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Multi-Sensor Next-Best-View Planning as
Matroid-Constrained Submodular Maximization

Mikko Lauri1, Joni Pajarinen2, Jan Peters3, and Simone Frintrop1

Abstract—3D scene models are useful in robotics for tasks such
as path planning, object manipulation, and structural inspection.
We consider the problem of creating a 3D model using depth
images captured by a team of multiple robots. Each robot
selects a viewpoint and captures a depth image from it, and
the images are fused to update the scene model. The process
is repeated until a scene model of desired quality is obtained.
Next-best-view planning uses the current scene model to select
the next viewpoints. The objective is to select viewpoints so
that the images captured using them improve the quality of
the scene model the most. In this paper, we address next-
best-view planning for multiple depth cameras. We propose
a utility function that scores sets of viewpoints and avoids
overlap between multiple sensors. We show that multi-sensor
next-best-view planning with this utility function is an instance
of submodular maximization under a matroid constraint. This
allows the planning problem to be solved by a polynomial-time
greedy algorithm that yields a solution within a constant factor
from the optimal. We evaluate the performance of our planning
algorithm in simulated experiments with up to 8 sensors, and
in real-world experiments using two robot arms equipped with
depth cameras.

Index Terms—Reactive and Sensor-Based Planning, RGB-D
Perception, Multi-Robot Systems

I. INTRODUCTION

SCENE reconstruction is the process of creating a digi-
tal model of a real-world scene from a set of images

or other measurements of the scene. Models obtained via
scene reconstruction are useful for robotic applications such
as object manipulation, structural inspection [1], and waste
sorting (Fig. 1). In an online setting, the model reconstructed
from the images captured so far is used to plan from which
viewpoint the next image is captured. Next-best-view (NBV)
planning [2] determines the next viewpoint that provides the
greatest improvement to the quality of the current model,
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Fig. 1. Above: two robots sorting waste. Below: The robots create a 3D model
by recording images from views around the scene (red and blue frustums). We
propose an efficient method to find the next-best-views for multiple cameras
based on greedy maximization of a submodular utility function. The views
found by our algorithm avoid overlap between the sensors’ fields of view.

reducing the amount of time and number of images required
to reconstruct a model of desired quality.

Many tasks may benefit from deployment of a multi-robot
team [3], however most approaches to NBV planning focus on
the single-robot setting [2], [4], [5], [6], [7], [8]. In a multi-
robot setting these approaches would plan the viewpoint for
each robot individually and ignore coordination between team
members. Time and resources are wasted if the same part of
the scene is observed by multiple robots.

In this paper, we propose an efficient method for multi-
sensor NBV planning that coordinates view selection and
avoids overlapping views (Fig. 1). The constraint that each
robot can choose at most one view is formalized as a matroid,
a mathematical object that generalizes the concept of indepen-
dence from linear algebra to sets. View selection and other
related sensor selection problems often satisfy a diminishing
returns property known as submodularity [9]: the benefit of
adding a new view decreases with an increasing number of
existing views. An advantage of submodular maximization
under a matroid constraint is that a polynomial-time greedy
algorithm provides a solution within a constant factor from
the optimum [10].
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Unlike [11] who reconstruct regions of interest when com-
munication is not constant, we aim to produce a complete
scene reconstruction when robots communicate to coordinate
their actions. Our approach is best suited for robots deployed
near each other (Fig. 1) with reliable communication. Cui
et al. [12] consider a single robot equipped with many sensors,
one of which is chosen to be active at any time. In contrast,
we consider joint planning where all sensors are operated
simultaneously and the combination of views that is most
useful is selected. We apply matroid-constrained submodular
maximization similar to the multi-robot planning methods
in [13], [14], [15]. We are the first to address multi-sensor
NBV planning using submodularity.

