three approaches for generating color-based
synthetic training images: rendering with textured object models, “cut&paste”,
and physically-based rendering (PBR). Out of these three methods, PBR is the
most computationally expensive approach because it aims to generate photo-realistic
images. The motivation behind this is to fill the visual reality gap. The visual real-
ity gap between real and synthetic RGB images is often large. This large gap can
lead to the problem that systems trained on synthetic data can not generalize well
to real-world testing data.

According to the recent benchmark challenge for 6D object pose estimation
(BOP) [58], the performance of deep learning methods has improved compared to
the previous year. The main reason for the performance boost of deep learning-
based methods is to have additional photo-realistic synthetic images for train-
ing [58]. These images are created using PBR and present a much smaller visual
reality gap than naive approaches such as “render & paste” [58]. Despite being
effective, PBR is expensive in terms of time and hardware storage. This high cost
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makes it challenging to scale PBR up to a large number of objects, which is often
desired in robotic applications.

In contrast, the visual reality gap for depth information is much smaller, and
methods using only depth information are more robust in the presence of the
visual reality gap [57]. This indicates that if synthesizing data with only depth
information, this gap is potentially much smaller and easier to fill. This opens
up the possibility to create a lightweight data synthesis pipeline using only depth
information presented in point clouds.

6.1.3 Why Online?

Due to the complicated and slow rendering process, PBR is often expensive time-
wise. The most recent state-of-the-art BlenderProc [23] takes around one second to
generate one photorealistic image containing 5−10 objects. If one were to generate
a dataset for training a network, it would take two days [23]. Furthermore, those
datasets are often created offline due to the slow rendering [138]. This leads to
another cost, which is the hardware storage cost. To have good coverage of the
continuous pose space and illumination conditions, the resulting dataset is often
in hundreds of gigabytes. It is costly storage wise to store all those synthetic data.
Moreover, the overhead of writing and reading training data is also expensive time-
wise.

There is one more concern that we referred to as the “dataset bias”. As we have
already described, either real or synthetic training data collection is not trivial.
However, after a tremendous amount of effort, the resulting datasets often still
cover a sparse range of the pose space. Figure 6.4 shows an illustration of this. We
take both the training and testing 3D rotation pose annotations of the power drill in
the YCBV dataset. The 3D rotations are converted to the axis-angle representation
and plotted in a sphere with a radius of π. The training poses are in blue, and
the testing ones are in red. Furthermore, we also converted the 3D rotations to
the Euler angle format and plotted the corresponding histogram. It can be seen
that the training data only covers a very sparse range of the 3D rotation space,
and the testing data is in the same distribution as the training data. Hence, the
testing data is bias to the training data. If we deploy a pose estimator trained on
this data to a real-world robotic application setup, due to the sparse coverage, it
is highly likely the real-world test poses are not covered by the dataset. This may
lead to unpredictable behaviour of the pose estimator in the real world, although
the performance on the testing dataset is good. It can also be seen from both
the rotation sphere and the histogram that the dataset testing pose is only a
small subset of the training poses. In general, perhaps the coverage is sufficient
for training a method that performs well on a specific dataset. However, it is
not practical in real-world scenarios since the desired pose distribution might lay
outside of the training distribution.

A possible solution is to have a dataset that covers the full real-world pose
space. However, this is theoretically possible but too impractical due to the cost of
time and hardware storage. Furthermore, this may intensify the problem of pose
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Figure 6.4: Illustration of the pose space coverage for one object in YCBV dataset.

ambiguity for rotational symmetric objects. A reasonable alternative solution to
this is to have a lightweight on-line data synthesis process. Ideally, the synthesizing
process is extremely fast to be afforded to use in an on-line manner. In this way, in-
stead of having unconstrained pose ranges, the desired pose space can be provided
for the data synthesizing accordingly. In other words, assuming you know approxi-
mately the pose space of your robot’s workspace, you can provide this information
to the data synthesis pipeline. In general, a cheaper data synthesizing process is
very desirable for robotic applications, in which the desired pose distribution can
vary from one workspace to another.

6.2 Data Synthesis with Point Clouds

According to the above-mentioned practical aspects, namely, having synthetic data,
using point clouds, and having an on-line data synthesis process, we present a
solution. Towards tackling those issues, we propose an on-line data synthesis system
that requires a texture-less 3D object model and the desired viewpoint as the
input. Moreover, the computational cost is low. Compared to existing approaches
(Section 3.3.2), ours is computationally lightweight and does not need textured
3D object models or segmented foreground objects from real-world training data.
Another difference is that the existing approaches mostly conduct off-line data
generation while ours can be used on-line.

We show the effectiveness of our system on the LineMOD, Occluded LineMOD,
and YCB Video datasets. Using only synthetic training data, our model achieves
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Figure 6.5: Data synthesis pipeline. The input for our on-line training pipeline is
a 3D object model PO with class information, and the desired 3D rotation R and
translation t. PO is at object coordinate O. With R and t, the object model is
first transformed to the camera coordinate C. The transformed model is denoted by
PC . Spherical occluders S (denoted in blue) are added between C and PC . Hidden
point removal is applied to PC ∪ S to remove points in PC and are not visible
from C. Zero-mean Gaussian noise is added to each remaining point to introduce
variance. The final point set is PC

occ. P
C
occ is normalized into PN

occ, by subtracting the
mean µp of PC

occ.

state-of-the-art performance among other synthetic trained methods on the LM
dataset [52]. Our cheap synthetic point cloud data can replace costly render-based
synthetic data for training systems using depth for pose inference. Our data syn-
thesis process is up to three orders of magnitude faster than commonly applied
approaches that render RGB image data. In general, we present a point cloud-
based lightweight data synthesis pipeline for generating training data. Compared
to existing RGB based data synthesis systems, the cost of ours is lower in the sense
of time and hardware storage. We name our data pipeline as CloudSyn.

Figure 6.5 illustrates the data synthesis pipeline. The inputs for the data syn-
thesis pipeline are a 3D object model and a 6D pose. We use 3D object models
represented by point clouds. A 3D rotation R and a 3D translation t are drawn
from the desired pose distribution. The desired pose distribution can be the poses
in a training set [122, 98]. It can also be a pool of poses covering the same distri-
bution as the poses in a training set [118, 137, 87]. In this work, if the training
dataset contains a large number of poses, we use them as the 6D pose for data
synthesis. Otherwise, we draw poses from the distribution of training poses.
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6.2.1 System Architecture

Given an object model represented by a set of points PO = {xOi ∈ R3 | i =
1, 2, . . . , n}, the model is transformed from its object coordinate system O to the
camera coordinate system C by

xCi = RxOi + t. (6.1)

PC =
{
xCi ∈ R3

∣∣i = 1, 2, . . . , n
}

is the transformed model, where xCi is the ith
point. To simulate occlusions, we randomly generate a set of points S as the spher-
ical occluders (denoted in blue in Figure 6.5) between the camera origin C and P .
Since we are interested in the problem of estimating the object pose from a sin-
gle camera view, the desired sensor input is a single-viewed object segment rather
than a full 3D model. To create a plausible object segment, we use the hidden
point removal method proposed in [67]. We remove points in PC ∪ S that are not
visible from C by applying hidden point removal (HPR) [67]. From the set of vis-
ible points, we remove the points belonging to S. To add variance to the training
sample, we add zero-mean Gaussian noise with standard deviation σ to each re-
maining point. In all of our experiments, we use σ = 1.3mm. The final resulting
object segment is PC

occ = {xi ∈ R3 | i = 1, . . . ,m}.
The data synthesis pipeline creates a point cloud segment PC

occ, and PC
occ is

normalized by removing its coordinate mean µp before further steps. We denote
the normalized PC

occ as PN
occ. Using the data synthesis pipeline, we apply random

noise and occlusion to the input point cloud segment to add variance in the training
samples.

6.2.2 Spherical Occluder

To simulate external occlusions, we empirically generate two spherical occluders
between the camera origin C and the target object PC . The positions of each
occluder are decided by the translation t and the view frustum of the camera.
Figure 6.6 shows an illustration of view frustum. In general, the view frustum is
defined by the near and far planes and the corresponding heights and widths. The
distance from the occluder to the camera origin is randomly picked between the
target object and the near plane. The occluder offsets along the x and y axes of
the camera coordinate are randomly picked within the height and width of the
near plane. Since the occluders are spherical, we do not consider a 3D rotation for
them.

Once the center of the occluder is decided, we use the center as a mean to
generate 200 3D points in a Gaussian distribution with a standard deviation of
0.01 m. Those 200 3D points together form a spherical occluder. Figure 6.7 shows
some examples of the spherical occluders. For each example, we show two views of
the target object and the spherical occluders. We also show the same views after
hidden point removal and adding per point noise. The models of the target object
are also presented for easier understanding. In the first two examples (Figure 6.7(a)
and 6.7(b)), the occluders create good amount of occlusion for the target object. In
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Figure 6.6: Illustration of the camera view frustum.

the third example (Figure 6.7(c)), the occluders only creates a very small amount
of occlusion for the target object. In the last example (Figure 6.7(d)), the occluders
do not create any occlusion and the resulting object segment is not occluded.

6.2.3 Hidden Point Removal

Given an object model represented by the set of points P and a viewpoint C, the
HPR operator is used to determine the set of visible points Pvis ∈ P if viewing P
from C. The first step is to invert P . The inversion is achieved using the spherical
flipping proposed in [66]. Assuming P is in a coordinate system in which C is the
origin, and a 3D sphere with radius r is also centered at C. This sphere includes
all points in P . The inversion p̂i of point pi ∈ P is:

p̂i = f(pi) = pi + 2(r − ‖pi‖)
pi
‖pi‖

. (6.2)

The second step is to construct a convex hull from the inverted points and the
sphere origin. Let P̂ be the inverted points: P̂ = {p̂i = f(pi) | pi ∈ P}. A convex
hull of the set P̂ ∪{C} can be calculated. The points on the convex hull of P̂ ∪{C}
are the visible points Pvis.

6.3 Experiments

We train CloudAAE on the data generated by CloudSyn and compare our results
with the state-of-the-art methods on public datasets, the LM [52], LMO [14] and
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View 1 View 2
(a)

View 1 View 2

(b)

View 1 View 2
(c)

View 1 View 2
(d)

Figure 6.7: Examples of spherical occluders. Coordinate frame represents the cam-
era. Target objects are in green dots and occluers are in blue dots. For each ex-
ample, the positioning of occluders and the resulted object segments are shown in
two views.
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YCBV [139] datasets. In the ablation study, we investigate the impact of the
amount of synthetic data used for training. We also compare our spherical occluder
with another variant of occluders. We also investigate the impact of adding per
point noise. Finally, we present the runtime and usage of hardware storage of our
data synthesis pipeline.

