GULSOYLU ET AL.: TRUDI AND TITUS

TRUDI and TITUS:

A Multi-Perspective Dataset and A
Three-Stage Recognition System for
Transportation Unit Identification

Emre Giilsoylu’ ' Computer Vision Group
emre.guelsoylu@uni-hamburg.de University of Hamburg

André Kelm? Hamburg, Germany
andre.kelm@uni-hamburg.de 2 Distributed Operating Systems Group
Lennart Bengtson? University of Hamburg
lennart.bengtson@uni-hamburg.de Hamburg, Germany

Matthias Hirsch’ 3 Human-Computer Interaction Group
matthias.hirsch@uni-hamburg.de University of Hamburg

Christian Wilms' Hamburg, Germany
christian.wilms@uni-hamburg.de

Tim Rolff3

tim.rolff@uni-hamburg.de

Janick Edinger?

janick.edinger@uni-hamburg.de

Simone Frintrop’
simone.frintrop@uni-hamburg.de

Abstract

Identifying transportation units (TUs) is essential for improving the efficiency of port logis-
tics. However, progress in this field has been hindered by the lack of publicly available benchmark
datasets that capture the diversity and dynamics of real-world port environments. To address this
gap, we present the TRUDI dataset—a comprehensive collection comprising 35,034 annotated in-
stances across five categories: container, tank container, trailer, ID text, and logo. The images were
captured at operational ports using both ground-based and aerial cameras, under a wide variety of
lighting and weather conditions. For the identification of TUs—which involves reading the 11-digit
alphanumeric ID typically painted on each unit—we introduce TITUS, a dedicated pipeline that op-
erates in three stages: (1) segmenting the TU instances, (2) detecting the location of the ID text, and
(3) recognising and validating the extracted ID. Unlike alternative systems, which often require sim-
ilar scenes, specific camera angles or gate setups, our evaluation demonstrates that TITUS reliably
identifies TUs from a range of camera perspectives and in varying lighting and weather conditions.
By making the TRUDI dataset publicly available, we provide a robust benchmark that enables the
development and comparison of new approaches. This contribution supports digital transformation
efforts in multipurpose ports and helps to increase the efficiency of entire logistics chains.

© 2025. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction

Multipurpose terminals in ports need to accommodate various modes of transportation and
volatile cargo volumes with limited available space. The resulting dynamic environments
created by constant modifications in storage configurations and operational processes make
the use of fixed infrastructure for monitoring terminals impractical. This leads to increased
manual labour for inventory keeping and inadequate traceability of transportation units (TUs),
such as containers and cranable semi-trailers. Efficient, digital terminal monitoring thus re-
quires the reliable identification of individual TUs [28, 33].

TUs have standardised dimensions and feature unique markings as defined in ISO6346 [4].
These alphanumeric ID codes ensure unambiguous visual identification and are usually
painted on the top or sides of each TU. They consists of a four-letter owner code, a six-digit
serial number, and a single check digit. Despite advancements in automation systems for
identification technologies like Optical Character Recognition (OCR) gates [43] and RFID
tags [34] on the TUs, these approaches often fall short in adaptability, especially in multipur-
pose terminals with seasonal operational variability. Existing solutions for TU identification
typically rely on character detection from a specific target area followed by character recog-
nition [9, 43]. Other solutions relax the assumption of a predefined target area by adding
another step to detect the ID first [38, 40]. However, these methods are still constrained to
fixed camera placements and struggle with changing perspectives, particularly when using
mobile cameras mounted on unmanned aerial vehicles (UAVs) or reach stackers (RSs) [36].
Moreover, existing methods are mostly evaluated on proprietary datasets often consisting of
images taken in one single port which limits comparability. There are currently no publicly
available datasets for TU identification [23].