Our key technical contribution is a utility function that
avoids overlap between the views of multiple sensors. We
prove that the utility function is monotonically increasing and
submodular, and formulate multi-sensor NBV planning as sub-
modular maximization under a matroid constraint. We describe
an efficient greedy algorithm for the planning problem with an
approximation guarantee. When the sensors’ potential views
are disjoint, our formulation reduces to solving independent
single-sensor NBV planning problems. We experimentally
verify the effectiveness of our proposed approach in a set of
simulated experiments with up to 8 sensors, and in a real-world
experiment with two robot arms.

The rest of the paper is organized as follows. We review
related work in Section II, and define some useful math-
ematical concepts in Section III. We formulate the multi-
sensor NBV problem in Section IV, and contrast it to single-
sensor NBV planning. In Section V we introduce our proposed
utility function, and prove that it is submodular. Section VI
proposes a greedy algorithm for multi-sensor NBV planning.
In Sections VII and VIII we report results from simulated and
real-world experiments. Section IX concludes the paper.

II. RELATED WORK

We review related work in two areas: NBV planning in
single and multi-sensor settings, and multi-robot planning
using matroid constraints and submodularity.

A. Next-best-view planning

We focus on NBV planning approaches with a volumetric
scene representation. A volumetric scene representation con-
sists of a finite set of grid cells, or voxels. For each voxel, an
occupancy probability that gives the probability of the voxel
containing an obstacle is maintained. In NBV planning, the set
of visible voxels from each candidate view is first estimated
by applying raytracing. A score for the candidate view is
calculated as the sum of per-voxel scores for each visible
voxel. The NBV with the greatest score is selected.

NBV planning methods differ in how the score of a view is
calculated. Counting measures [2], [4] count the total number
of unknown visible voxels. Probabilistic measures employ
quantities such as entropy of voxel occupancy, or the visibility
probability of voxels. For example, [5] selects the view that has
the greatest average occupancy entropy in the visible voxels.
In [7], scores that weight per-voxel scores by the probability

of the voxel being visible are proposed. Views that observe the
most boundary voxels between known and unknown space are
preferred in [16]. In [6], the method is extended to consider the
uncertainty in sensor motion. Recently, [17] proposes to learn
scoring of candidate views by using a 3D convolutional neural
network with a multi-scale volumetric map representation. The
assumption that voxel occupancies are independent is relaxed
in [18] by applying Markov chain Monte Carlo.

Instead of a voxel grid, [8] proposes an implicit surface
density representation. The representation consists of points
observed on a surface. Regions with a high density of points
are classified as core, and other regions as outliers. The
expected observed volume between core and outlier regions is
maximized. A Gaussian process (GP) implicit surface repre-
sentation is used in [19]. The variance of the GP quantifies the
uncertainty of the surface reconstruction. A planning algorithm
uses the variance to find trajectories that reduce uncertainty
the most.

The related problem of planning how a robot should ma-
nipulate an object within the view of a stationary camera is
investigated in [20]. The object model is a signed distance
function on a voxel grid. In [21], trajectories for environment
exploration are scored by estimating the unknown volume
visible along the trajectory. A robotic system for structural
inspection is demonstrated in [1]. As a known environment is
considered, an inspection path is planned offline to guarantee
a desired amount of overlap between captured images.

Some recent works consider NBV planning in the multi-
robot setting. Sukkar et al. [11] reconstruct regions of interest
(ROIs) by controlling viewpoints of multiple robots equipped
with cameras. ROIs correspond to fruit in an agricultural
application and are detected by color thresholding. Candidate
viewpoints are scored based on the expected information gain
on the detected ROIs. The algorithm proposed in [3] is applied
to decentralize the planning task so that each robot can plan
its views without needing to constantly communicate with the
other robots. Cui et al. [12] select if a robot should apply a
laser range finder or depth camera next. Candidate sensing ac-
tions are scored by a weighted sum of the number of unknown
voxels, occupied voxels, and voxels neighbouring a free voxel.
Unlike [11], we target tasks where the robots communicate
constantly to coordinate views. We do not focus on ROIs,
but strive for a complete reconstruction. Different to [12],
we choose the views of multiple sensors simultaneously. By
applying submodular maximization, we provide a performance
guarantee for our planning algorithm.

