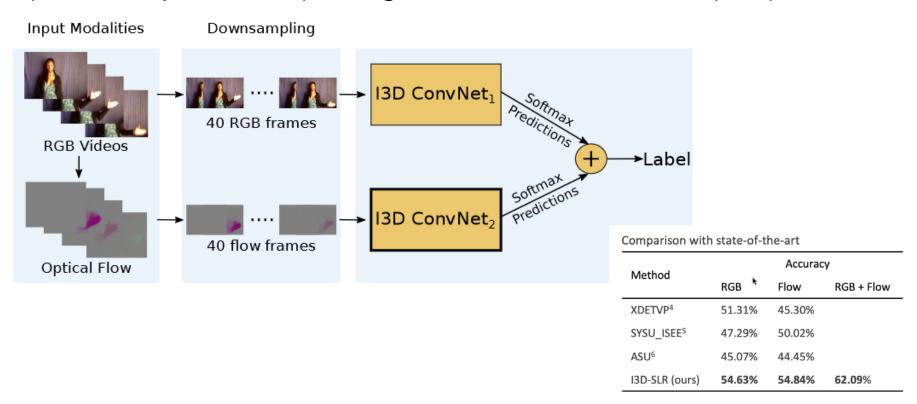


Sign, Attend, and Tell: Spatial Attention for Sign Language Recognition

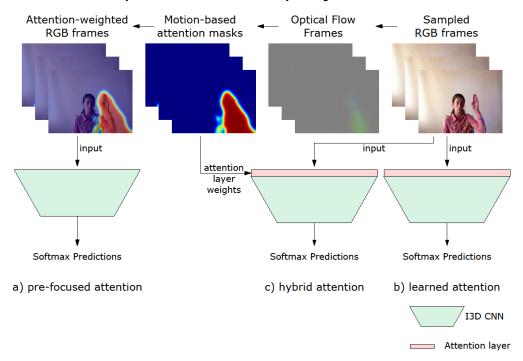
Noha Sarhan and Simone Frintrop


University of Hamburg, Department of Informatics, Computer

Vision Group, Hamburg, Germany

Optical flow-based sign language recognition

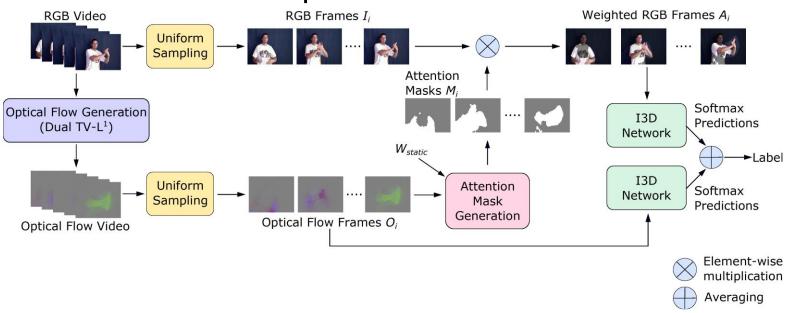
Sarhan/Frintrop, ICIP 2020: a two-stream architecture (RGB & optical flow) using Inflated 3D networks (I3D)


[Carreira/Zisserman, "Quo vadis, action recognition? a new model and the Kinetics dataset," CVPR, 2017] [Sarhan/Frintrop: "Transfer learning for videos: from action recognition to sign language recognition", ICIP 2020]

Attention-based sign language recognition

Sarhan/Frintrop: FG 2021:

- 3 approaches for integrating attention:
- a) pre-focused, b) learned, c) hybrid

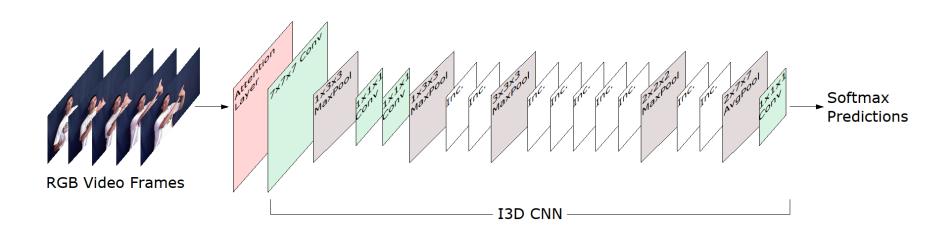


Noha Sarhan, Simone Frintrop: **Sign, Attend and Tell: Spatial Attention for Sign Language Recognition**, IEEE International Conference on Automatic Face and Gesture Recognition (FG) 2021