We introduce the TRansportation Unit Detection and Identification (TRUDI) dataset
comprising images captured from both aerial and ground perspectives under different light-
ing and weather conditions. This dataset addresses the comparability issue and supports
the progress towards more adaptable port monitoring operations utilising moving cameras.
Moreover, we propose a flexible TU identification method which is suitable for use with both
aerial and ground-based imagery and, thus, does not rely on fixed infrastructure. We intro-
duce and employ the Three-stage Identification of Transportation UnitS (TITUS) pipeline
that consists of segmentation of TU instances, ISO6346 compliant ID text detection, and
text recognition. The use of an instance segmentation stage prior to text detection and text
recognition enables associating TUs with their IDs reducing the search space for text detec-
tion. Additionally, the association of the segmented instances and ID codes can support the
localisation of TUs inside terminals using mobile cameras with GPS sensors. This facilitates
down-stream applications such as the creation of a digital twin for the detailed analysis of
operational processes. With the release of TRUDI and the introduction of TITUS, we aim to
provide researchers and practitioners with valuable resources for developing and evaluating
new methods on multiperspective and robust identification of TU.

In summary, our contributions are: (1) a new and publicly available dataset!, TRUDI,
for TU identification from aerial and ground perspectives, (2) a novel three-stage pipeline,
TITUS, and the (3) detailed evaluation of the proposed pipeline on the TRUDI dataset.

Thttps://github.com/egulsoylu/trudi
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2 Related Work

Existing literature mostly focuses on automatic container code recognition using fixed cam-
eras [1, 23, 39], thereby excluding the use of mobile cameras, including ground-based hand-
held devices and aerial platforms such as UAVs. While the use of UAVs, in particular, en-
ables more scalable and flexible image acquisition, it also introduces new challenges, such as
the detection of small text areas within complex backgrounds. These challenges can reduce
performance in identifying TUs [36]. Furthermore, the identification of intermodal loading
units, such as cranable semi-trailers, remains largely overlooked in the literature [42].

Early approaches for this task often rely on digital image processing techniques [14, 26,
31]. These conventional methods are still employed alongside deep learning (DL) methods
to form hybrid solutions, allowing for effective task-specific feature engineering. Nguyen et
al. [29] employ both conventional computer vision and machine learning (ML) techniques
including histogram of oriented gradients and support vector machines in a pre-processing-
intensive method for text detection and recognition. While their approach has a robust pre-
processing stage, the lack of comparative evaluation with DL models presents limitations,
particularly regarding the adaptability and accuracy of their system in uncontrolled environ-
ments. Additionally, Hsu et al. [10] employ YOLOv4 for the initial detection phase and
use Tesseract OCR [35] for text recognition, integrating histogram equalisation and morpho-
logical operations in the pre-processing stage. Although this method benefits from power-
ful OCR capabilities, its performance and robustness in varying environmental conditions
remain unclear due to limited dataset diversity. Another hybrid method [15], an end-to-
end recognition system, applies edge detection and component analysis to classify charac-
ters with support vector machines. This approach demonstrates an alternative to DL-based
methodologies yet remains susceptible to variations in lighting and TU condition.

Since ML-based solutions have demonstrated automatic feature learning and extraction
from a given dataset, researchers have increasingly focused on these methods in recent years.
An approach by Zhao et al. [43] introduces the Practical Unified Network (PUN), designed
to localise and recognise arbitrary-oriented container codes, integrating detection and classi-
fication within a single framework. This model uses a ResNet18 [7] backbone and demon-
strates superior performance over traditional CNN- and transformer-based methods such as
EAST [44], DETR [45] and ABCv1 [24]. Its end-to-end design provides an efficient so-
lution for static camera settings. However, it is less efficient for mobile cameras which
can operate in a perception-action loop [5] to iteratively select better perspectives for im-
age capturing and, thus, reduce the number of unsuccessful text ID recognition attempts.
Yang et al. [38] focus on real-time processing with a lightweight model based on multi-reuse
feature fusion and a multi-branch structure merger. For this, they optimise detection with
MobileOne blocks [37] and recognition using MobileNetV3-small [13]. Even though they
demonstrate accuracy improvements over YOLOvVS [3] their methodology does not fully
address the challenges involved in the mobile camera-based applications as it treats text
recognition as character detection. Character-level detection, however, is not suitable for
scene-text detection as the text is scattered in the scene image, and there is no prior infor-
mation about their location [18]. While the system is capable of high processing speeds, its
applicability in real-world conditions may be constrained as the evaluation relies on a non-
diverse dataset. Li et al. [23] tackle TU identification as a character detection problem and
introduce ACCR-YOLOV7 incorporating a feature extraction module called G-ELAN and
an improved Efficient Spatial Pyramid Pooling Module. This model reduces computational
complexity by replacing YOLOV7’s ordinary 3x3 convolution with GSconv in the neck.
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In summary, while significant progress has been made for the transportation units (TUs)
identification task, developing robust and adaptable solutions with consistent performance
across diverse operational scenarios, environments and perspectives remains a challenge.
Current systems are unusable with vehicle-mounted cameras as they require TUs to be placed
in a predefined area. Although there are a few publicly available datasets such as Ship Con-
tainer Code [12], or Container Number-OCR [20] none of them adopted as a benchmark
dataset due to low diversity they offer. The lack of benchmark datasets hinders the com-
parability of the proposed methods. This leads to very high accuracy values reported for
methods using less complex datasets [23] and low numbers for methods evaluated on com-
plex datasets [36]. Therefore, TRUDI can serve as a benchmark to enhance the comparability
of proposed solutions and facilitate further innovation in TU identification.

