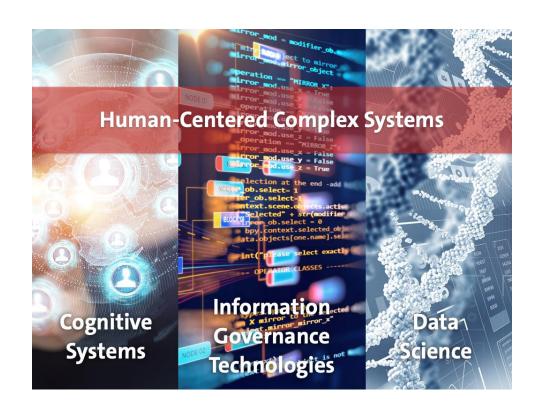


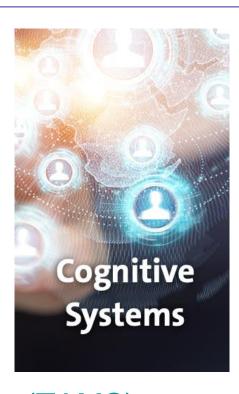
# Research Overview CV Group


Feb 3rd, 2022 Prof. Dr. Simone Frintrop

Computer Vision, Department of Informatics, University of Hamburg, Germany



## Uni Hamburg Department of Informatics


- University of Hamburg: Excellence University
- Informatics:
   24 Research groups,
   200+ researchers &
   staff in total
- About 2400 students
   in 10 degree programs
   + 110 in PhD program





### Department of Informatics

- Image Processing (BV)
- Computer Vision (CV)
- Ethics in Information Technology (EIT)
- Human-Computer Interaction (HCI)
- Language Technology (LT)
- Natural Language Systems (NATS)
- Semantic Systems (SEMS)
- Signal Processing (SP)
- Technical Aspects of Multimodal Systems (TAMS)
- Knowledge Technology (WTM)