6.3.1 Experiment Setup

Depending on the applicability of the methods, for each dataset, we compare to a
subset of state-of-the-art methods SSD-6D [68], EEPG-AAE [134], CloudPose [36],
PVNet [99], PoseCNN [139], DenseFusion [130], PVN3D [49] and PointVoteNet [42].

We use the 3D models in point clouds provided by the datasets for the on-line
data synthesis. Tests are conducted on real test images from the official test split.
LM provides approximately 200 training poses for each class, which is a small
amount for generating synthetic data. To obtain more 6D poses for training, we
first calculate a kernel density estimate (KDE) on the training set poses. Then
we draw 100, 000 6D poses from the distribution for each object class for data
synthesis. For YCBV, we use the 80, 000 6D poses from its synthetic training set
as the 6D poses for data synthesis.

For training, we use the Adam optimizer with a learning rate of 0.0008. The
batch size is 128. The number of points of the input point cloud segments is
n = 256. Standard derivation for zero-mean Gaussian noise is 1.3 mm. We use
the pipeline on both CloudPose and CloudAAE and report the results. For ICP
refinement, we use the simple Point-to-Point registration provided by Open3D [151]
and refine for 10 iterations. The initial search radius is 0.01 meter, and it is reduced
by 10% after each iteration.

When training with synthetic data, both CloudPose and CloudAAE use the
proposed data synthesis pipeline. For testing, our method, CloudPose, and Dense-
Fusion [130] require an off-the-shelf semantic segmentation method. For LM and
LMO, both our method and CloudPose use the test object segmentation provided
by the corresponding dataset. For YCBV, ours, CloudPose, and DenseFusion use
the object segmentation provided by PoseCNN [139]. When training with addi-
tional real data, we first generate the synthetic segments (PO

occ in Figure 6.5) off-line
and use them with the real data for training.

6.3.2 Comparison of Prediction Accuracy

We first compare the system performance of CloudAAE when using different train-
ing datasets. We then discuss our system performance when using only synthetic
data for training on three datasets. We will also briefly discuss our system perfor-
mance when using additional real training data.

CloudAAE with different training data We train CloudAAE with only real,
only synthetic, and both real and synthetic data on all three datasets. The real
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Real Synthetic Both

LM 86.7 92.5 95.5

LMO 54.9 63.2 66.1

YCBV - 93.5 93.6

Table 6.1: Performance of CloudAAE using different training data.

RGB D RGBD

EEGP-AAE [134] CloudPose [36] CloudAAE [35] SSD-6D [68]

LM 89.2 75.2 92.5 90.9

LMO - 44.2 63.2 -

YCBV - 93.0 93.5 -

Table 6.2: Performance of methods training with only synthetic data. All results
are with ICP refinement.

training data is directly from the corresponding datasets, and the synthetic train-
ing data is generated with CloudSyn. The test performance is shown in Table 6.1.
It can be seen that with only CloudSyn synthetic training data, CloudAAE is able
to achieve better performance compared with using real training data on LM and
LMO. And the performances are further improved on all datasets when combin-
ing the real and synthetic training data. This shows the usefulness of CloudSyn
synthetic data as the training data.

Synthetic training data only Table 6.2 shows the evaluation results on three
datasets. All results are with ICP refinement. On LM, we achieve state-of-the-art
performance using only depth for pose inference. This shows the effectiveness of
the combination of our data synthesis pipeline and CloudAAE. Both CloudAAE
and CloudPose use depth for pose inference, but our method generalizes better
to real test data. This shows learning a latent code that encodes pose informa-
tion can improve system robustness. Using depth for pose inference, our method
outperforms the RGB-D based method SSD-6D.

On LMO, CloudAAE outperforms CloudPose by a large margin. Among the
methods without ICP, ours has a better performance than PVNet and PointVoteNet,
which use real data for training. This shows that our system can also handle occlu-
sion. On YCBV, CloudAAE is slightly better compared to CloudPose. Moreover,
although trained on synthetic data only, our method has comparable performance
to other methods trained on both real and synthetic data. To the best of our
knowledge, we are the first to report the results using only synthetic training data
on this dataset.
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RGB1 D RGBD

PoseCNN

[139]

PVNet

[99]

PointVotNet

[42]

CloudAAE

[35]

PoseCNN

[139]

DenseFusion

Iterative [131]

PVN3D

[49]

LM - - - 95.5 - - 99.4

LMO 24.9 47.3 52.6 66.1 78.0 - -

YCBV - - - 93.6 - 93.2 96.1

Table 6.3: Performance of methods training with both synthetic and real data. All
results are with ICP refinement except for the RGB based methods.

Synthetic and real training data As shown in Table 6.3, using additional
real training data boosts the performance of CloudAAE on all three datasets. On
LM, although CloudAAE with ICP has worse performance compared to RGB-
D based PVN3D, we still obtained promising performance using only depth. On
LMO, among the methods without ICP, ours has the best performance. With ICP,
PoseCNN outperforms our method. One possible reason is that PoseCNN uses
a sophisticated ICP while we use a standard point to point ICP. Moreover, it
shows LMO is very challenging for methods that rely on a single modality for pose
inference, and combining both color and depth is very beneficial. Another possible
factor limiting our performance is that there might be a visual reality gap between
our occlusion simulation and the real data. On YCBV, we report the results when
using real training data with synthetic data from CloudSyn. Using real and the
two kinds of synthetic data achieves similar performances, and ours is comparable
with the RGB-D methods [130, 49].

6.3.3 Ablation Study

Different occluders We investigate the impact of spherical occluders as well
as another different strategy of simulating occlusions. For a target object, instead
of generating random spherical occluders, we pick a random object from the LM
objects as the occluding object. Using an object occluder, we try to simulate the
target object is occluded by another object, as is usually the case in the LM
dataset. The 3D translation selection for this occluder is the same as described
in Section 6.2.2. A random 3D rotation is generated for this occluder. Figure 6.8
shows examples of object occluders.

We train one network without occluders and one network with object occluders,
and compare the performance with spherical occluders. The result is shown in
Table 6.4. It can be seen that without occluders, the test performance presents a
huge drop. Hence, the occluders are necessary to achieve good testing results. Using
an object occluder makes the performance slightly worse. One possible reason is
that it is difficult to pick the optimal positions for the object occluder. Because
the object occluder is significantly larger than the spherical occluder, we only
use one object occluder for synthesizing each sample. On the other hand, we use

1Results are without ICP refinement

82



6.3. Experiments

View 1 View 2

occluder

object

(a)

View 1 View 2

occluder

object

(b)

Figure 6.8: Illustration of random object occluder.

occluder No Object Spherical

avg 73.0 80.6 82.1

Table 6.4: Results (w/o ICP) with different occluders on LM.

two spherical occluders for synthesizing each sample. Since the positions of each
spherical occluder are picked separately, we potentially have a higher overall chance
for more optimal positioning of the occluders. On the other hand, there are some
overhead computations for choosing the object occluder and its 6D poses, and the
computational cost is higher than using the spherical occluder.

Per point noise We investigate whether the per point noise has an impact
on the system performance. We remove the step of adding per point Gaussian
noise and train a network. The performance is shown in Table 6.5. Removing the
per point Gaussian noise during the training phase leads to surprisingly bad test
performance. For more detailed insight, we also show the individual results for each
object.
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ape bvise cam can cat driller duck e.box glue holep iron lamp phone avg

w\o
noise

30.8 83 30.1 75 31.8 92.2 8.8 99.7 88.1 22.5 63 79 71.5 59.7

w.

noise
74.5 86.6 65.6 90.2 90.7 97.3 50 99.7 93.5 57.9 85 82.1 94.4 82.1

Table 6.5: Results (w/o ICP) with and without per point noise on LM.
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Figure 6.9: Amount of synthetic training data and performance accuracy (w/o
ICP).

Recalling the object models presented in Figure 2.9(a), it can be observed that
the performance has dropped significantly for small objects such as ape, cam,
cat, duck, and hole puncher. For bigger objects such as the driller and lamp, the
performance is slightly degraded. One possible reason is that due to both the data
noise and inaccurate depth in this data set, in general the surface shape of all
objects is distorted. Smaller objects might be impacted more by the distortion,
compared to the bigger objects. In this case, adding some noise to the synthetic
data during training can help the network to generalize better during testing with
real data.

Amount of training data We study how the amount of synthetic training
data impacts the system performance. For each object class in LM, we generate
either 10, 000, 100, 000, 1, 000, 000 training poses per class. For each pose data
amount, we train multiple networks with early stopping. If the training error of
the current epoch failed to improve more than 10% of the previous lowest training
error, the training process is terminated. We conducted five trials for 10, 000, and
three trials for 100, 000 and , 1000, 000. We generate a set of training data for
each trial separately. The trained networks are evaluated on the test set of LM.
Figure 6.9 shows the test accuracy (without ICP). 100, 000 samples per class are
sufficient for the network to perform well on the test set, and using 1, 000, 000 per
class does not provide further performance gain.
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6.3.4 Runtime and Hardware Storage

We measure the time performance on an Nvidia Titan X GPU. Our system is
implemented with Tensorflow. For the on-line data synthesis, it takes under 30
milliseconds to generate 128 object segments. The rendering-based approach [23]
takes 1-4 seconds to generate an image with 10-20 objects. In the LM experiments,
the 3D object models and 13 × 100, 000 training poses take 128 MB of storage. If
to generate PBR images [58] with similar number of objects (e.g. 10 objects per
image), 13× 10, 000 images would take 63 GB.

6.4 Summary

In this chapter, we present a point cloud-based lightweight data synthesis pipeline.
The data synthesis pipeline requires texture-less 3D object models and 6D ob-
ject poses as the input. The 3D object models are provided by the corresponding
dataset, and the 6D poses can be drawn from desired 6D pose spaces. The data
synthesis pipeline is low cost in terms of both time and hardware storage. It takes
∼ 0.2 milliseconds to create one training sample and can be used on-line. Using the
synthetic data created by our data synthesis pipeline, our pose estimation system
achieves state-of-the-art performance among other synthetic trained methods on
a public benchmark. Moreover, our cheap synthetic point cloud data can replace
expensive render based synthetic data for training systems using depth for pose
inference. Our lightweight data synthesis pipeline enables more agile deployment
of object pose estimation systems in robotic applications.

In Chapter 8, we will test this data pipeline in a real-world setup. Specifically,
we opt for an in-hand object pose estimation task. Since our data pipeline is very
flexible and each component can be replaced according to the application, it will
be interesting to test how easy it is to adapt to a slightly different task. Also, the
in-hand object pose estimation is very useful for applications such as human-robot
hand-over.
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SSV: Saliency-guided Adaptive
Seeding for Supervoxel
Segmentation

In the previous chapters, we assumed that the object segment is available, and our
pose estimation system uses the target object segment as inputs. In this chapter,
we switch gears and investigate a problem in the field of segmentation. Specifi-
cally, we investigate the problem of over-segmentation on point clouds. The result
of over-segmentation on 2D images is referred to as “superpixel” [106], while its
counterpart on point clouds is called “supervoxel”. Over-segmentation is a popular
way of grouping pixels or voxels to larger entities and thus to strongly reduce the
number of primitives that subsequent modules have to deal with [117]. This is es-
pecially important in robotics scenarios, where real-time constraints usually make
the full interpretation of high-resolution image or point cloud data unfeasible.

