
Saliency-guided Adaptive Seeding for Supervoxel Segmentation

Ge Gao, Mikko Lauri, Jianwei Zhang and Simone Frintrop

Abstract— We propose a new saliency-guided method for
generating supervoxels in 3D space. Rather than using an evenly
distributed spatial seeding procedure, our method uses visual
saliency to guide the process of supervoxel generation. This
results in densely distributed, small, and precise supervoxels in
salient regions which often contain objects, and larger supervox-
els in less salient regions that often correspond to background.
Our approach largely improves the quality of the resulting
supervoxel segmentation in terms of boundary recall and under-
segmentation error on publicly available benchmarks.

I. INTRODUCTION

Superpixels are currently a popular way of grouping pixels
to larger entities and thus to strongly reduce the number of
primitives that subsequent modules have to deal with [21].
This is especially important in robotics scenarios, where
real-time constraints usually make the full interpretation of
high resolution image data unfeasible. A popular application
of superpixels is object discovery, where superpixels are
grouped to obtain object candidates which in turn are used
as input for object recognition methods [9], [10], [14]. Other
applications include automatic object handle grasping [20],
unknown object manipulation in cluttered environments [3],
and semantic segmentation [24].

Since superpixels serve as input to all further processing,
their quality has a significant impact on the quality of the
output [8]. For example, violating object boundaries will
introduce a permanent error into the processing pipeline
since all the following algorithms will be forced to use
superpixels which contain more than one object [16]. In
other words, if a single superpixel contains pixels belonging
to two distinct objects, the two objects can not be fully
distinguished in any subsequent processing step. The quality
of a set of superpixels can be assessed based on, e.g., their
adherence to object boundaries, compactness, smoothness,
and controllable number of superpixels [21]. Among these
qualities, boundary adherence is one of the most important
requirements due to the above mentioned reasons.

While dozens of superpixel algorithms exist that operate
on 2D images, see, e.g., [1], [4], [5], [22], [27] for some
examples, methods that analyze RGB-D data and generate so
called supervoxels are much less common. Among the few
methods that exploit depth, the Voxel Cloud Connectivity
Segmentation (VCCS) supervoxels presented by Papon et
al. [16] is probably the best known and most used method1.
VCCS oversegments a 3D point cloud into supervoxels by

The authors are with the Department of Informatics, University of Ham-
burg, 22527 Hamburg, Germany. E-mail: {gao, lauri, zhang,
frintrop}@informatik.uni-hamburg.de

1The code for VCCS is publicly available as part of the Point Cloud
Library (PCL).

Fig. 1. Visualization of supervoxel computation in a uniform manner
(left) and with our saliency-guided adaptive seeding method SSV (right).
Top: RGB image (left) and corresponding saliency map (right). Middle: 2D
projection of supervoxels of uniformly distributed supervoxels from VCCS
[16] (left) and of our SSV method (right). Bottom: 3D supervoxel clouds
for VCCS (left) and SSV (right).

applying a spatial seeding procedure that places the initial
supervoxel centroids on a regular grid. The main difficulty
of the method, as well as of other superpixel and supervoxel
methods, is to find an appropriate parameter setting that
defines a reasonable tradeoff between the number of super-
voxels and the precision. On one hand, obtaining a low num-
ber of large superpixels is favorable since this reduces the
computational burden of subsequent processing. On the other
hand, the superpixels should not be larger than the smallest
objects, otherwise these will not be properly segmented and
will be permanently lost in the further process [1].

We propose a supervoxel algorithm that, instead of seeding
the initial supervoxel centroids evenly spaced over the whole
input data, applies saliency-guided seeding as illustrated in
Fig. 1. To achieve this, we cluster the input data according to
visual saliency, assigning to each cluster a saliency-specific
seeding resolution. Highly salient regions will have a greater
density of seeds, and vice versa. This leads to small, precise
supervoxels in salient regions, and to large supervoxels in
less salient ones, for example on homogeneous background
surfaces (see e.g. the wall in Fig. 1, bottom right).