3 TRUDI Dataset

To address the lack of publicly available datasets suitable for TU identification using images
from mobile cameras, we collected and annotated a comprehensive and multifaceted dataset
featuring images captured from both aerial and ground-based perspectives. As shown in
Table 1, the dataset comprises 35,034 labelled instances of TUs and their markings, with
an average of approximately 48 instances per image. 17,604 instances were collected from
ground perspective through various devices, including smartphones, digital single-lens reflex
cameras (DSLR), and camera-equipped vehicles such as terminal trucks and RSs. These
images were captured during the vehicle’s active use in port operations. The remaining
17,430 instances were captured by UAVs using models like the DJI Mavic Pro 3, DJI Mini
2, and DJT Air 3%. Sample images from the TRUDI dataset are shown in Figure 1 from both
ground and aerial perspective.

The images in TRUDI cover a wide range of perspectives, zoom levels, resolutions, and
image qualities, which provides a diverse dataset for object detection, instance segmenta-
tion, logo detection, text detection, text recognition and text spotting. This diversity enables
trained models to handle real-world scenarios by improving their robustness and generalisa-
tion capabilities. The objects are labelled as masks belonging to one of the five classes dur-
ing the annotation process. Three of these classes represent common TU types (container,
trailer, tank_container), while the TU markings are represented by two classes (id_text,
logo). Not all TU masks have associated markings due to occlusions or large distances that
make IDs undetectable and illegible.

The number of instances is shown in Table 2. All annotators and reviewers who check
the quality of the annotations have been provided with comprehensive guidelines to avoid
any inconsistencies in annotations that negatively affect the reliability of models [21]. These
guidelines outline the annotation process and provide clear definitions for classes of interest
and edge cases such as occlusions or damaged and illegible markings®.

To ensure environmental and temporal diversity, the images in TRUDI were collected
over an 18-month period across different countries, at various times of the day, including
daytimes, dusk, and night, as well as during different seasons. Furthermore, the images were
taken under various weather conditions, ranging from sunny and partly cloudy to overcast,
rainy, and snowy. UAVs were operated at various altitudes ranging from 3 to 120 m, with
an average flight altitude of approximately 30 m, to represent different scenarios suitable for

2dji.com
3Further details about the dataset can be found in the supplementary material.
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Ground perspective Aerial perspecti

Figure 1: Sample images from the TRUDI dataset showing ground and aerial perspectives.

Table 1: Dataset statistics per perspective and subset. The combined set contains the images
from both aerial and ground perspectives.

Perspective ~ Subset ‘ #Images # Instances  Avg. Instances = Median Instances
Training 231 9864 42.70 24.0
Aerial Validation 77 3869 50.25 24.0
Test 75 3697 49.29 23.0
Training 210 9942 47.34 15.0
Ground Validation 70 3663 52.33 17.0
Test 70 3999 57.13 21.5
Training 441 19806 4491 20.0
Combined Validation 147 7532 51.24 23.0
Test 145 7696 53.08 22.0
Total ‘ 733 35034 47.80 21.0

Table 2: Class-wise instance count and size categories following COCO style [19] (px).