Many applications use superpixels or supervoxels as the input. For example, in
object discovery, the superpixels are grouped to obtain object candidates, which
in turn are used as input for object recognition methods [61, 65, 39, 135]. Other
applications include automatic object handle grasping [116], unknown object ma-
nipulation in cluttered environments [12], and semantic segmentation [136]. Since
superpixels serve as input to all further processing, their quality has a significant
impact on the quality of the output [46]. For example, violating object boundaries
will introduce a permanent error into the processing pipeline since all following al-
gorithms will be forced to use superpixels that contain more than one object [97].
In other words, if a single superpixel contains pixels belonging to two distinct ob-
jects, the two objects can not be fully distinguished in any subsequent processing
step. The quality of a set of superpixels can be assessed based on, e.g., their adher-
ence to object boundaries, compactness, smoothness, and a controllable number of
superpixels [117]. Among these qualities, boundary adherence is one of the most
critical requirements due to the reasons mentioned above.

In this chapter, we propose a saliency-guided method for generating supervoxels
in 3D space. Rather than using an evenly distributed spatial seeding procedure, our
method uses visual saliency to guide the process of supervoxel generation. This re-
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sults in densely distributed, small, and precise supervoxels in salient regions which
often contain objects and larger supervoxels in less salient regions that often corre-
spond to the background. Our approach vastly improves the quality of the resulting
supervoxel segmentation in terms of boundary recall and under-segmentation error
on publicly available benchmarks. We explain the motivation behind using visual
saliency for over-segmentation in Section 7.1. The background and related work on
over-segmentation are presented in Section 7.2. In Section 7.3, we give an overview
of our proposed method and details of each step. We evaluate our method in Sec-
tion 7.4 on two publicly available datasets. Section 7.5 gives concluding remarks.

7.1 Why Over-segmentation with Visual Saliency?

As mentioned above, we are interested in generating supervoxels from point clouds.
While dozens of superpixel algorithms exist that operate on 2D color images [1,
30, 144, 124, 142], methods that analyze RGB-D data and generate so-called su-
pervoxels are much less common [97, 145]. Among the few methods that exploit
depth, the Voxel Cloud Connectivity Segmentation (VCCS) supervoxels presented
by Papon et al. [97] is probably the best known and most used method1. VCCS
oversegments a 3D point cloud into supervoxels by applying a spatial seeding pro-
cedure that places the initial supervoxel centroids on a regular grid. The main
difficulty of the method, as well as of other superpixel and supervoxel methods, is
to find an appropriate parameter setting that defines a good trade-off between the
number of supervoxels and the precision. On the one hand, obtaining a low num-
ber of large superpixels is favorable since this reduces the computational burden
of subsequent processing. On the other hand, the superpixels should not be larger
than the smallest objects, otherwise these will not be segmented appropriately and
will be permanently lost in the further process [1].

An alternative to the uniform seeding strategy is to place the initial seeds
adaptively. Moreover, the adaptive seeding process should follow certain priors.
We propose to use visual saliency as the prior. The idea is motivated by the fact
that saliency highlights regions that visually stick out of the image, i.e., they
differ according to some features — such as color, intensity, or depth — from
their background [32]. Figure 7.1(a) shows an original image and its corresponding
color-based saliency map is shown in Figure 7.1(b). It can be seen that objects
such as the laptop computer and the wooden board on the wall are highlighted in
the saliency map. We argue that visual saliency is also a good indicator for the
presence of objects since objects also usually differ from their surroundings [39].
This property is especially useful since it enables us to initialize a higher density
of seeds in regions that probably correspond to objects.

We propose a supervoxel algorithm that, instead of seeding the initial super-
voxel centroids evenly spaced over the whole input data, applies saliency-guided
seeding as illustrated in Figure 7.1. To achieve this, we cluster the input data ac-
cording to visual saliency, assigning a saliency-specific seeding resolution to each

1The code for VCCS is publicly available as part of the Point Cloud Library (PCL).
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(a) Original image (b) Saliency map

(c) Superpixel (VCCS) (d) Superpixel (SSV)

(e) Supervoxel (VCCS) (f) Supervoxel (SSV)

Figure 7.1: Visualization of supervoxel computation in a uniform manner and with
our saliency-guided adaptive seeding method SSV. Top: RGB image (a) and cor-
responding saliency map (b). Middle: 2D projection of supervoxels of uniformly
distributed supervoxels from VCCS [97] (c) and of our SSV method (d). Bottom:
3D supervoxel clouds for VCCS (e) and SSV (f).

cluster. Highly salient regions will have a greater density of seeds and vice versa.
This leads to small, precise supervoxels in salient regions, and to large supervoxels
in less salient ones, for example, on homogeneous background surfaces (see, e.g. the
wall in Figure 7.1(f)). We show that, with the same average number of supervoxels
per image as VCCS, we get a clearly improved boundary recall, undersegmenta-
tion error, and explained variation of the supervoxel segmentation. We thus show
that visual saliency provides a useful prior that allows the segmentation to better
respect object boundaries.
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7.2 Related Work in Over-segmentation

Following the classification of Stutz et al. [117], superpixel methods can be classi-
fied into watershed-based [86], density-based [127], graph-based [30], contour evo-
lution [79], path-based [33], clustering-based [1, 133, 124] and energy optimization
methods [125, 144]. Recently, some deep learning-based methods were also pro-
posed [64, 142]. Among the most popular methods is the Simple Linear Iterative
Clustering (SLIC) superpixel method [1] that applies local k-means clustering of
the image pixels on a regular grid pattern over the entire image to generate per-
ceptually uniform superpixels. SLIC is appealing since it is simple, fast, and has
only two parameters that must be controlled: the number of superpixels that shall
be generated and the compactness of the superpixels. Many other superpixel and
supervoxel methods follow the idea of SLIC, e.g., [97, 133], and [143].

Few methods integrate depth data into the segmentation process. The Depth-
Adaptive Superpixels (DASP) [133] extend the iterative local clustering approach
by introducing the control of superpixel seed density based on depth informa-
tion. Similarly, Yang et al. [143] enhance the superpixel generation process using
the depth difference between pixels to prevent violating boundaries between ob-
jects of similar color. They also use a local k-means clustering approach with an
eight-dimensional distance measure including color, 2D, and 3D coordinates. Both
methods can be classified as 2.5D since they use depth to improve superpixel gen-
eration but do not create 3D supervoxels but rather 2D superpixels. There are also
works that exploit the 3D geometry of the scene and generate a full 3D supervoxel
graph from point clouds [97, 140, 76]. Voxel Cloud Connectivity Segmentation [97]
generates supervoxels from RGB-D data while guaranteeing that all voxels within
each supervoxel are spatially connected. Similar to SLIC and DASP, VCCS is also
a variant of iterative local clustering applied on a regular lattice. Xiao et al. [140]
formulate over-segmentation as an energy minimization problem and propose a
merge-swap optimization framework. Recently, Landrieu et al. [76] formulate this
problem as a supervised learning problem. They proposed a graph-structured con-
trastive loss and used it in a metric learning framework.

Our Saliency-guided Supervoxel (SSV) method is based on VCCS due to its
simplicity. Instead of uniformly distributing the supervoxels over the data, we
use an adaptive seeding procedure guided by saliency. Our results show that our
method clearly improves the quality of the supervoxels according to several eval-
uation metrics. It should be mentioned that in the literature, other methods are
also referred to as supervoxels, which use time instead of space as the third dimen-
sion and are thus a type of video segmentation [33, 141]. These methods do not
apply to RGB-D point clouds since they usually require a solid 3D volume of time
and space as input. Thus, such methods are not comparable with the supervoxel
methods operating on 3D data from a sensor such as the Microsoft Kinect.
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Input
point cloud

Saliency
map

K 
cluster

Figure 7.2: System overview. First, the saliency system VOCUS2 [32] generates a
saliency map. The point cloud is partitioned into K clusters using k-means on the
saliency values, and each cluster k is assigned a seeding resolution rk. The VCCS
supervoxel segmentation method [97] is applied to each cluster independently, and
the results are combined to form the final output.

7.3 Saliency-guided Supervoxel Segmentation

In this section, we present Saliency-guided Supervoxels (SSV), our algorithm for
generating supervoxels using saliency-guided adaptive seeding. SSV combines a vi-
sual saliency model, a newly introduced saliency-guided adaptive seeding approach,
and a supervoxel segmentation algorithm.

An overview of our algorithm is presented in Section 7.3.1. More details on
the visual saliency model and supervoxel computation are given in Sections 7.3.2
and 7.3.3, respectively. The adaptive seeding approach is described in Section 7.3.4.

7.3.1 System Overview

As illustrated in Figure 7.2, the input to SSV is an RGB-D point cloud. During
pre-processing, the RGB information is passed to a visual saliency system, here
VOCUS2 [32], to generate a pixel-level saliency map. The pixel-level saliency map
is segmented into K regions applying k-means. The same segmentation is applied
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to partition the point cloud into K clusters. The clusters are sorted in an ascending
order based on their average saliency values.

The supervoxel seed resolution is determined according to the average saliency
value: clusters with a higher average saliency have denser seeding. As the super-
voxel method, we use VCCS [97], which is applied to the points in each cluster
independently. The results are merged to obtain the final supervoxel segmenta-
tion. As setting K = 1 reduces our method to be equivalent to VCCS, SSV may
be viewed as a generalization of VCCS.

7.3.2 Saliency Model

To compute a pixel-level saliency map from the RGB data, we use the computa-
tional visual saliency method VOCUS2 [32]. VOCUS2 converts its input image into
an opponent-color space with intensity, red-green, and blue-yellow color channels.
Center-surround contrasts are then computed on multiple scales by Difference-
of-Gaussian filters operating on center and surround twin pyramids. Finally, the
saliency map is generated by fusing the contrast maps across scales and channels
using a simple arithmetic mean.

We use VOCUS2 since it is fast and has obtained good results on several bench-
marks. Furthermore, it does not have a center-bias, which is essential in robotic
applications since objects of interest are usually not in the center of the image.
Despite these considerations, any computational visual saliency model could be
applied in SSV.

7.3.3 Voxel Cloud Connectivity Segmentation

VCCS is a supervoxel segmentation algorithm introduced by Papon et al. [97]. It
first voxelizes the input RGB-D point cloud by equally partitioning the 3D space
using an octree structure. The size of each voxel is defined by the voxel resolution
Rvoxel. Supervoxel seeds are generated uniformly on a regular grid with resolution
Rseed that is much larger than Rvoxel. Higher Rseed results in fewer supervoxels and
vice versa. For each occupied seed voxel, the nearest cloud voxel is selected as an
initial seed. Unoccupied seed voxels are discarded.