The idea is motivated by the fact that saliency highlights
regions that visually stick out of the image, i.e., they differ

according to some features — such as color, intensity, or
depth — from their background [6]. Thus, saliency is also
a good indicator for the presence of objects, since objects
also usually differ from their surroundings [14]. Here, this
property is especially useful since it enables us to obtain
a higher density of supervoxels in regions that probably
correspond to objects. We show that, with the same average
number of supervoxels per image as VCCS, we get a
clearly improved boundary recall, undersegmentation error,
and explained variation of the supervoxel segmentation. We
thus show that visual saliency provides a useful prior that
allows the segmentation to better respect object boundaries.

The organization of the paper is as follows. In Section II,
we review related work. In Section III, we give an overview
of our proposed method and details of each step. We evaluate
our method in Section IV on two publicly available datasets.
Section V gives concluding remarks.

II. BACKGROUND AND RELATED WORK

Following the classification of Stutz et al. [21], superpixel
methods can be classified into watershed-based [12], density-
based [22], graph-based [5], contour evolution [11], path-
based [7], clustering-based [1], [23] and energy optimization
methods [4], [27]. Among the most popular methods is the
Simple Linear Iterative Clustering (SLIC) superpixel method
[1] that applies local k-means clusterings of the image
pixels on a regular grid pattern over the entire image to
generate perceptually uniform superpixels. SLIC is appealing
since it is simple, fast, and has only two parameters that
must be controlled: the number of superpixels that shall
be generated and the compactness of the superpixels. Many
other superpixel and supervoxel methods follow the idea of
SLIC, e.g., [16], [23], and [26].

Few methods integrate depth data into the segmentation
process. The Depth-Adaptive Superpixels (DASP) [23] ex-
tend the iterative local clustering approach by introducing
the control of superpixel seed density based on depth in-
formation. Similarly, Yang et al. [26] enhance the superpixel
generation process using the depth difference between pixels
to prevent violating boundaries between objects of similar
color. They also use a local k-means clustering approach
with an eight-dimensional distance measure including color,
2D and 3D coordinates. Both methods can be classified as
2.5D, since they use depth to improve superpixel generation,
but do not create 3D supervoxels but rather 2D superpixels.

Instead, Voxel Cloud Connectivity Segmentation (VCCS)
[16] generates supervoxels from RGB-D data, while guaran-
teeing that all voxels within each supervoxel are spatially
connected. Similarly to SLIC and DASP, VCCS is also
a variant of iterative local clustering applied on a regular
lattice. However, VCCS also exploits the 3D geometry of
the scene and generates a full 3D supervoxel graph.

Our Saliency-guided Supervoxel (SSV) method is based
on VCCS, but instead of uniformly distributing the super-
voxels over the data, we use an adaptive seeding procedure
guided by saliency. Our results show that our method clearly

Fig. 2. System overview. First, the saliency system VOCUS2 [6] generates
a saliency map. The point cloud is partitioned into K clusters using k-means
on the saliency values, and each cluster k is assigned a seeding resolution
rk . The VCCS supervoxel segmentation method [16] is applied to each
cluster independently and the results are combined to form the final output.

improves the quality of the supervoxels according to several
evaluation metrics.

It should be mentioned that in the literature other methods
are also referred to as supervoxels, which use time instead
of space as the third dimension and are thus a type of video
segmentation [7], [25]. These methods are not applicable to
RGB-D point clouds since they usually require a solid 3D
volume of time and space as input. Thus, such methods are
not comparable with the supervoxel methods operating on
3D data from a sensor such as the Microsoft Kinect.

III. SALIENCY-GUIDED SUPERVOXEL
SEGMENTATION

In this section, we present Saliency-guided Supervox-
els (SSV), our algorithm for generating supervoxels using
saliency-guided adaptive seeding. SSV combines a visual
saliency model, a newly introduced saliency-guided adaptive
seeding approach and a supervoxel segmentation algorithm.