Category #Instances  Small (area < 32%) Medium  Large (96> < area)
Container 11109 913 4868 5328
Tank Container 808 65 351 392
Trailer 2780 67 455 2258
ID Text 14009 9245 3433 1331

Logo 6328 2096 2361 1871
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Figure 2: Overview of the TITUS pipeline. TUs instances are segmented, then the ISO6436
compliant ID texts are detected, finally, a text recognition model extracts detected IDs.

TUs identification missions. We excluded any frames showing the same objects from the
identical viewpoint to avoid data redundancy.

Randomly dividing a dataset could lead to a trivial test set or result in certain types of
images being included only in one of the subsets. Therefore, we divided our TRUDI dataset
into three subsets (60 % train, 20 % validation, 20 % test) while ensuring that the subsets
have a similar distribution. The dataset was divided by binning the images based on their
brightness, sharpness, and contrast, using a uniform bin range. We chose these features,
as they are frequently used in image enhancement to assess image quality [30]. We then
combined these bins into a single category for each image. This categorisation enabled us to
stratify the subsets effectively.

4 TITUS Pipeline

Our novel system involves three stages: (1) segmenting TU instances (containers, tank con-
tainers, and trailers), (2) detecting their ID text area, (3) extracting the ID code from detected
text areas and associating the extracted ID with the corresponding TU instance. Figure 2 il-
lustrates this pipeline.

Segmenting TUs instances as a prior step benefits the text detection since it reduces the
search space to cropped regions. This increases inference speed and enhances text detection
quality by minimising the number of distractors, compared to detecting ID text in the entire
image. The resulting cutouts effectively isolate the TUs, avoiding the inclusion of back-
ground areas that can still be present in bounding boxes. As a result, IDs from TUs in the
background are less likely to interfere with associating each TU to its own ID code, which is
especially important in densely packed storage scenarios.

We selected the models based on their performance on the TRUDI dataset. The first
stage employs Mask R-CNN [8] to segment TUs in images. The model is pre-trained on
COCO [19] and fine-tuned on the TRUDI dataset only with the container, tank_container,
and trailer classes. This stage outputs cropped masks of the TU instances for the text detec-
tion stage. The second stage uses a DBNet++ [17] model pre-trained on SynthText [6] and
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Table 3: Results for stage 1: instance segmentation. "-C" denotes fine-tuning on Combined
dataset. "3C" (Three Classes) indicates that the models are trained to distinguish between
container, tank_container and trailer classes, while "1C" (One Class) covers
all three types of TUs in one class.

Perspective Model AP@0.50:095 AP@0.50 AR@0.50:0.95
RTMDet (1C) 0.22 0.29 0.44
Mask R-CNN-Swin (1C) 0.43 0.62 0.48
Aerial RTMDet (3C) 0.34 0.44 0.42
Mask R-CNN-Swin (3C) 0.38 0.56 0.44
Mask R-CNN-Swin (3C)-C 0.42 0.62 0.47
RTMDet (1C) 0.27 043 0.45
Mask R-CNN-Swin (1C) 0.40 0.62 0.48
Ground RTMDet (3C) 0.24 0.37 0.38
Mask R-CNN-Swin (3C) 0.40 0.61 0.47
Mask R-CNN-Swin (3C)-C 0.44 0.67 0.50
RTMDet (1C) 0.35 0.52 0.50
Combined Mask R-CNN-Swin (1C) 0.43 0.64 0.49
RTMDet (3C) 0.41 0.57 0.49
Mask R-CNN-Swin (3C) 0.44 0.65 0.50

fine-tuned on TRUDI for text detection within the TU masks, addressing challenges such as
varying orientations and environmental conditions including bad condition of TU markings.
In the final stage, detected text areas are cropped and fed into the RobustScanner [31], a
text recognition model pre-trained on the ICDAR15 dataset [11] and fine-tuned on TRUDI.
The model recognises text and extracts the ID code. The output is then verified for ISO6436
compliance and associated with the TU. If the text does not comply, it is flagged for further
inspection. The pipeline outputs a file that associates TUs and their respective markings.
This association is crucial for port monitoring as it enables real-world localisation of each
TU via georeferenced images.