After selecting the initial seeds, a local clustering of voxels is performed iter-
atively until all voxels are assigned to supervoxels. The clustering is performed
in a 39 dimensional feature space F = [x, y, z, L, a, b,FPFH1...33], where x, y, z are
spatial coordinates, L, a, b denote color in CIELab space, and FPFH1...33 are the
33 elements of Fast Point Feature Histogram [110]. Each voxel is assigned to the
supervoxel to whose centroid it has the smallest normalized distance

D =

√
λDc

2

m2
+

µDs
2

3Rseed
2 + εDHiK

2, (7.1)

where Dc is the Euclidean distance in CIELab color space, Ds denotes the spatial
distance, DHiK is the Histogram Intersection Kernel of FPFH [6], m is a nor-
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(a) Input image (b) Supvervoxel (VCCS) (c) Supervoxel (SSV)

Figure 7.3: Input image (a) and supervoxels obtained with VCCS (b) and with our
SSV method (c).

malization constant, and λ, µ and ε are the weights for each distance such that
λ+ µ+ ε = 1.

7.3.4 Saliency-guided Adaptive Seeding

For our saliency-guided supervoxel seeding, we first compute a saliency map as
described above. We then use k-means to partition the pixel-level saliency map
into K clusters. The clusters are then sorted in ascending order according to the
average saliency of the pixels in each cluster.

To control the size of supervoxels, the minimum and maximum seed resolution
Rmin and Rmax, respectively, are defined. The seed resolution rk for the k-th cluster
is

rk = 10logRmax−(k−1)d, (7.2)

where the step size d is determined by

d = − logRmin − logRmax

K − 1
. (7.3)

By Equation (7.2), regions with high saliency are seeded densely, while less salient
regions have a sparser seed distribution.

We apply VCCS (Section 7.3.3) independently to each cluster, using rk as the
seed resolution Rseed for data in cluster k. The final result is obtained by combining
the K supervoxelizations into a single multiple seed resolution supervoxel repre-
sentation. Figure 7.3 shows an example supervoxelization, with the VCCS result
shown for comparison.

7.4 Experimental Results and Evaluation

We compare SSV against the current state-of-the-art supervoxel method VCCS [97].
Although some 2.5D methods such as DASP [133] could be adapted for the com-
parison, we chose to compare only to VCCS since it shares with SSV the key
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property that the generated supervoxels are guaranteed to be spatially connected.
This is important if the result is to be applied, e.g., for robotic manipulation. The
evaluation procedure is described in Sec. 7.4.1, the datasets in Section 7.4.2, and
the experimental results in Section 7.4.3.

7.4.1 Evaluation Metrics

We compare SSV and VCCS using the superpixel benchmarking tool2 of Stutz et
al. [117]. The tool provides a platform to evaluate the performance of superpixel
algorithms using common metrics such as boundary recall (REC), undersegmen-
tation error (UE), and explained variation (EV). The benchmark tool evaluates
supervoxel methods by projecting each supervoxel back to the 2D image plane and
then evaluating the result similarly as superpixel methods. This is reasonable since
most publicly available datasets provide the ground truth only as a 2D image.

The notation we use in this section is as follows. Given an input image I =
{xj}Jj=1 with J pixels, we write S = {Sn}Nn=1 to denote a segmentation of I into
N superpixels, and G = {Gm}Mm=1 to denote the M ground truth segments.

Boundary recall (REC) [89] assesses boundary adherence by measuring the
percentage of the superpixel edges that fall within a certain range of an arbitrary
ground truth boundary. The range is defined as (2r + 1)2, with r = 0.0025 × L
where L is the image diagonal size [117]. Higher boundary recall indicates a better
boundary adherence.

Undersegmentation error (UE) [79] measures the amount of “leakage” of
a segmentation S with respect to the ground truth G:

UE(S,G) =
1

M

M∑
m=1

[∑
{n|Sn∩Gm 6=∅} |Sn|

]
− |Gm|

|Gm|
, (7.4)

where the leakage of superpixel Sn with respect to ground truth Gm is represented
by the inner term. Lower undersegmentation error demonstrates less leakage.

Explained variation (EV) [92] attempts to measure the quality of a su-
perpixel segmentation without relying on human-annotated ground truth. EV is
defined as

EV(S) =

N∑
n=1

|Sn| (µ(Sn)− µ(I))2

J∑
j=1

(xj − µ(I))2

, (7.5)

where xj is the value for pixel j, µ(I) is the global pixel mean and µ(Sn) is the
mean value in superpixel n. EV is the proportion of variation that can be explained
by superpixel segments. A higher EV indicates better performance.

2https://github.com/davidstutz/superpixel-benchmark
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7.4. Experimental Results and Evaluation

7.4.2 Datasets

We evaluate on the NYUV2 [114] and SUNRGBD [115] datasets. NYUV2 contains
1449 color images with associated depth information. The data are collected ap-
plying Microsoft Kinect v1 and depict varying indoor scenes. We use the test set
of 399 randomly chosen images specified in the superpixel benchmark to evaluate
our method. We tuned the parameters of our method on a disjoint set of training
images from this dataset.

SUNRGBD has 10335 images of cluttered indoor scenes, with color and depth
information. The dataset contains images collected applying the Intel RealSense,
Asus Xtion, Microsoft Kinect v1, and v2 sensors. We use 400 randomly chosen
images from this dataset to evaluate our method.

7.4.3 Experimental Results

We varied the seed resolution Rseed between 0.05 and 0.25 for VCCS. For SSV, we
created between 2 and 6 clusters, with minimum seed resolution Rmin between 0.05
and 0.25 and maximum seed resolution Rmax between 0.2 and 0.4. The values were
chosen to obtain approximately the same average number of superpixels for both
methods3. For both methods, we set Rvoxel = 0.02, color weight λ = 0.7, spatial
distance weight µ = 0.15 and HiK distance weight ε = 0.15 (Equation (7.1)).

Figure 7.4 shows the REC, UE, and EV for SSV and VCCS as a function
of the average number of superpixels. The data in the figure correspond to the
seed resolution Rseed for VCCS between 0.1 and 0.2. For SSV, we set K = 6,
Rmin between 0.05 and 0.2, and Rmax = 0.3. The means and their 95% confidence
intervals are plotted. The figure shows that with the same amount of superpixels,
SSV performs significantly better in terms of REC and better or the same in
terms of UE and EV. This is especially true for smaller numbers of superpixels
(left parts of plots), which is of special interest for many applications that require
low complexity. Due to the saliency prior, supervoxels generated by SSV are more
efficient: a larger fraction of the supervoxels are in regions with many boundaries
to preserve, while fewer supervoxel are used in background regions.

Table 7.1 indicates how the performance of VCCS and SSV varies as a function
of the key parameters: Rseed for VCCS, and K, Rmin, and Rmax for SSV. We note
an expected trend that a higher number of superpixels leads to higher boundary
recall and explained variation, as well as lower undersegmentation error. However,
more superpixels also correspond to less reduction in the complexity of the input
representation.

In Figure 7.5, we show a qualitative comparison of our method and VCCS.
The fact that SSV uses saliency to guide the seeding process is seen from having
a higher density of supervoxels in highly salient areas that are likely to contain
objects. Supervoxels are generated with a low density in non-salient background
areas such as walls, resulting in larger supervoxels. We also see that small objects

3For both methods, it is not possible to determine the number of superpixels precisely in
advance, due to the projection from 3D.
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Chapter 7. SSV

Figure 7.4: Average boundary recall (REC, higher is better), undersegmentation
error (UE, lower is better) and explained variation (EV, higher is better) with
95% confidence intervals in the NYUV2 (top row) and SUNRGBD (bottom row)
datasets.

are captured much better with SSV, note for example, the details of the sink
(handles and tap) on the second row.

Both methods were implemented in C++, and run on a 3.5 GHz Intel i7 CPU.
The average processing time of VCCS was 0.5 sec. per image. For SSV, the aver-
age processing time increases with the number of k-means clusters. With K = 5
clusters, the average processing time of SSV was 2.2 sec. per image. We expect
that a significant speedup can be achieved by parallellizing the calls to VCCS as
illustrated in Figure 7.2.
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7.5. Summary

NYUV2 SUNRGBD

Rseed #SP REC UE EV #SP REC UE EV

VCCS

0.05 10323±969 0.97±0.004 0.03±0.002 0.95±0.004 10460±720 0.95±0.006 0.03±0.002 0.94±0.006

0.10 4873±502 0.93±0.007 0.04±0.002 0.95±0.004 5021±394 0.91±0.008 0.04±0.002 0.94±0.004

0.15 2494±237 0.88±0.01 0.06±0.003 0.94±0.005 2773±225 0.86±0.009 0.05±0.003 0.92±0.006

0.20 1539±143 0.84±0.01 0.07±0.004 0.93±0.006 1750±140 0.81±0.01 0.07±0.004 0.89±0.008

0.25 1032±91 0.80±0.01 0.08±0.004 0.91±0.006 1175±89 0.77±0.01 0.09±0.005 0.87±0.01

K Rmin Rmax #SP REC UE EV #SP REC UE EV

SSV

6 0.1

0.20 3957±341 0.94±0.006 0.04±0.002 0.95±0.003 4203±302 0.93±0.005 0.04±0.002 0.95±0.003

0.25 3334±284 0.93±0.006 0.05±0.002 0.95±0.004 3614±257 0.92±0.006 0.04±0.002 0.94±0.004

0.30 2949±250 0.92±0.007 0.05±0.003 0.94±0.004 3203±227 0.91±0.006 0.04±0.002 0.94±0.004

0.35 2655±225 0.92±0.007 0.05±0.003 0.94±0.004 2899±204 0.90±0.006 0.05±0.002 0.93±0.004

0.40 2429±206 0.91±0.008 0.06±0.003 0.94±0.004 2673±188 0.89±0.006 0.05±0.003 0.93±0.004

6

0.05

0.3

4421±386 0.94±0.006 0.04±0.002 0.95±0.003 4799±333 0.93±0.005 0.04±0.002 0.94±0.004

0.10 2949±250 0.92±0.007 0.05±0.003 0.94±0.004 3203±227 0.91±0.006 0.04±0.002 0.94±0.004

0.15 2250±185 0.91±0.007 0.05±0.003 0.94±0.004 2460±172 0.89±0.006 0.05±0.002 0.93±0.004

0.20 1859±149 0.90±0.007 0.06±0.003 0.93±0.005 2030±139 0.88±0.006 0.05±0.003 0.93±0.004

0.25 1611±126 0.89±0.008 0.06±0.003 0.93±0.005 1750±118 0.87±0.007 0.05±0.003 0.92±0.005

2

0.1 0.2

3097±296 0.89±0.009 0.05±0.003 0.94±0.004 3362±259 0.87±0.008 0.05±0.003 0.93±0.005

3 3286±309 0.91±0.008 0.05±0.003 0.95±0.004 3558±271 0.89±0.007 0.04±0.002 0.94±0.004

4 3481±311 0.92±0.008 0.05±0.002 0.95±0.004 3757±278 0.91±0.006 0.04±0.002 0.94±0.004

5 3741±330 0.94±0.006 0.04±0.002 0.95±0.003 4000±293 0.92±0.006 0.04±0.002 0.94±0.004

6 3957±341 0.94±0.006 0.04±0.002 0.95±0.003 4203±302 0.93±0.005 0.04±0.002 0.95±0.003

Table 7.1: Effect of parameters on number of superpixels (#SP), boundary recall
(REC), undersegmentation error (UE), and explained variation (EV): mean ± 95%
confidence interval.