## Computer Vision Group



Simone Frintrop



Noha Sarhan

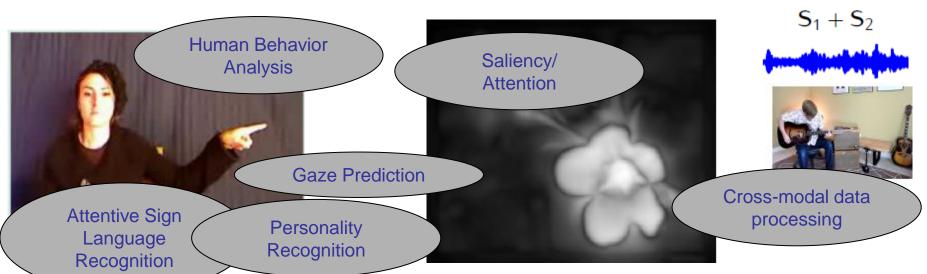


Mikko Lauri



**Christian Wilms** 




Ehsan Yaghoubi



Tim Rolff



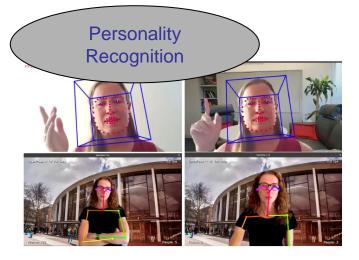
## Research in CV Group











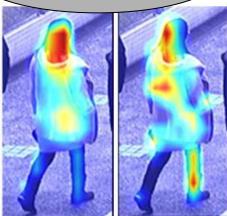

## Human Behavior Analysis





Noha Sarhan




#### **Gaze Prediction**

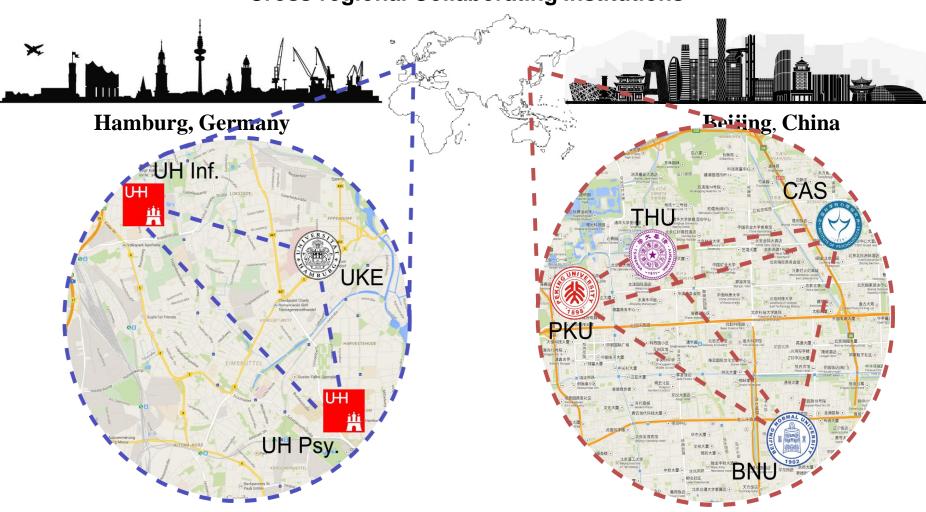




Tim Rolff

#### **Human Attribute** Recognition








#### SFB TRR 169

Crossmodal Learning: Adaptivity, Prediction and Interaction

#### **Cross-regional Collaborating Institutions**



**Project Leaders (16 in Germany + 17 in China)** 



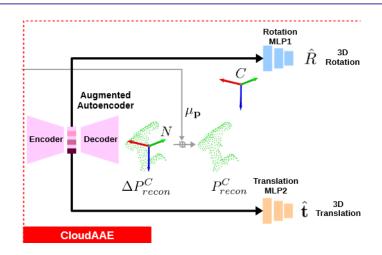
#### SFB TRR 169

#### Crossmodal Learning: Adaptivity, Prediction and Interaction

#### Learning as a Means to Cope with the Real World

**Learning** is becoming increasingly central for **interrelated studies of intelligent systems**, including neuroscience, cognitive science and robotics.

#### Learning enables


- Integration of local information with established, global knowledge
- Interaction with a changing world
- Cooperation with other adaptive learning systems
- Consolidation of knowledge into internal, predictive models
- Combination of top-down and bottom-up modelling





### Object Pose Estimation







Ge Gao

- Ge Gao: Learning 6D Object Pose from Point Clouds, PhD thesis, 2021, [PDF]
- Ge Gao, Mikko Lauri, Xiaolin Hu, Jianwei Zhang, Simone Frintrop: CloudAAE: Learning 6D
   Object Pose Regression with On-line Data Synthesis on Point Clouds, Proceeding of International Conference on Robotics and Automation (ICRA), 2021, [PDF], [Code]
- Ge Gao, Mikko Lauri, Yulong Wang, Xiaolin Hu, Jianwei Zhang and Simone Frintrop: 6D Object
   Pose Regression via Supervised Learning on Point Clouds, Proceeding of International
   Conference on Robotics and Automation (ICRA) 2020, [PDF], [Code]
- Ge Gao, Mikko Lauri, Jianwei Zhang, Simone Frintrop: Occlusion Resistant Object Rotation
   Regression from Point Cloud Segments, Proceeding of the ECCV workshop on Recovering 6D
   Object Pose, 2018, [PDF], [arXiv]



## Ahoi.digital project

## Audio-visual processing: with Timo Gerkmann & Julius Richter

## ICPR 2020: Sound source separation

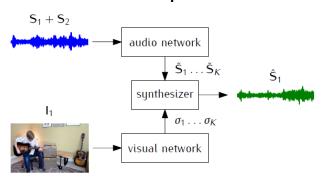
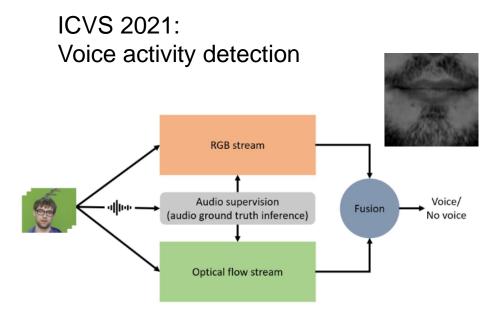




Fig. 1. Our audio-visual sound source separation framework at test time. The audio network takes an audio mixture, e.g., the sum of two spectrograms  $\mathbf{S}_1$  and  $\mathbf{S}_2$ , and outputs a list of K spectrograms  $\tilde{\mathbf{S}}_1 \dots \tilde{\mathbf{S}}_K$ . The visual network takes a single video frame  $\mathbf{I}_1$  as an object prior according to the sound source  $\mathbf{S}_1$  and outputs a discrete probability distribution  $p(\text{type}=i)=\sigma_i$ . The synthesizer generates the separated sound source estimate  $\hat{\mathbf{S}}_1$  according to its inputs.