5 Experiments and Results

We conducted experiments using TRUDI and its subsets (aerial, ground, and combined per-
spectives) to evaluate the three stages of TITUS and establish a baseline. Instance segmenta-
tion models were fine-tuned on full images, while text detection and recognition models were
trained on cropped TU instances and text areas, respectively. The details of the fine-tuning
process, including all hyperparameter configurations, are documented in the repository pro-
vided in Footnote 1.

Instance Segmentation: The initial stage aims to provide a mask for each TU individu-
ally, using an instance segmentation model. For this stage, we fine-tuned two models that
were pre-trained on the COCO [19] dataset: Mask R-CNN with a Swin Transformer [8, 25]
backbone and RTMDet [27]. We fine-tuned the instance segmentation models in two set-
tings: Three Classes (3C) setting involved fine-tuning the models to differentiate between
three TU classes (container, tank_container, and trailer). The second setting,
One Class (1C), consolidated all three types of TU classes into a single class as the ID code
associated with each unit provides sufficient information to determine its type, thereby sim-
plifying the classification task.

Table 3 shows the results of the instance segmentation model, evaluated using average
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Table 4: Results for stage 2: text detection (@0.5 IoU). "-C" indicates that the model is
fine-tuned on Combined dataset but tested on either aerial or ground perspective.

Perspective Model Recall  Precision = Hmean
DBNet++ 0.77 0.61 0.68
Aerial DBNet++-C 0.79 0.68 0.73
DBNet 0.29 0.30 0.29
PANet 0.44 0.14 0.21
DBNet++ 0.73 0.63 0.68
G d DBNet++-C 0.79 0.69 0.74
roun DBNet 0.18 0.44 0.25
PANet 0.48 0.05 0.09
DBNet++ 0.79 0.69 0.74
Combined DBNet 0.43 0.55 0.48
PANet 0.57 0.16 0.25

precision (AP) and average recall (AR) across various intersection over union (IoU) thresh-
olds. Mask R-CNN consistently outperforms RTMDet across all settings, especially for
average precision, making it the preferred model for this stage in TITUS. For both aerial and
ground perspective, training with the one class setting achieves higher precision and recall.
However, when the perspectives are combined, both settings produce comparable results.
The models benefit from being exposed to diverse viewpoints during training as the com-
bined perspective results in the highest overall scores. Fine-tuning on both aerial and ground
datasets and testing on the ground perspective results in superior performance compared to
fine-tuning only on the ground perspective dataset. This suggests that the ground perspec-
tive benefits from the inclusion of aerial perspective images during the fine-tuning process.
Conversely, fine-tuning on the combined dataset and testing on the aerial dataset shows that
the aerial perspective does not gain benefits from the ground perspective images.

Text Detection: For the text detection stage, we fine-tuned three text detection models which
were pre-trained on SynthText [6]: PANet [22], a model originally designed for instance seg-
mentation, DBNet [16], a prominent real-time scene-text detection model, DBNet++ [17],
an improved version of DBNet with better feature fusion and differentiable binarisation. For
fine-tuning this stage, each TU mask was cropped based on the ground truth annotations.
These crops were then fed into the model as input for fine-tuning.

Table 4 presents results for text detection with the evaluation metrics recall, precision
and harmonic mean (Hmean) for detection models. DBNet++ achieves the best performance
across all three settings, which makes it the preferred text detection model for the second
stage of TITUS. Training on the combined dataset results in the highest Hmean for all three
models, suggesting that multi-perspective training increases model robustness and generali-
sation for text detection. Fine-tuning on the combined dataset and testing on either the aerial
or ground perspective results in improved performance compared to fine-tuning solely on the
respective perspective’s dataset. This indicates that both aerial and ground perspectives bene-
fit from each other during the fine-tuning process. This is not observed in instance segmenta-
tion, since TUs are 3D objects that can appear visually different from different perspectives,
while text can be considered as a 2D object that appears similar across perspectives.

Text Recognition: For the final stage, we fine-tuned three text recognition models, which
were initially pre-trained on the ICDAR1S5 dataset [11]: SVTR [2], a model that uses trans-
former encoder-decoder architecture, RobustScanner [41], a model that employs a feature
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Table 5: Results for stage 3: text recognition. Since the ID codes are always uppercase and
do not include symbols, the case and symbols are ignored. "-C" indicates that the model is
fine-tuned on the Combined dataset but tested on either aerial or ground perspective.