7.5 Summary

In this chapter, we presented a framework for oversegmentation of point cloud
data. Ensuring the high quality of RGB-D image segmentation is important in
applications that require precise object boundaries, e.g., manipulation, since any
segmentation errors propagate through the whole image processing pipeline and
cannot be corrected in later processing stages. Motivated by this observation, we
propose to apply visual saliency to guide the oversegmentation of an RGB-D im-
age. More supervoxels are generated in highly salient regions that are likely to
contain objects, while fewer supervoxels are generated in low-saliency background
regions. Our approach preserves object boundaries significantly better than a cur-
rent state-of-the-art supervoxel method, which generates supervoxels uniformly
over the whole scene.

Apart from visual saliency, other priors such as edge information and surface
normal can also guide the adaptive seeding process. Moreover, it is interesting
to investigate how to integrate the over-segmentation method with the recently
developed CNN based semantic segmentation method. The CNN-based methods
typically use only color information and require a large amount of annotated train-
ing data. Combining both nonlearning and learning approaches can potentially lead
to a framework that relies less on annotated data and also performs well.
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Chapter 7. SSV

Figure 7.5: A qualitative comparison of SSV and VCCS for NYU2 (top 2 rows)
and SUNRGBD (bottom 2 rows) datasets. From left to right: input image, saliency
map, result of k-means clustering, supervoxels from VCCS, and our SSV super-
voxels projected to the 2D image plane.

As mentioned in Section 1.2, For CloudPose and CloudAAE, the accuracy of
object segmentation affects the accuracy of 6D pose estimation. A clean object seg-
ment without any foreground or background noise makes the pose estimation task
much easier. For all the experiment we conducted for CloudPose and CloudAAE,
we used a deep learning-based semantic segmentation for segmenting the target
object. Because it is a color-based segmentation, the resulting object segments
sometimes contain pixels that are physically far away from the object. Since SSV
is a depth-based segmentation, it can be used to remove the noisy pixels by us-
ing the 3D pixel coordinates. However, attempting to use a non-learning-based
3D segmentation to improve a learning-based 2D segmentation is not the most
practical approach. An alternative to achieve this improvement is directly using a
learning-based 3D segmentation.
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Chapter 8

A Case Study in In-hand Pose
Estimation

So far, we have introduced two methods on estimating 6D object poses from point
clouds (Chapter 4, 5), one method on point cloud-based data synthesizing (Chap-
ter 6), and one method on oversegmenting point clouds using both color and depth
information (Chapter 7). As mentioned in Section 1.1.2, out of the many challenges
of the 6D object pose estimation problem, one of our focuses is on decreasing the
difficulty level of integrating our pose estimation system in real-world applications.
In this chapter, we adapt the presented contributions for a real-world application.

We are interested in the task of in-hand object pose estimation. The “hand”
in our case is referred to as the human hand. In-hand object pose estimation is
to estimate the pose of a target object when it is held by a human hand [45].
Figure 8.1(a) shows an example of a mustard bottle in a human hand. This in-
human-hand object pose estimation is an important prerequest for applications
such as human-robot handover. Comparing to the table top scenario in the YCBV
dataset 8.1(b), those two scenarios are similar in the sense that those mustard
bottles are both occluded by either the human hand or foreground objects. One
main difference is that the range of the target object pose in the human hand can
be more diverse, hence, more challenging. Overall, the usefulness of the application,
as well as the shared similarity and increased level of challenge make in-hand object
pose estimation an interesting case to investigate.

In this chapter, we will use CloudSyn to create synthetic training data and train
a CloudAAE network for the task of in-hand object pose estimation. Afterwards, we
will collect real-world test data for testing the trained CloudAAE. The overview
of this application is presented in Section 8.1. The detailed data collection and
generation methods and the pose estimation system are presented in Section 8.2.
Section 8.3 presents the experiment results. Section 8.4 concludes this chapter.
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Chapter 8. A Case Study in In-hand Pose Estimation

(a) The mustard bottle in a human
hand (HOnnotate dataset [45])

(b) The mustard bottle on a table top
(YCBV dataset [139])

Figure 8.1: Scenario for in-hand object pose estimation (a) and table top object
pose estimation (b).
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Figure 8.2: Overview of the real world experiment.

8.1 Overview

The overview of the real-world application experiment is illustrated in Figure 8.2.
In general, there are three steps: the first step is to decide on a target workspace;
the second is to collect the required data from the target workspace and create
the synthesized training data using CloudSyn; the last step is to train a pose
estimation system CloudAAE with the synthesized data. A target workspace means
a particular real-world setup that may contain, e.g., a robot and a table, and a
camera, either mounted on the robotic hand or on the side, viewing the whole
workspace.

In the data collection and generation block, we prepare the required component
for data generation with CloudSyn. As it is illustrated in Figure 8.2, the only data
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8.2. Data Preparation

Kinect
V2

Figure 8.3: Setup of the real world experiment.

to be collected from the target workspace is the translation space. Details regarding
the translation space collection are presented in Section 8.2.1. To ease the process
of data collection and ensure good coverage in the rotation space, the rotation
space is to be selected according to specific heuristics. Details for determining
the rotation space are presented in Section 8.2.2. The object models and human
hand models are directly obtained from the corresponding data sets. To prepare
the object and hand models for data generation, the relative positions should be
determined. This process is described in Section 8.2.3.

After deciding the relative poses between object and human hand models, the
poses from prepared rotation and translation space are used for transforming the
object and hand models. The process from here on is the same as the data synthesis
pipeline CloudSyn presented in Chapter 6 (Section 8.2.4). Finally, the generated
data is used to train the pose estimation system CloudAAE (Section 8.3.1). During
the testing phase, the target human hand and object are roughly segmented and
fed into a trained network for pose estimation. This is described in Section 8.3.2.

8.2 Data Preparation

In this section, we describe the details regarding data preparation during the train-
ing phase. The experiment setup is shown in Figure 8.3. We use a Kinect V2
camera to view a workspace containing a table and a robotic arm. This is the
target workspace used for data collection. Section 8.2.1 and 8.2.2 describe how the
translation and rotation space are obtained. Section 8.2.3 describes how to decide
the relative pose between the human hand and object models. Section 8.2.4 de-
scribes how those components are used in the data synthesis pipeline for training
a CloudAAE network.
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Chapter 8. A Case Study in In-hand Pose Estimation

8.2.1 Translation Space Collection

We use AprilTag [95] to collect the range of the translation space. AprilTag is a
visual fiducial marker that uses a 2D bar code style and allows full 6-DoF localiza-
tion of the target tag from a single image [95]. Figure 8.4(a) shows an example of
the AprilTag attached to a box, and we use this for pose collection. Since we are
only interested in collecting the 3D translation poses from the workspace, we opt
for this simple approach. Another option is to attach one or several AprilTags on
the target object for pose collection. However, since many target object such as the
power drill has mostly curvy surfaces, the attached AprilTags should be placed on
hard plastic pieces or cardboard to avoid deformation. This is significantly more
complicated than printing the tag on paper and attach it to a box. Furthermore,
this would require attaching the tags to each target object which further increases
data preparation complexity.

Figure 8.4(b) shows the collected translation and the work space presented in
3D point clouds. We show the AprilTag at various locations in the workspace to the
camera C and plot the detected translation in blue dots. Furthermore, we denote
the robotic arm, wall, and table in the workspace. The goal of the translation
collection is to roughly cover the application space and the boundaries that define
the space.

After collecting the translation range, we calculate the kernel density estimate
of the collected poses. Afterwards, we draw a number of samples from the den-
sity estimation. This process is illustrated in Figure 8.5(a), where the collected
translation is denoted in blue and the sampled translation is denoted in magenta.
Figure 8.5(a) shows the collected and sampled translations in the work space from
different views. It can be seen that the sampled pose provides a good coverage of
the desired workspace.

8.2.2 Rotation Space Selection

In this experiment, we decided that the rotation space is not related to the data
collection process and should be selected based on some heuristics. The main reason
is that compared to translation collection, it is challenging to have good coverage
of the target rotation space during data collection. The target translation space is
well-defined by the workspace setup, e.g., the translation space should be above
the table rather than under the table. In comparison, the target rotation space
is set by the user, and theoretically, it can contain any arbitrary 3D rotations.
Another reason is that due to self-occlusion, the AprilTag can not be fully viewed
by the scene camera in certain 3D rotations; hence the corresponding poses cannot
be detected.

Ideally, the selection procedure should be as easy as possible so that the cost of
generating synthetic data is low. The easiest choice would be random samples from
the 3D rotation space. As it is described in Section 2.2, a 3D rotation can be repre-
sented by a unit vector ê ∈ R3 and a scalar θ ∈ R. Therefore, we randomly sample
a unit vector ê and a scalar θ ∈ [0, π). The reason that π is excluded is because
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(a) An AprilTag
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(b) Collected translation

Figure 8.4: Translation collection.(a) The example of an AprilTag. (b) Illustration
of collected translation.
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Figure 8.5: Translation sampling.(a) Kernel density estimation. (b) Illustration of
sampled translation.
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Figure 8.6: Example of 3D rotations. (a) If two rotation directions are antipodal
and the rotation angles are both π, they result in the same rotation. (b) If two
rotation directions are antipodal but the rotation angles are less than π, they
result in different rotations. (c) If two rotation directions are not antipodal and
the rotation angles are less than π, they result in different rotations.

the resulting 3D rotation corresponds to two different axis angle representations θê
and -θê. This may potentially lead to creating two identical object segments with
two different 3D pose annotations. This is not desired since the pose network is
learning a one-to-one mapping from the input to the output. Figure 8.6(a) shows
a corresponding example. The two rotations are denoted with the colored dot in a
sphere with a radius of π. They have the same amount of rotation (π) but different
unit vectors. However, as shown, those two axis-angle representations result in the
same 3D rotation for the target object. Figure 8.6(b) and 8.6(c) show two other
examples where the rotation angle is less than π. In this case, two opposite rotation
axes result in two different 3D rotations and can be used for network training.
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(a) BigHand (b) Object and hand model

Figure 8.7: Examples of object and hand models. (a) Examples of hand model
from the BigHand data set. (b) One example of object and hand model in three
different views.