An overview of our algorithm is presented in Section III-
A. More details on the visual saliency model and super-
voxel computation are given in Sections III-B and III-C,
respectively. The adaptive seeding approach is described in
Section III-D.

A. System overview

As illustrated in Fig. 2, the input to SSV is an RGB-D
point cloud. During pre-processing, the RGB information is
passed to a visual saliency system, here VOCUS2 [6], to
generate a pixel-level saliency map. The pixel level saliency
map is segmented into K regions applying k-means. The

same segmentation is applied to partition the point cloud
into K clusters. The clusters are sorted in an ascending order
based on their average saliency values.

The supervoxel seed resolution is determined according
to the average saliency value: clusters with a higher average
saliency have denser seeding. As supervoxel method we use
VCCS [16], which is applied to the points in each cluster
independently. The results are merged to obtain the final
supervoxel segmentation. As setting K = 1 reduces our
method to be equivalent to VCCS, SSV may be viewed as
a generalization of VCCS.

B. Saliency model

To compute a pixel-level saliency map from the RGB
data, we use the computational visual saliency method
VOCUS2 [6]. VOCUS2 converts its input image into an
opponent-color space with intensity, red-green, and blue-
yellow color channels. Center-surround contrasts are then
computed on multiple scales by Difference-of-Gaussian fil-
ters operating on center and surround twin pyramids. Finally,
the saliency map is generated by fusing the contrast maps
across scales and channels using a simple arithmetic mean.

We use VOCUS2 since it is fast and has obtained good
results on several benchmarks. Furthermore, it does not have
a center-bias, which is important in robotic applications
since objects of interest are usually not in the center of
the image. Despite these considerations, any computational
visual saliency model could be applied in SSV.

C. Voxel cloud connectivity segmentation

VCCS is a supervoxel segmentation algorithm introduced
by Papon et al. [16]. VCCS first voxelizes the input RGB-D
point cloud by equally partitioning the 3D space using an
octree structure. The size of each voxel is defined by the
voxel resolution Rvoxel.

Supervoxel seeds are generated uniformly on a regular grid
with resolution Rseed that is much larger than Rvoxel. Higher
Rseed results in fewer supervoxels and vice versa. For each
occupied seed voxel, the nearest cloud voxel is selected as
an initial seed. Unoccupied seed voxels are discarded.

After selecting the initial seeds, a local clustering of voxels
is performed iteratively until all the voxels are assigned to
supervoxels. The clustering is performed in a 39 dimensional
feature space F = [x, y, z, L, a, b,FPFH1...33], where x, y, z
are spatial coordinates, L, a, b denote color in CIELab space,
and FPFH1...33 are the 33 elements of Fast Point Feature
Histogram [17]. Each voxel is assigned to the supervoxel to
whose centroid it has the smallest normalized distance

D =

√
λDc

2

m2
+

µDs
2

3Rseed
2 + εDHiK

2, (1)

where Dc is the Euclidean distance in CIELab color space,
Ds denotes the spatial distance, DHiK is the Histogram
Intersection Kernel of FPFH [2], m is a normalization
constant, and λ, µ and ε are the weights for each distance
such that λ+ µ+ ε = 1.

D. Saliency-guided adaptive seeding

For our saliency-guided supervoxel seeding, we first com-
pute a saliency map as described above. We then use k-means
to partition the pixel-level saliency map into K clusters. The
clusters are then sorted in ascending order according to the
average saliency of the pixels in each cluster.

To control the size of supervoxels, the minimum and
maximum seed resolution Rmin and Rmax, respectively, are
defined. The seed resolution rk for the k-th cluster is

rk = 10logRmax−(k−1)d, (2)

where the step size d is determined by

d = − logRmin − logRmax

K − 1
. (3)

By Eq. (2), regions with a high saliency are seeded densely
while less salient regions have a sparser seed distribution.