Perspective Model Word acc.  Char. recall ~ Char. precision
SVTR 0.60 0.86 0.90
Aerial RobustScanner 0.64 0.87 0.87
RobustScanner-C 0.68 0.88 0.88
SAR 0.10 0.18 0.36
SVTR 0.49 0.69 0.82
Ground RobustScanner 0.50 0.70 0.72
. RobustScanner-C 0.54 0.73 0.73
SAR 0.05 0.21 0.33
SVTR 0.57 0.81 0.90
Combined RobustScanner 0.63 0.83 0.84
SAR 0.13 0.39 0.43

Table 6: End-to-end evaluation results of TITUS across aerial, ground, and combined per-
spectives, showing precision, recall, F1 score, and accuracy.

Perspective ~ Precision  Recall ~F1 Score  Accuracy

Aerial 0.45 0.30 0.36 0.22
Ground 0.25 0.19 0.22 0.12
Combined 0.39 0.27 0.32 0.19

fusion model and suitable for contextless text recognition like ISO6346 compliant ID code,
and SAR [32], an early model using a 2D attention mechanism. During the fine-tuning, the
model’s input were individually cropped text areas based on the ground truth annotations.

Table 5 shows the results of the three text recognition models that have been used for
automatic container code recognition. These models are evaluated on character-level perfor-
mance (recall and precision) and word-level accuracy. In this context, a word could be the
whole [SO6346 compliant ID code, size and type code, or for some trailers the registration
plate number written on the TUs. RobustScanner achieves the best balance of high word ac-
curacy and character-level performance across all perspectives. SVTR has a similar though
slightly lower performance compared to RobustScanner in word accuracy. SAR, on the other
hand, performs significantly worse than the other two, indicating difficulty to recognise con-
tainer or trailer ID codes regardless of the perspective. Similar to the text detection stage,
fine-tuning on the combined dataset results in better performance in all perspectives.

Compared to the aerial perspective, the three text recognition models underperform when
dealing with the ground perspective. Unlike UAVs, ground vehicles do not stop to capture
images, resulting in increased motion blur which hinders the performance despite the poten-
tially shorter distance between the camera and the text. Additionally, vertical codes, common
on the sides of TUs, are more prominent in the ground perspective. Occlusion is also more
common than in aerial images due to the presence of other objects or people. Because of
these reasons, the ground perspective is the most challenging perspective in TRUDI.

End-to-End Evaluation: Using the best performing models on the combined set, we eval-
uated TITUS to assess its end-to-end identification performance. The results in Table 6
highlight benchmarking capabilities of TRUDI and the challenges it offers. Despite the com-
plexity of real-world data, the proposed pipeline is capable of effectively identifying TUs.
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In practical deployments, mobile cameras are expected to capture video streams rather than
static images, offering temporal continuity that can significantly enhance identification. This
continuous input give the system with multiple opportunities to observe a TU in consecutive
frames, thereby increasing the likelihood of correct recognition and association, even under
challenging conditions.

6 Conclusion

The TRUDI dataset, comprising 35,034 instances of five classes, addresses the need for a
publicly available benchmark dataset for the TU identification task. This dataset encom-
passes multiple perspectives and real-world operational conditions, including images cap-
tured under various lighting and weather conditions. This allows for a more comprehensive
evaluation and ensures that models trained on TRUDI can handle real-world scenarios ef-
fectively. The proposed TITUS pipeline follows a three-stage approach including 1) TU
segmentation, 2) ID text detection, and 3) text recognition. It offers a robust and flexible
solution for TU identification, particularly suitable for mobile cameras mounted on aerial
or ground vehicles. The evaluation of the pipeline on the TRUDI dataset demonstrates its
effectiveness for TU identification. These results set a strong baseline for future research for
each individual processing step and the entire TU identification pipeline. The contributions
of TRUDI and TITUS are expected to facilitate the development of new applications and
methods in TU identification, enhance benchmarking, and improve operational efficiency in
multipurpose port logistics.
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