8.2.3 Object and Human Hand Model

To create a synthesized data set for in-hand object pose estimation, we need the
object model and the human hand model. Since we use the object from the YCB
video dataset, the object model can be obtained from the same data set. The human
hand model is obtained from the “BigHand” data set [146]. Figure 8.7(a) shows
four examples of the human hand model in the BigHand data set. In general, those
hand models are human hands in various poses and captured by a depth camera.

The relative position between the hand model and the object model must be
determined for synthesizing data. This requires some handcrafting according to the
object model dimensions. Figure 8.7(b) shows an example that mimics the scenario
of a human hand holding a power drill by the handle. We show this example in three
different views. Although the poses of the finger positions are not very realistic,
it roughly simulates the desired object-in-hand scenario. In general, it is a decent
synthetic example generated at very low cost. To add more variance to the relative
pose between object and hand models, we also generate other instances where the
human hand is positioned at a different part of the drill, as shown in Figure 8.8.
Figure 8.8(a) shows an example of the human hand “holding” the head of the drill,
and Figure 8.8(b) shows an example of the human hand “holding” the bottom part
of the drill.

So far, we have only shown those cases where both the hand shape and the
relative poses produce examples that rather highly resemble the real scenario.
However, this is not always the case. There are also unrealistic samples, as shown
in Figure 8.9. The main reasons for those unrealistic examples are the undesired
pose of the hand model as well as the relative pose between the hand and the
object. In general, we are able to generate the hand and object data at a very low
cost, and we expect the large amount of data being able to compensate for the
impact of the low-quality synthetic data.
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(a) (b)

Figure 8.8: Two examples of object and hand models in three different views.
(a) Human hand “holding” the head of the drill. (b) Human hand “hodling” the
bottom part of the drill

Figure 8.9: Some examples of unrealistic positions.
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Figure 8.10: Data generation pipeline adapted for in-hand object pose estimation.

8.2.4 Data Generation

So far, we have the 3D translation space obtained by data collection, the 3D
rotation space from selection, and the relative poses between the object and hand
model. Now we can draw a 3D translation t and 3D rotation R as depicted in
Figure 6.5. We denote the point cloud containing the hand and object model
as PO. Following the data synthesizing pipeline, the next step is to apply the
transformation xCi = RxOi + t to each point xOi ∈ PO to obtain PC = {xCi ∈
R3 | i = 1, 2, . . . , n}. Then, hidden point removal and Gaussian noise are applied
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to PC to obtain the final object segment PC
occ for training. Figure 8.10 illustrates

this pipeline. The final segment PC
occ is normalized and fed into a network with the

structure of CloudAAE (Chapter 5). The color code illustrated in Figure 8.10 is
only for visualization. All points are treated as the object point during training.

The data generation process takes around 19 minutes for generating 10, 000
training samples. Each training sample contains the 3D coordinates of 256 points,
the 3D translation, the 3D rotation, and the object class information. The 10, 000
samples in total take approximately 30 MB of storage. We generate 30, 000 training
samples and train the network for 100 epochs. The training takes 3 hours on an
Nvidia Titan X GPU.

8.3 Experiment

In this section, we present how a trained network is used during the testing phase
and the results of the experiments. We present the training results in Section 8.3.1.
We describe how to obtain test data that is similar to our synthetic training data
in Section 8.3.2. The test results are shown and discussed in Section 8.3.3.

8.3.1 Network Training

We train a network for the object power drill from the YCB video dataset. Fig-
ure 8.11 shows the training losses in red. The general trend of losses decreases
during training, and all losses converged at the end of the training.

Figure 8.12 shows some visualization of the training results. We transform the
input training segment (red) with the predicted 6D poses and overlay it with the
object model (green) (Figure 8.12(a)). The corresponding object reconstructions
(blue) are presented in Figure 8.12(b). Together with the training loss and visual-
ization, it can be seen that the network learned how to regress to an accurate 6D
pose after training.

8.3.2 Test Data

During testing, a human is holding the target object in the workspace, and a camera
is used to capture the scene. To obtain the segmentation of the human hand and
object, we leverage the recently developed semantic segmentation network [150]
trained on the EgoHands dataset [5]. By detecting the hand region on the RGB
image, we are able to crop the image region containing both the hand and object.

Figure 8.13 shows some examples of segmented hand and object. Due to the
inaccurate calibration between the color and depth images, the presented examples
show a mismatch between the color and depth information. However, this is not
a problem for testing our system since we use only the depth information. We
use the segmented hand and object point clouds as the input to our trained pose
estimation system.
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(c) Reconstruction loss

Figure 8.11: Training losses.

8.3.3 In-hand Object Pose Estimation

We show some preliminary testing results for this application. Since we do not
have annotations of ground truth 6D objects for the test data, we evaluate our
results by visual inspection. We transform the input segments with predicted 6D
poses and inspect how they are overlaid with the object models. Figure 8.14 shows
examples of the results. The colored point cloud segments are the input, and the
object model is shown in green points. Those results are after ICP pose refinement.
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(a) Overlaying the transformed input training segment (red) with the object model (green).

(b) Input segment (red) and object reconstruction (blue)

Figure 8.12: Visualization of training results.

Figure 8.13: Examples of segmented hand and object during testing.

Figure 8.14: Examples of the testing result for including hand segments.
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(a) Original seg-
ment with color.

(b) Downsampled
segment with hand.

(c) Downsampled
segment without
hand.

Figure 8.15: Examples of the test segment with and without the human hand.

Figure 8.16: Examples of the testing result for excluding hand segments.

(a) Test data. (b) Train data.

Figure 8.17: Illustration of wavy noise in test data.

It can be seen that the pose estimation results are far from being accurate. The
translation estimates are marginally acceptable, but the rotation estimates are not
accurate.

Since the test result for in-hand object pose estimation is not good, we attempt
to simplify the task by excluding the hand segment in both training and testing
phase. Figure 8.15 show an example of an original test segment, and its correspond-
ing downsampled version with and without the hand segment. The training losses
are shown in blue in Figure 8.11. And the test results are shown in Figure 8.16.
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It can be seen that the test results similar and the rotation estimates are still not
acceptable.

One possible reason for this inaccurate estimation is the visual reality gap
between the synthetic data and the real testing data. As we observed, the test
data has some noise in the depth data, and the surfaces of the object regions
with black color present a wavy structure. Figure 8.17 shows an illustration of
this observation. Since the object model, we used to generate training data has
a very smooth surface and only a small amount of Gaussian noise is added per
point, the training segments still represent smooth surfaces. Figure 8.17(b) shows
a training example. Although CloudAAE is expected to be robust against noisy
data, this robustness depends on the amount of per point noise augmentation
for the data synthesis process. Increasing the amount of Gaussian noise when
generating training data could potentially improve the performance. Another idea
for bridging this visual reality gap is to create a 3D object model of the object with
the Kinect camera and use this model for data synthesis. In this way, the sensor
noise is contained in both the training and testing data. Thus the visual reality
gap becomes much smaller.

8.4 Summary

In this chapter we adapted our data synthesis pipeline CloudSyn and augmented
autoencoder based 6D pose estimator CloudAAE for an in-hand object pose esti-
mation application. We use the object models from the YCB video dataset and the
human hand models from the BigHand dataset for creating synthetic data. The
translation space is determined by recording the workspace boundaries using an
AprilTag. The rotation space is selected from the full 3D rotation space. We train
a CloudAAE network with synthetic data and test it with real test data collected
from the same workspace. As preliminary results we inspect the pose estimation
accuracy with a visual inspection.

The data synthesizing and training takes around 4 hours in total. This shows
that our system is easy to adapt and lightweight in training. This is desired in
real-life experiments as it iterates fast and allows rapid development. However, the
preliminary results are not satisfying, and there is still room for improvement.

As mentioned above, the visual reality gap still seems to be the main reason.
This can potentially be mitigated by either using a depth camera with better
depth quality or making the synthetic human hand more realistic. Another open
question is the selection of the rotation space. In this experiment, we only tested
on the object power drill, which is not a rotational symmetric object. In this case,
using the full 3D rotation space does not cause ambiguity during the training.
However, there are objects with rotational symmetry structures, thus the rotation
space should be selected accordingly to avoid sending mixed error signals during the
training process. We also would like to point out that, rather than visual inspection,
the system can also be evaluated on a downstream robot-human hand-over task.
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Chapter 9

Conclusion

In this thesis, we have presented several contributions mainly to the field of 6D
object pose estimation and one contribution to the field of oversegmentation. In
this chapter, we will summarize the contributions in Section 9.1. Furthermore, we
will discuss the strengths and limitations in Section 9.2. We will touch on the
potential future work directions in Section 9.3.

9.1 Summary

At the beginning of this thesis research, we noticed that existing methods in the
field of pose estimation mainly rely on color for estimating object poses. In compar-
ison, the depth information was often ignored or regarded as auxiliary information.
This motivated us to investigate the depth information and see how it can con-
tribute to 6D object pose estimation. We want to affirm that it is most beneficial
to use data from multiple modalities in a system because each modality has its
own advantages. The caveat is that each modality should be used appropriately to
exploit its strengths and avoid its weaknesses. Hence, this was another motivation
for us to investigate depth information in-depth.

The first contribution is CloudPose, which is a point cloud-based system for 6D
object pose regression. Since it was the first work on 6D object pose regression from
depth information, we mainly revisited four fundamental aspects for designing the
system. We made four main findings in this work. Firstly, we chose point cloud as
the appropriate depth representation because it contains the full 3D information.
Secondly, since the 3D rotation and 3D translation were inherently two different
metrics, it was reasonable to regress them with separate networks. Thirdly, we
argued that because axis-angle was a constraint-free rotation representation, it was
the most suitable regression target in a supervised learning framework. Lastly, a
proper distance measure for rotation loss was the Geodesic distance. Experimental
results showed that our network was structurally simple but performed well and
achieved the state-of-the-art performance on the largest dataset.

The second contribution is CloudAAE. During the evaluation of CloudPose, we
noticed that it was susceptible to noisy depth data. One possible reason was the
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information sparsity in the input data. Since the input data had approximately
6000 dimensions while the output had only 6 dimensions, the pose data was very
sparsely encoded in the input data. This made it difficult for CloudPose to ex-
tract the essential information about the object pose. Hence, we decided to use an
autoencoder based structure for dimension reduction and information distillation.
We proposed CloudAAE, for which we adapted an existing augmented autoencoder
idea for a point cloud-based system. By inputting a noisy and occluded point cloud
segment and reconstructing a noise and occlusion free point cloud segment at the
same 6D pose, we learned a low-dimensional latent code that explicitly encoded
the pose information. This latent code was used as input to two separate networks
for rotation and translation regression, respectively. Experimental results showed
that this structure was more resistant to noisy input data and can produce better
pose estimation results.