We apply VCCS (Section III-C) independently to each
cluster, using rk as the seed resolution Rseed for data in
cluster k. The final result is obtained by combining the
K supervoxelizations into a single multiple seed resolution
supervoxel representation. Fig. 3 shows an example super-
voxelization, with the VCCS result shown for comparison.

IV. EXPERIMENTAL RESULTS AND EVALUATION
We compare SSV against the current state-of-the-art su-

pervoxel method VCCS [16]. Although some 2.5D methods
such as DASP [23] could be adapted for the comparison, we
chose to compare only to VCCS since it shares with SSV the
key property that the generated supervoxels are guaranteed
to be spatially connected. This is important if the result is
to be applied, e.g., for robotic manipulation. The evaluation
procedure is described in Sec. IV-A, the datasets in Sec. IV-
B, and the experimental results in Sec. IV-C.

A. Evaluation framework

We compare SSV and VCCS using the superpixel bench-
marking tool2 of Stutz et al. [21]. The tool provides a plat-
form to evaluate the performance of superpixel algorithms
using common metrics such as boundary recall (REC), under-
segmentation error (UE), and explained variation (EV). The
benchmark tool evaluates supervoxel methods by projecting
each supervoxel back to the 2D image plane, and then
evaluating the result similarly as superpixel methods. This
is reasonable since most publicly available datasets provide
the ground truth only as a 2D image.

The notation we use in this section is as follows. Given
an input image I = {xj}Jj=1 with J pixels, we write S =
{Sn}Nn=1 to denote a segmentation of I into N superpixels,
and G = {Gm}Mm=1 to denote the M ground truth segments.

Boundary recall (REC) [13] assesses boundary adher-
ence by measuring the percentage of the superpixel edges
that fall within a certain range of an arbitrary ground truth
boundary. The range is defined as (2r + 1)2, with r =
0.0025×L where L is the image diagonal size [21]. Higher
boundary recall indicates a better boundary adherence.

2https://github.com/davidstutz/superpixel-benchmark

Fig. 3. Input image (left) and supervoxels obtained with VCCS (middle) and with our SSV method (right).

Undersegmentation error (UE) [11] measures the
amount of “leakage” of a segmentation S with respect to
the ground truth G:

UE(S,G) =
1

M

M∑
m=1

[∑
{n|Sn∩Gm 6=∅} |Sn|

]
− |Gm|

|Gm|
, (4)

where the leakage of superpixel Sn with respect to ground
truth Gm is represented by the inner term. Lower underseg-
mentation error demonstrates less leakage.

Explained variation (EV) [15] attempts to measure the
quality of a superpixel segmentation without relying on a
human-annotated ground truth. EV is defined as

EV(S) =

N∑
n=1
|Sn| (µ(Sn)− µ(I))2

J∑
j=1

(xj − µ(I))2
, (5)

where xj is the value for pixel j, µ(I) is the global pixel
mean and µ(Sn) is the mean value in superpixel n. EV is the
proportion of variation that can be explained by superpixel
segments. A higher EV indicates better performance.

B. Datasets

We evaluate on the NYUV2 [18] and SUNRGBD [19]
datasets. NYUV2 contains 1449 color images with associated
depth information. The data are collected applying Microsoft
Kinect v1, and depict varying indoor scenes. We use the
test set of 399 randomly chosen images specified in the
superpixel benchmark to evaluate our method. We tuned the
parameters of our method on a disjoint set of training images
from this dataset.

SUNRGBD has 10335 images of cluttered indoor scenes,
with color and depth information. The dataset contains
images collected applying the Intel RealSense, Asus Xtion,
Microsoft Kinect v1 and v2 sensors. We use 400 randomly
chosen images from this dataset to evaluate our method.