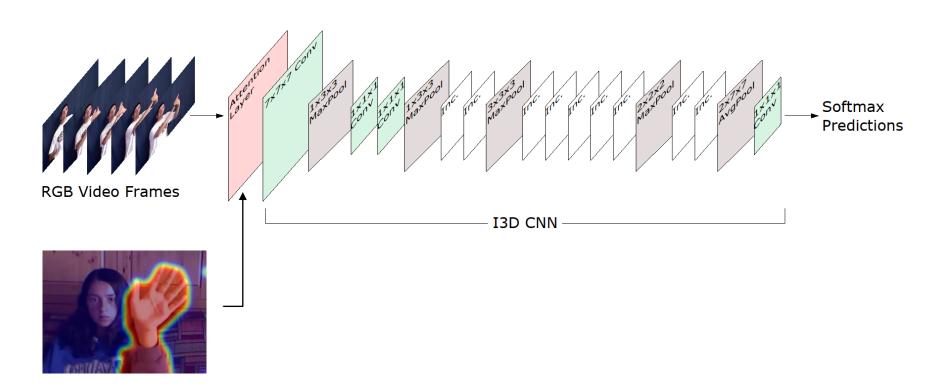
Pre-focused attention

- We extend the baseline by adding a motion prior to focus attention of network on motion cues:
- an optical flow based motion mask is precomputed and used as attention prior

C. Zach, T. Pock, and H. Bischof, "A duality based approach for realtime TV-L1 optical flow," in Proceedings of the 29th DAGM Conference on Pattern Recognition. Springer, 2007

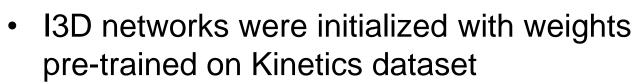

Attention Maps

Learned Attention


An attention layer is integrated into the I3D CNN to learn how to weigh the input

Hybrid Attention

Same architecture as learned attention, but the attention map is initialized with the optical flow motion map from the pre-focused attention approach


Dataset & Training

 Dataset: ChaLearn249 IsoGD, 47,933 videos of isolated sign language, 249 classes, 21 signers

J. Wan, Y. Zhao, S. Zhou, I. Guyon, S. Escalera, and S. Z. Li. ChaLearn looking at people RGB-D isolated and continuous datasets for gesture recognition. In CVPR Workshops, 2016

Chalearn LAP IsoGD Database

J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In CVPR, 2017

Results

1. Hybrid attention clearly outperforms pre-focused & learned attention:

Method	Validation accuracy		Test accuracy	
	RGB	RGB + Flow	RGB	RGB + Flow
I3D-SLR [40] (baseline)	54.63 %	62.09%	57.73%	64.44%
Pre-focused attention	57.8%	64.21%	60.3%	67.11%
Learned attention	58.52%	64.7%	61.05%	68.36%
Hybrid attention	59.2%	65.02%	61.65%	68.89%

Results

2. All attention-based models outperform baseline and state of the art

Method	Validation accuracy		
Method	RGB	RGB + Flow	
ASU [34]	45.07%	N/A	
SYSU_ISEE [24]	47.29%	N/A	
3DDSN [10]	46.08%	N/A	
XDETVP [55]	51.31%	N/A	
2SCVN-Max [10]	45.65%	62.72%	
I3D-SLR [40] (baseline)	54.63%	62.09%	
Attn-I3D-SLR (pre-focused)	57.8%	64.21%	
Attn-I3D-SLR (learned)	58.52%	64.7%	
Attn-I3D-SLR (hybrid)	59.02%	65.02%	

Conclusion

- Sign language recognition models can strongly profit from motion cues and attention mechanisms
- Best approach: hybrid model which learns attention weights and is initialized with motion prior
- Future work: continuous sign language recognition

"Denmark, British, American, and Germany Sign Language by Deaf Furs" by WakeWolf