The third contribuction is CloudSyn. Since the two systems mentioned above
relied on supervised learning, they needed a large amount of annotated data for
training. Due to the high cost of annotating 6D object pose on real-world data, it
was preferred to generate synthetic training data. Existing data generation meth-
ods were mainly color-based, and it was relatively expensive to bridge the visual
reality gap. Since we had shown that we could regress the accurate object pose
from depth information, we would also like to have a depth-based data generation
pipeline. A major advantage of this was the low cost of data generation, thanks
to the small visual reality gap for depth information. To this end, we presented
CloudSyn, which was a point cloud-based pipeline for synthesizing training data.
The required inputs were a texture-less 3D object model and a 6D pose drawn
from the desired pose spaces. After transforming the object model to the desired
6D pose, spherical occluders were added between the object model and camera cen-
ter for simulating external occlusions. We used hidden point removal and added
per point noise to generate the final synthesized point cloud segment. By com-
bining CloudSyn with CloudAAE, we could fully utilize the “augmented” aspect
of CloudAAE since CloudSyn provided data augmentation that we would like
CloudAAE to learn and to ignore. CloudSyn was cheap and fast, and its synthetic
data could be used to train CloudAAE to achieve the state-of-the-art performance
on the LineMOD dataset.

The fourth contribution is SSV, which is short for saliency-guided adaptive
seeding for supervoxel segmentation. So far, we have assumed that the target object
segmentation is available to be used as the input to our pose estimation systems.
Practically, the segments can easily be obtained using off-the-shelf CNN-based se-
mantic segmentation methods. During evaluating CloudPose and CloudAAE, we
noticed that the quality of the segment had an impact on the system performance.
Specifically, a clean segment without incorrectly segmented background fragments
would lead to a more accurate pose estimate. Since the CNN-based semantic seg-
mentation methods are usually using only color information, they sometimes mis-
takenly include background fragments. This can potentially be trimmed with the
help of depth-based segmentation. To this end, we present SSV, a point cloud
over-segmentation framework with saliency-guided adaptive seeding. We used vi-
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sual saliency from color information to guide the initial seeding process and put
denser seeds in more salient regions while coarser seeds are used in less salient
regions. This resulted in smaller supervoxels in more salient regions and bigger su-
pervoxels in less salient regions. Experimental results showed that this could better
preserve the object boundaries while allowing more accurate object segmentation.

So far, we evaluated our system with datasets containing tabletop scenarios.
To examine whether our pose estimation and data generation systems could be
easily adapted for a slightly different but very relevant task, we presented a case
study for a real-world in-hand object pose estimation application. We combined
CloudSyn and CloudAAE for this task. We adapted CloudSyn to generate in-
hand object pose estimation training data. We trained CloudAAE with synthetic
data and tested it with real-world data. Although the preliminary results were not
satisfying, the implementation process showed that our system was easy to adapt
and lightweight in training. This is desired in real-life experiments as it iterates
fast and allows rapid development.

Recall from Section 1.1.2, where we stated that we would like to focus on de-
veloping a lightweight system with a good ability to scale up to many objects. The
multi-class system nature of CloudPose and CloudAAE makes them suitable for
handling a number of objects with the same network while maintaining a good pose
estimation accuracy. CloudSyn also helps reducing the difficulty level of applying a
pose estimation system in real-world scenarios. While there is still plenty of room
for improvement in performance, we believe this thesis help to take a concrete step
in the right direction.

9.2 Strengths and Limitations

While maintaining good performance accuracy on public benchmarks, one of our
systems’ main strengths is that they are generally lightweight. For example, to train
a network with CloudPose structure for 21 target objects takes around 22 hours
on an Nvidia Titan X GPU. This is a very short training time on a single GPU
for a deep learning-based system. This enables other researchers who have limited
GPU resources to test and retrain the system easily and enables faster research
iterations. The main reason for our systems being lightweight is that they generally
have very simple structures. For example, the main component of CloudPose is
two separate networks that directly regress 3D rotation and 3D translation from
a point cloud segment. This leads to the second strength that it is relatively easy
to investigate the system’s explainability by directly looking at the points that
contribute to the pose estimation. This is done by visualizing the active points
that the networks used for estimating 6D poses, as presented in Section 4.5.5. This
is an important path towards safe and robust systems. The third advantage is that
we can generate a large amount of training data at a very low time and hardware
storage cost with CloudSyn. This low cost also enables fast research iterations when
applying our methods to estimate the pose of, for example, a set of new objects.
The fourth advantage is that since our pose inference stage only uses depth data,
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our methods are more robust to illumination changes than methods that rely on
RGB information.

The simplicity of the system not only accompanies with strengths but also
comes with some limitations. The main limitation is that our systems do not use
color information. Although color information usually comes with challenges such
as illumination vulnerability and a large visual-reality gap, it undoubtedly has
many advantages. With its compact matrix format, it provides rich texture infor-
mation that depth information fails to capture. Moreover, it has been shown in
many visual recognition fields that deep CNNs can extract useful features at differ-
ent abstract levels from color information. It can also be seen from the experimental
results that the state-of-the-art methods use both color and depth information to
achieve good performance. In comparison, using only depth information seems to
hit a glass ceiling on the performance scores. Another limitation is that a depth
sensor is required to capture the depth data. Although depth sensors are very
popular nowadays, they are still less prevalent than RGB cameras.

9.3 Future Work

This work could be extended in several aspects, and we will mainly discuss two
aspects in this section. The first is from the data modality aspect. Till this point,
we have much experience of deep learning on depth data, and it is time to merge the
power of depth with other data modalities such as color (Section 9.3.1). The second
aspect is from the problem of 6D pose estimation. One of the challenges mentioned
in Section 1.1.2 is the pose ambiguity of rotational symmetric objects. Since our
method employs only depth information, it can potentially be used to investigate
the pose ambiguity with purely geometric information. Detailed descriptions are
in Section 9.3.2.

9.3.1 Multimodal Data

One obvious and essential future extension is to add color as another modality.
The key to using multimodal data is how to fuse them. So far, there are a handful
of RGB-D based methods [131, 49] that have a data fusion procedure. The fusion
strategy they use is simple concatenation, and this already gives very good testing
results on the public datasets. On the other hand, more complicated depth and
color fusion strategies were proposed in other fields such as RGB-D salient object
detection [81] and cross-modality person re-identification [85]. It would be inter-
esting to integrate those more sophisticated data fusion methods into 6D object
pose estimation.

However, one problem with this is that the datasets for 6D pose estimation are
close to being “solved”. The recent state-of-the-art method PVN3D [49] achieves
99.4% accuracy on the LM dataset and 96.1% on the YCBV dataset. Since a simple
strategy can already achieve such good performance on those datasets, they are not
suitable to measure improvement using a more complicated fusion strategy. One
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Figure 9.1: Illustration of an audio-visual task. Figure adapted from [11]. The
visual input is an example from the BIWI dataset [29].

solution to this is to have a more challenging dataset for this purpose. Another
potentially more fruitful approach is to use our knowledge on depth-based deep
learning in other relevant robot vision fields. One interesting field is 3D object
detection [153], which is also an important research topic in robot vision. The main
difference between 3D object detection and 6D object pose estimation is that the
former deals with unknown objects while the latter deals with known objects. The
current state-of-the-art performance on benchmark dataset KITTI [40] is around
70% in the hard category. This shows that there is still much room for improvement
and the benchmark still has the capacity to capture those improvements. In general,
we can keep gaining more experience regarding depth-based deep learning and have
suitable datasets to measure the performance gain of those new systems.

Apart from purely vision-related tasks, this thesis work can also be deployed
in audio-visual tasks. For example, knowing the speaker’s head pose is helpful for
speech recognition [7] and speech acquisition [113]. Hence, we can adapt our object
pose estimation system into a human head pose estimation system and combine
it with an audio branch for tasks such as speech recognition. Figure 9.1 shows
an illustration. The audio branch is used for processing the audio input, while the
visual branch is used for processing the visual input. The output from two branches
can be used for various audio-visual tasks. Similarly, our object pose estimation
system can also be combined with other data modalities such as tactile data for
the robotic grasping task [18]. In general, the work in this thesis can be extended
in many ways in the scope of using multimodal data.

9.3.2 Pose Ambiguity

The pose ambiguity problem in a learning system arises from the pose labels that
are annotated based on the pre-defined object coordinates. However, for rotational
symmetric objects, different object coordinate poses can correspond to the same
object appearances. For a deep learning system, the same object appearances mean
the same network input. When training a network with the same inputs correspond-
ing to two different pose labels, the network receives mixed training signals and
may have trouble with convergence.

The existing works on pose ambiguity are mainly based on color informa-
tion [21, 100]. This renders the pose ambiguity problem ill-posed because object
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Figure 9.2: Illustration of object rotation with and without texture.

symmetry is a property of geometric shape rather than texture. Figure 9.2 shows
an illustration. For the texture-less rectangular object, when rotating 180◦ around
its y-axis, the resulting object has the same appearance because of its symmet-
ric shape. For the textured rectangle, shown with the red and blue texture, the
same rotation will result in the object with a different appearance in a different
pose. Theoretically, for color-based approaches, this would not cause ambiguous
training signals. Hence, the problem of pose ambiguity does not fully present itself
in color-based approaches. In contrast, this problem fully occurs in depth-based
approaches, and it is more suitable to be investigated with depth-based approaches.

In general, if the above-mentioned extensions are integrated into either Cloud-
Pose or CloudAAE, it is very likely that a robot can bring you the morning coffee
smoothly. Moreover, if the problem of 6D object pose estimation is solved, and
hopefully the same for robotic grasping and dexterous manipulation, then a robot
can also bring you a self-made breakfast along with the coffee. Let’s fast forward
to the year 2050, while you are enjoying the morning coffee and breakfast served
by your newly purchased household robot, you might be thinking: “What a time
to be alive!”
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Appendix A

Basics of Point Cloud and 3D
Rotation

The aim of this chapter is to provide the reader with some basic information on
point cloud and 3D rotations. Regarding the point cloud, we explain how a point
cloud can be obtained from intrinsic camera parameters and the corresponding
depth image. Regarding the 3D rotations, we describe the details regarding the 3D
rotation group and the conversion among different rotation representations.

Section A.1 introduces the relationship between depth images and point clouds.
It starts with introducing the pinhole camera model (A.1.1), then moving on to ex-
plain depth sensing technology and depth images (A.1.2). Afterwards, it describes
how to obtain point clouds from depth images using the pinhole camera model
(A.1.3). Section A.2 introduces the 3D rotation group, as well as the conversions
among commonly used rotation representations.

A.1 Depth Map and Point Cloud

A 2D color image is created by projecting the 3D world to a 2D plane using a
camera. During this projection, the scene appearance is well preserved by the color
information. However, this projection causes the loss of physical distance data,
which contains information such as the physical size and position of an object in the
scene. Without those information, a robot can not interact with its surroundings
properly. Luckily, a depth map contains the distance information. If knowing the
details about the camera which is used for imaging, the full 3D world information
can be recovered from the depth map. Before delving into the details about depth
images, we first introduce the pinhole camera model which provides more insights
of the 2D-3D projection.