C. Experimental results

We varied the seed resolution Rseed between 0.05 and 0.25
for VCCS. For SSV, we created between 2 and 6 clusters,
with minimum seed resolution Rmin between 0.05 and 0.25
and maximum seed resolution Rmax between 0.2 and 0.4.
The values were chosen to obtain approximately the same

average number of superpixels for both methods3. For both
methods, we set Rvoxel = 0.02, color weight λ = 0.7, spatial
distance weight µ = 0.15 and HiK distance weight ε = 0.15
(Eq. (1)).

Fig. 4 shows the REC, UE and EV for SSV and VCCS
as a function of the average number of superpixels. The data
in the figure corresponds to seed resolution Rseed for VCCS
between 0.1 and 0.2. For SSV, we set K = 6, Rmin between
0.05 and 0.2, and Rmax = 0.3. The means and their 95%
confidence intervals are plotted. The figure shows that with
the same amount of superpixels, SSV performs significantly
better in terms of REC, and better or the same in terms of
UE and EV. This is especially true for smaller numbers of
superpixels (left parts of plots), which is of special interest
for many applications that require low complexity. Due to
the saliency prior, supervoxels generated by SSV are more
efficient: a larger fraction of the supervoxels are in regions
with many boundaries to preserve, while fewer supervoxel
are used in background regions.

Table I indicates how the performance of VCCS and SSV
varies as a function of the key parameters: Rseed for VCCS,
and K, Rmin, and Rmax for SSV. We note an expected
trend that a higher number of superpixels leads to higher
boundary recall and explained variation, as well as lower
undersegmentation error. However, more superpixels also
corresponds to less reduction in the complexity of the input
representation.

In Fig. 5, we show a qualitative comparison of our method
and VCCS. The fact that SSV uses saliency to guide the
seeding process is seen from having a higher density of
supervoxels in highly salient areas that are likely to contain
objects. Supervoxels are generated with a low density in non-
salient background areas such as walls, resulting in larger
supervoxels. We also see that small objects are captured
much better with SSV, note for example the details of the
sink (handles and tap) on the 2nd row.

Both methods were implemented in C++, and run on a
3.5 GHz Intel i7 CPU. The average processing time of VCCS
was 0.5 sec. per image. For SSV, the average processing time
increases with the number of k-means clusters. With K = 5
clusters, the average processing time of SSV was 2.2 sec. per

3For both methods, it is not possible to determine the number of
superpixels precisely in advance, due to the projection from 3D.

Fig. 4. Average boundary recall (REC, higher is better), undersegmentation error (UE, lower is better) and explained variation (EV, higher is better) with
95% confidence intervals in the NYUV2 (top row) and SUNRGBD (bottom row) datasets.

TABLE I
EFFECT OF PARAMETERS ON NUMBER OF SUPERPIXELS (#SP), BOUNDARY RECALL (REC), UNDERSEGMENTATION ERROR (UE), AND EXPLAINED

VARIATION (EV): MEAN ± 95% CONFIDENCE INTERVAL.

NYUV2 SUNRGBD

Rseed #SP REC UE EV #SP REC UE EV

VCCS

0.05 10323±969 0.97±0.004 0.03±0.002 0.95±0.004 10460±720 0.95±0.006 0.03±0.002 0.94±0.006
0.10 4873±502 0.93±0.007 0.04±0.002 0.95±0.004 5021±394 0.91±0.008 0.04±0.002 0.94±0.004
0.15 2494±237 0.88±0.01 0.06±0.003 0.94±0.005 2773±225 0.86±0.009 0.05±0.003 0.92±0.006
0.20 1539±143 0.84±0.01 0.07±0.004 0.93±0.006 1750±140 0.81±0.01 0.07±0.004 0.89±0.008
0.25 1032±91 0.80±0.01 0.08±0.004 0.91±0.006 1175±89 0.77±0.01 0.09±0.005 0.87±0.01