Quan Nguyen, Julius Richter, Mikko Lauri, Timo Gerkmann, Simone Frintrop: Improving mix-andseparate training in audio-visual sound source separation with an object prior, ICPR 2020



Danu Caus, Guillaume Carbajal, Timo Gerkmann, Simone Frintrop: See the silence: improving visual-only voice activity detection by optical flow and RGB fusion, International Conference on Computer Vision Systems (ICVS) 2021



## Saliency-based Image Enhancement

#### With Adobe Research, Hamburg:

Image enhancement with saliency





MIT-Adobe FiveK Dataset: https://data.csail.mit.edu/graphics/fivek/

[Soroka 2018]



#### Adobe Research

 At Adobe, a saliency system is used to enable smart cropping of videos:



- https://www.adobe.com/de/marketing/experience-manager-assets/smart-crop.html
- https://www.youtube.com/watch?v=MImphmT5dy8



#### Adobe Research

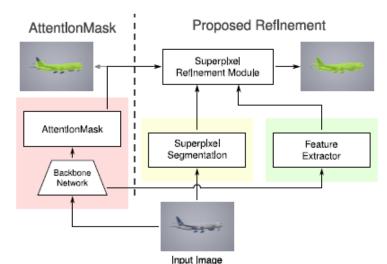
 Deep-learning-based video saliency model to enable focusing on motion (coop with Adobe):



A Novel Dynamic Saliency Network and Its Application to Automatic Reframing, Ozan Özdemir, Master's thesis, University of Hamburg, 2020



#### AttentionMask




#### AttentionMask [Wilms/Frintrop 2018]

- Scale-based attention focuses processing on promising parts of the image
- use attention to sample windows sparsely
- more resources for small objects
- Superpixel refinement enables precise boundaries

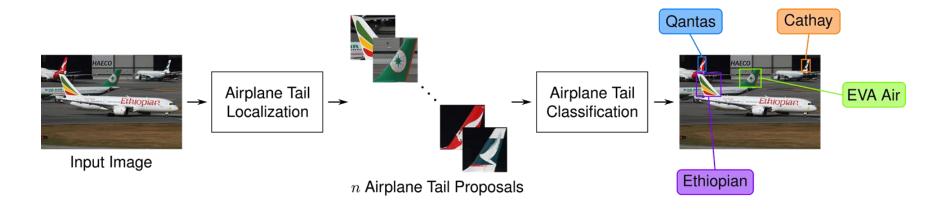








Christian Wilms, Simone Frintrop: **DeepFH Segmentations for Superpixel-based Object Proposal Refinement**, Image and Vision Computing (IMAVIS) 2021


Christian Wilms, Simone Frintrop: AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects, Asian Conference on Computer Vision (ACCV), 2018

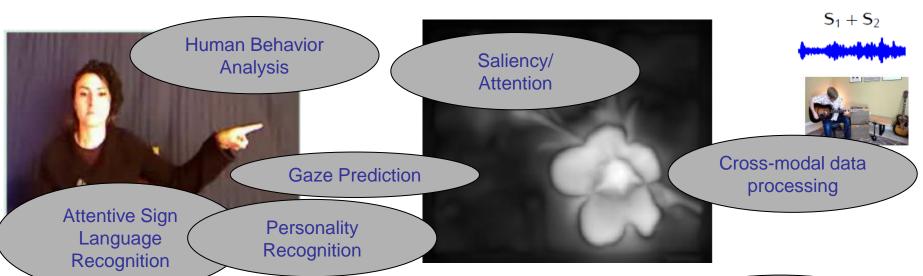


## Airline Logo Detection



**Task:** Localization and classification of airline logos (with ZeroG)




Automatic localization based on AttentionMask

Simplified VGG-style architecture as classifier

Christian Wilms, Rafael Heid, Mohammad A. Sadeghi, Andreas Ribbrock, and Simone Frintrop: "Which Airline is This? Airline Logo Detection in Real-World Weather Conditions", ICPR 2020



## Research in CV Group