A.1.1 Pinhole Camera Model

The pinhole camera model is the simplest model of a camera [16]. Figure A.1(a)
shows an illustration of a pinhole camera. It can be depicted as simple as a box, of
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Figure A.1: An illustration of a pinhole camera.

which the front plane is the pinhole plane and the back plane is the image plane.
A pinhole is made in the center of the pinhole plane, and this pinhole is functioned
as the tiny aperture. From each point of the real world object on the right, there
is exactly one ray of light that travels from the physical point through the pinhole
and reaches the image plane. This is the process of project a 3D point onto a 2D
image plane.

From the pinhole camera, its model is derived (Figure A.1(b)) [16]. The distance
between the pinhole plane and the image plane is called the focal length, and it
is denoted as f . Assuming X is the object length, x is the object’s image on the
image plane, the relationship between X and x is

− x = f
X

Z
(A.1)

in which Z is the distance between the pinhole plane and the object.
For a more convenient and equivalent mathematical representation, the pinhole

camera model is rearranged by swapping the pinhole and the image plane, as
illustrated in Figure A.2. With the rearrange, the project object becomes right-
side up. The pinhole is now behind the image plane and it is referred as the center
of projection. The line from center of projection and it is perpendicular to the
image plane is the optical axis. The intersecting point between the optical axis
and the image plane is the principle point. The 3D world coordinate is denoted
with (̂i, ĵ, k̂) and the image coordinate is denoted with (û, v̂).

Ideally, the principle point should be the exact center of the image plane, in
practice this is usually not the case. Therefore, two parameters cx, cy are introduced
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Figure A.2: The pinhole camera model with equivalent and simpler math. A point
Q = (X, Y, Z) in the 3D space is projected onto the image plane.

to denote the displacement between the principal point and the image center. Also
ideally, there should be only one common focal length f , but due to non-squared
pixel, two focal lengths fx and fy are introduced. The parameters cx, cy and fx, fy
are the intrinsic parameters of this camera model.

Every optical ray starts from a 3D world point and reaches the center of pro-
jection. The intersecting point between this ray and the image plane is the 2D
projection of the 3D point. As shown in Figure A.2, the image projection coordi-
nates of the 3D point Q = (X, Y, Z) is calculated with

u = fx
X

Z
+ cx, v = fy

Y

Z
+ cy, (A.2)

assuming the intrinsic parameters are known.

A.1.2 Depth Map

A depth map is an image or image channel that contains the distance information
between a 3D point on a surface, and the image plane. More precisely, it contains
the distance information along the k̂ axis in Figure A.2. In this case, the projected
2D pixel for Q would contain the value of Z.

There are three commonly used approaches to acquire a depth map, as shown
in Figure A.3. The first is through stereo imaging (Figure A.3(a)). The basic idea
is emulating human stereo vision with a computational algorithm. Having a pair
of cameras perceiving a scene and returning a pair of left and right images, the
task of the algorithm is to solve the correspondence problem by finding the same
surface points in the left and right image [16]. Then, the depth of those points can
be calculated with triangulation. The distance between the two camera centers is
called the baseline, and it determines the field of view and the image resolution
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Figure A.3: Methods for acquiring depth maps.

(a) RGB image (b) Depth image

Figure A.4: A pair of RGB (left) and depth images (right).

of the system. The structured light system has a camera and a projector (Fig-
ure A.3(b)). The projector projects a known pattern with infrared light onto the
scene. The camera captures the deformation of the pattern on surfaces and the
depth information is calculated with triangulation. A time of flight system con-
tains a laser light source which functions as the emitter, and a camera sensor which
functions as the receiver (Figure A.3(c)). The laser source emits a light beam and
the camera sensor measures the time offset, when the beam is reflected back from
the object surface. In this way, the depth is measured directly.

An example of depth map is shown in Figure A.4(b). The distance of each pixel
is colored coded with gray scale values. The closer the object point is to the image
plane, the darker it is. Note that the black pixels denotes missing depth values, and
it is normal to observe “holes” in a depth image. The left image (Figure A.4(a))
is its corresponding color image. By appending the depth map to the color image,
a 4-channel RGB-D image is obtained.
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(a) Depth image (b) Point cloud

Figure A.5: A depth image (left) and its corresponding point cloud with color
(right). The colored dots denote the corresponding positions of image points and
point cloud points.

A.1.3 Point Cloud

Although a depth map contains the distance “Z” information for point Q (Fig-
ure A.2), it is desired to have the full (X, Y, Z) information for a complete 3D
perception. Referring to Figure A.2, this problem can be formulated with q and
Q. Assuming q is a pixel on a depth map with image coordinates (u, v), its value
is Z, which is the depth of 3D point Q, according to equation A.2, X and Y can
be obtained with

X =
Z

fx
(u− cx), Y =

Z

fy
(v − cy), (A.3)

with known camera intrinsics.
Figure A.5 shows an illustration of a depth image and the corresponding point

cloud. The colored dots denote the corresponding positions of image points and
point cloud points. The 3D information of each point in the point cloud is calculated
with the depth map and the camera intrinsic parameters, and the color information
is from the RGB color image.

A.2 The Lie Group SO(3)

This section provide descriptions on the Lie group and Lie algebra, and how they
are used for conversions among different rotation representations.

A.2.1 Lie Group and Lie Algebra

A 3D rotation is a linear transformation in R3, and it can be represented with a
real matrix. All rotation matrices form the group of SO(3), and it is defined [43]

SO(3) = {R ∈ R3×3 | RRT = I3×3, detR = 1}. (A.4)
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SO(3) is a compact Lie group which contains the 3-by-3 orthogonal matrices with
determinant +1.

The Lie group SO(3) is associated with the Lie algebra so(3), which is the
set of skew-symmetric 3-by-3 matrices. Those skew-symmetric matrices are the
elements of the tangent space of SO(3). Moreover, those matrices are viewed as
infinitesimal rotations, which are used to form any rotations in the group (also
referred as generators in literature) [34]. The basis of so(3) are three matrices [26]

G1 =

0 0 0

0 0 −1

0 1 0

 , G2 =

 0 0 1

0 0 0

−1 0 0

 , G3 =

0 −1 0

1 0 0

0 0 0

 (A.5)

An element of so(3) can be represented as a linear combination of those matrices:

w1G1 + w2G2 + w3G3 ∈ so(3) (A.6)

where w1, w2, w3 ∈ R.

A.2.2 Exponential Map and Logarithm Map

There are two important functions associated to SO(3) and so(3), namely the
exponential map and the logarithm map. Those two operations map the element
back and forth between so(3) and SO(3):

exp : so(3) 7→ SO(3) (A.7)

ln : SO(3) 7→ so(3) (A.8)

where exp denotes the exponential map and ln denotes the logarithm map.

We simplify the element in equation A.6 with w =
[
w1 w2 w3

]T
∈ R3. Its

corresponding skew-symmetric matrix w× is a linear combination of the generators

w× = w1G1 + w2G2 + w3G3 =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (A.9)

The exponential map is the matrix exponential of w×

exp(w×) = I3×3 +
sin θ

θ
w× +

1− cos θ

θ2
w2
×, (A.10)

where θ2 = wTw and θ = ‖w‖2.
Assuming R ∈ SO(3) and R = exp(w×), the exponential map can be inverted

with logarithm map [26]

θ = arccos

(
trace(R)− 1

2

)
(A.11)

ln(R) =
θ

2 sin(θ
(R−RT ) (A.12)

where w is the off-diagonal elements of ln(R). Figure A.6 shows an illustration of
the relationship between elements in SO(3) and so(3) spaces.
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Logarithm map

Exponential map

Figure A.6: Illustration of the relationship between elements in SO(3) and so(3)
spaces. From an element R in SO(3) represented by a manifold, the logarithm
map is used to find its correspondence w in so(3). And the exponential map is the
mapping from so(3) back to SO(3).

A.2.3 Rotation Representation Conversion

The conversion between rotation matrix and axis-angle representation can be done

with the exponential map and the logarithm map. Let r =
[
r1 r2 r3

]T
∈ R3

be an axis-angle representation of a rotation. It is in the Lie algebra so(3) and
the exponential map can be used to obtain the corresponding rotation matrix.
Equation A.9 and A.10 can be used to obtain its corresponding 3 × 3 rotation
matrix.

Now let R be a rotation matrix in the Lie group SO(3), and the logarithm map
can be used to map it to so(3). Equation A.11 and A.12 can be used to obtain its
corresponding axis-angle representation. Assuming r is the off-diagonal elements
of ln(R), the rotation angle is ‖r‖ and the rotation axis is unit vector r

‖r‖2
.

Given a quaternion q = q0 + q1î + q2ĵ + q3k̂, its corresponding rotation axis a
and rotation angle θ are

a = (ax, ay, az) =
(q1, q2, q3)√
q2

1 + q2
2 + q2

3

, (A.13)

θ = 2atan2(
√
q2

1 + q2
2 + q2

3, q0). (A.14)

The corresponding rotation matrix R is

R =

1− 2s(q2
2 + q2

3) 2s(q1q2 − q3q0) 2s(q1q3 + q2q0)

2s(q1q2 + q3q0) 1− 2s(q2
1 + q2

3) 2s(q2q3 + q1q0)

2s(q1q3 − q2q0) 2s(q2q3 + q1q0) 1− 2s(q2
1 + q2

2)

 (A.15)

where s = ‖q‖2.
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Nomenclature

Abbreviations

3D 3 degrees of freedom

6D, 6-DoF 6 degrees of freedom

ADD Average distance

ADD-S Average distance with symmetry

AAE Augmented autoencoder

AUC Area under the error threshold-accuracy curve

CAE Convolutional autoencoder

CNN Convolutional neural network

DAE Denoising autoencoder

EV Explained variation

FPS Farthest point sampling

HPR Hidden point removal

ICP Iterative closest point

KDE Kernel density estimate

LM LineMOD

LMO Occluded LineMOD

MLP Multi-layer perceptrons

NN Nearest neighbor

PBR Physically-based rendering

PPF Point pair features

REC Boundary recall
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RGB Red, green and blue

RGB-D Red, green, blue and depth

SSD Single shot detector

SVD Singular Value Decomposition

SIFT Scale-invariant feature transform descriptor

UE Undersegmentation error

VCCS Voxel Cloud Connectivity Segmentation

VGA Video graphics array

YCBV YCB video dataset

Frequently Used Symbols

PO Object model in object coordinate

PC Object segment in camera coordinate

R 3D rotation

t 3D translation
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Jǐŕı Matas, and Carsten Rother. BOP: Benchmark for 6D object pose es-
timation. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 19–34, 2018.
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