K Rmin Rmax #SP REC UE EV #SP REC UE EV

SSV

6 0.1

0.20 3957±341 0.94±0.006 0.04±0.002 0.95±0.003 4203±302 0.93±0.005 0.04±0.002 0.95±0.003
0.25 3334±284 0.93±0.006 0.05±0.002 0.95±0.004 3614±257 0.92±0.006 0.04±0.002 0.94±0.004
0.30 2949±250 0.92±0.007 0.05±0.003 0.94±0.004 3203±227 0.91±0.006 0.04±0.002 0.94±0.004
0.35 2655±225 0.92±0.007 0.05±0.003 0.94±0.004 2899±204 0.90±0.006 0.05±0.002 0.93±0.004
0.40 2429±206 0.91±0.008 0.06±0.003 0.94±0.004 2673±188 0.89±0.006 0.05±0.003 0.93±0.004

6

0.05

0.3

4421±386 0.94±0.006 0.04±0.002 0.95±0.003 4799±333 0.93±0.005 0.04±0.002 0.94±0.004
0.10 2949±250 0.92±0.007 0.05±0.003 0.94±0.004 3203±227 0.91±0.006 0.04±0.002 0.94±0.004
0.15 2250±185 0.91±0.007 0.05±0.003 0.94±0.004 2460±172 0.89±0.006 0.05±0.002 0.93±0.004
0.20 1859±149 0.90±0.007 0.06±0.003 0.93±0.005 2030±139 0.88±0.006 0.05±0.003 0.93±0.004
0.25 1611±126 0.89±0.008 0.06±0.003 0.93±0.005 1750±118 0.87±0.007 0.05±0.003 0.92±0.005

2

0.1 0.2

3097±296 0.89±0.009 0.05±0.003 0.94±0.004 3362±259 0.87±0.008 0.05±0.003 0.93±0.005
3 3286±309 0.91±0.008 0.05±0.003 0.95±0.004 3558±271 0.89±0.007 0.04±0.002 0.94±0.004
4 3481±311 0.92±0.008 0.05±0.002 0.95±0.004 3757±278 0.91±0.006 0.04±0.002 0.94±0.004
5 3741±330 0.94±0.006 0.04±0.002 0.95±0.003 4000±293 0.92±0.006 0.04±0.002 0.94±0.004
6 3957±341 0.94±0.006 0.04±0.002 0.95±0.003 4203±302 0.93±0.005 0.04±0.002 0.95±0.003

image. We expect that a significant speedup can be achieved
by parallellizing the calls to VCCS as illustrated in Fig. 2.

V. CONCLUSION
Ensuring the high quality of an RGB-D image segmenta-

tion is important in applications that require precise object
boundaries, e.g., manipulation, since any errors in segmenta-
tion propagate through the whole image processing pipeline,
and cannot be corrected in later processing stages.

Motivated by this observation, we propose to apply visual
saliency to guide the oversegmentation of an RGB-D image.
More supervoxels are generated in highly salient regions

that are likely to contain objects, while less supervoxels are
generated in low-saliency background regions.

Our approach preserves object boundaries significantly
better than a current state-of-the-art supervoxel method
which generates supervoxels uniformly over the whole scene.
In future work, we will investigate other priors such as
edge information and geometric information from depth to
guide the adaptive seeding process. We will also investigate
the applicability of our supervoxel segmentation method in
robotic vision tasks such as object discovery. We are also
preparing to publicly release a software implementation of

Fig. 5. A qualitative comparison of SSV and VCCS for NYU2 (top 2 rows) and SUNRGBD (bottom 2 rows) datasets. From left to right: input image,
saliency map, result of k-means clustering, supervoxels from VCCS, and our SSV supervoxels projected to the 2D image plane.

our segmentation method.

REFERENCES

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk.
SLIC superpixels compared to state-of-the-art superpixel methods.
IEEE TPAMI, 34(11):2274–2282, 2012.

[2] A. Barla, F. Odone, and A. Verri. Histogram intersection kernel for
image classification. In ICIP, 2003.

