

The UDIVA dataset: **Current Research and Future Opportunities**

Cristina Palmero

February 3rd, 2022 Human Behavior Analysis Workshop

Motivation

Socially intelligent systems have to be capable of accurately perceiving and inferring the particularities and state of different individuals, so as to **provide a more effective, empathic, and natural tailored communication**.

To embody this human likeness into such systems, it is imperative to have a **deeper understanding of real human-human interactions** first, to computationally **model both individual behavior and interpersonal influence**.

Motivation

Shared history Characteristics of situation and task/topic at hand Societal norms Environmental factors

Goal:

Move beyond automatic individual behavior detection to foster the

development of context- and interlocutor-aware models for different tasks.

The UDIVA dataset

188 dyadic sessions

147 participants, 55.1% male

From 4 to 84 years old (M=31.29), 39% students

90.5 h of dyadic interactions

Avg. of 2.5 sessions/person

43% of interactions among known people

From 22 countries

(68% from Spain)

72% speaking Spanish

20% speaking Catalan

8% speaking English

50% of interactions include both interlocutors with Spain as country of origin

Including

6 TPVs + 2 FPVs + 3 mics + 2 HRMs

Sociodemographic data

Pre/post-session mood + fatigue level

Personality (self-reported + perceived)

Relationship among interactants

Conversation transcripts + speaker ID

Palmero et al. Context-Aware Personality Inference in Dyadic Scenarios: Introducing the UDIVA Dataset. WACVW, 2021.

The UDIVA dataset

Free conversation (e.g., *how was your day*?, hobbies, past experiences, future plans).

Allows analysis of common conversation constructs, such as **turn taking, synchrony, empathy and quality of interaction**.

Participants build a Lego together following the instructions leaflet, with 4 difficulty levels.

Fosters collaboration, cooperation and joint attention, and elicits leader-follower behaviors and human-object interaction.

The UDIVA dataset

ANIMALS GAME

Participants ask 10 yes/no questions each to guess the animal they have on their forehead, with 3 difficulty levels.

Reveals **cognitive processes** (e.g., thinking, gaze events).

Participants compete against each other to select the correct figurine based on the contents of a given card.

Fosters **competitive behavior**, and allows **cognitive processing speed analysis**, among others.

The UDIVA v0.5 dataset

Talk

Already available for research purposes! Check: https://chalearnlap.cvc.uab.es/dataset/41/description

80h of recordings and transcripts of 145 non-acted dyadic interaction sessions featuring 134 participants.

It includes sociodemographics, self-reported personality, internal state, and relationship profiling.

LegoAnimalsGhostGazePalmero et al. ChaLearn LAP Challenges on Self-Reported Personality Recognition and Non-Verbal Behavior
Forecasting During Social Dyadic Interactions: Dataset, Design, and Results (under review), 2022.

The UDIVA v0.5 dataset

Already available for research purposes! Check: https://chalearnlap.cvc.uab.es/dataset/41/description

80h of recordings and transcripts of 145 non-acted dyadic interaction sessions featuring 134 participants.

It includes sociodemographics, self-reported personality, internal state, and relationship profiling.

Provided metadata

Participant info:

- Age
- Gender
- Country of origin
- Maximum level of education
- OCEAN personality.

Session info:

- Language
- Participants relationship (known/unknown)
- Task difficulty and *Animal/Lego* details
- Pre- and post-session mood
- Pre- and post-session fatigue.

Palmero et al. ChaLearn LAP Challenges on Self-Reported Personality Recognition and Non-Verbal Behavior 9 Forecasting During Social Dyadic Interactions: Dataset, Design, and Results (under review), 2022.

The UDIVA v0.5 dataset

Already available for research purposes! Check: https://chalearnlap.cvc.uab.es/dataset/41/description

80h of recordings and transcripts of 145 non-acted dyadic interaction sessions featuring 134 participants.

It includes sociodemographics, self-reported personality, internal state, and relationship profiling.

Automatically extracted annotations

3D face, body, and hand landmarks:

- noisy labels for training,
- manually filtered labels for validation and test based on annotation quality.

3D gaze direction vectors:

- noisy labels for training, validation and test.

Palmero et al. ChaLearn LAP Challenges on Self-Reported Personality Recognition and Non-Verbal Behavior 10 Forecasting During Social Dyadic Interactions: Dataset, Design, and Results (under review), 2022.

Current research lines

Current research lines

Fine-grained action/intention detection/recognition/forecasting

- Egocentric and general views \rightarrow Winner of **MTurk Funds for Egocentric Datasets**
- Focus on hand-object interaction-based tasks: Lego and Ghost

Draft of AMT annotation GUI

Cristina Palmero PhD student - Universitat de Barcelona c.palmero.cantarino@gmail.com crpalmec7@alumnes.ub.edu