[3] A. Boularias, J. Bagnell, and A. Stentz. Learning to manipulate
unknown objects in clutter by reinforcement. In AAAI, 2015.

[4] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, and L. Van
Gool. SEEDS: superpixels extracted via energy-driven sampling. In
ECCV, 2012.

[5] F. Felzenszwalb and D. Huttenlocher. Efficient graph-based image
segmentation. IJCV, 59(2):167–181, 2004.

[6] S. Frintrop, T. Werner, and G. Martı́n Garcı́a. Traditional saliency
reloaded: A good old model in new shape. In CVPR, 2015.

[7] H. Fu, X. Cao, D. Tang, Y. Han, and D. Xu. Regularity preserved
superpixels and supervoxels. IEEE Trans. on Multimedia, 16(4):1165–
1175, 2014.

[8] A. Hanbury. How do superpixels affect image segmentation? In
CIARP, 2008.

[9] J. Hosang, R. Benenson, P. Dollár, and B. Schiele. What makes for
effective detection proposals? IEEE TPAMI, 38(4):814–830, 2015.

[10] A. Kanezaki and T. Harada. 3D selective search for obtaining object
candidates. In IROS, 2015.

[11] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and
K. Siddiqi. Turbopixels: Fast superpixels using geometric flows. IEEE
TPAMI, 31(12):2290–2297, 2009.

[12] V. Machairas, M. Faessel, D. Cárdenas-Peña, T. Chabardes, T. Walter,
and E. Decencière. Waterpixels. IEEE TIP, 24(11):3707–3716, 2015.

[13] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural
image boundaries using local brightness, color, and texture cues. IEEE
TPAMI, 26(5):530–549, 2004.

[14] G. Martı́n Garcı́a, E. Potapova, T. Werner, M. Zillich, M. Vincze, and
S. Frintrop. Saliency-based object discovery on RGB-D data with a
late-fusion approach. In ICRA, 2015.

[15] A. Moore, S. Prince, J. Warrell, U. Mohammed, and G. Jones.
Superpixel lattices. In CVPR, 2008.

[16] J. Papon, A. Abramov, M. Schoeler, and F. Wörgötter. Voxel cloud
connectivity segmentation - supervoxels for point clouds. In CVPR,
2013.

[17] R. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms
(FPFH) for 3D registration. In ICRA, 2009.

[18] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation
and support inference from RGBD images. In ECCV, 2012.

[19] S. Song, S. P. Lichtenberg, and J. Xiao. SUN RGB-D: A RGB-D
scene understanding benchmark suite. In CVPR, June 2015.

[20] S. Stein, F. Wörgötter, M. Schoeler, J. Papon, and T. Kulvicius.
Convexity based object partitioning for robot applications. In ICRA,
2014.

[21] D. Stutz, A. Hermans, and B. Leibe. Superpixels: An evaluation of
the state-of-the-art. Computer Vision and Image Understanding, 2017.

[22] A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode
seeking. In ECCV, 2008.

[23] D. Weikersdorfer, D. Gossow, and M. Beetz. Depth-adaptive super-
pixels. In ICPR, 2012.

[24] D. Wolf, J. Prankl, and M. Vincze. Enhancing semantic segmentation
for robotics: the power of 3-D entangled forests. IEEE RAL, 1(1):49–
56, 2016.

[25] C. Xu and J. J. Corso. Evaluation of super-voxel methods for early
video processing. In CVPR, 2012.

[26] J. Yang, Z. Gan, K. Li, and C. Hou. Graph-based segmentation for
RGB-D data using 3-D geometry enhanced superpixels. IEEE Trans.
on Cybernetics, 45(5):927–940, 2015.

[27] J. Yao, M. Boben, S. Fidler, and R. Urtasun. Real-time coarse-to-fine
topologically preserving segmentation. In CVPR, 2015.