B. Matroid constraints and submodularity in planning

Multi-robot coordination may be viewed as an item selec-
tion task. Each robot selects an item (e.g., a trajectory), with
the objective of maximizing a performance measure that is
a function of the selected set of items. A matroid defines a
system of independent sets, which models constraints such
that one robot may select at most one trajectory. A submodular
function defined on independent sets has a diminishing returns
property that states that adding a new item to an existing
set of items is less useful the larger the existing set is.
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Maximizing a submodular function under a matroid constraint
by a polynomial-time greedy algorithm provides a constant-
factor approximation [10]. Furthermore, many information-
theoretic functions are submodular, making greedy submodular
maximization a popular approach for tasks such as planning
sensor placements [9].

Multi-robot information gathering tasks such as explo-
ration [14] and informative path planning [13] have been
addressed as submodular maximization under a matroid con-
straint. A sequential greedy allocation (SGA) algorithm is
proposed in [13], allowing extension of single-robot planning
to any number of robots while maintaining performance guar-
antees. A distributed variant of SGA proposed in [14] scales
up to larger problems due to distribution of the computation,
while maintaining approximation guarantees. In [15], a greedy
algorithm is proposed for coupled problems, such as select-
ing the composition of a multi-robot team and subsequently
planning how the robots should act. The work most similar
to ours is [14], where the distributed approach incurs an
additional suboptimality penalty. In our paper we target the
centralized setting where greedy submodular maximization
enjoys a tighter suboptimality bound.

III. PRELIMINARIES

We define now mathematical concepts that are later used.

A. Partition matroids

Matroids generalize the concept of independence from lin-
ear algebra to sets. For an introduction to matroids, we refer
the reader to [22]. For the purposes of this paper, we only
require the concept of a partition matroid.

Let Ai be n pairwise disjoint sets, and let ai be in-
tegers s.t. 0 ≤ ai ≤ |Ai|. Denote by Ω the union
of all Ai. Then (Ω, I) is a partition matroid if I =
{I ⊆ Ω | ∀i : |I ∩Ai| ≤ ai}. The elements of I are indepen-
dent sets. The sets Ai are blocks of the partition matroid. We
assume ai = 1 for all partition matroids, such that there is at
most one element per block in an independent set.

B. Submodularity

Submodularity formalizes the notion of diminishing returns:
the marginal utility of adding a new item to an existing set of
items is smaller the larger the existing set is.

A set function f : 2Ω → R is submodular if for any A ⊆
B ⊆ Ω, and any x ∈ Ω \ B, f(A ∪ {x}) − f(A) ≥ f(B ∪
{x}) − f(B). Additionally, f is monotonically increasing, if
for any A ⊆ Ω and x ∈ Ω \A, f(A ∪ {x}) ≥ f(A).

IV. MULTI-SENSOR NEXT-BEST-VIEW PLANNING

Consider a team of n sensors, and let X1, . . . , Xn be n
pairwise disjoint sets with Xi representing the possible views
for sensor i. Denote by I the collection of independent sets
in a partition matroid with blocks Xi. The problem of multi-
sensor NBV planning is to select an independent set of views
– one for each sensor – that maximizes the utility of the views.
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Fig. 2. Grid cells are shown by the black squares. Views are indicated by xi.
The rays ri,j emitted from xi are indicated by colored arrows. The colored
shading on a grid cell indicates that the grid cell is traversed through by a
ray with the corresponding color.

Utility is measured by a function f mapping independent sets
to a real number. Formally, the problem is

max
I∈I

f(I). (1)

Next, we introduce our environment and sensor models. We
then discuss how utility is measured in single-sensor NBV
planning, and motivate the need for a utility function f
specifically designed for the multi-sensor setting.

A. Environment and sensor models

The environment is represented as a volumetric grid V with
a finite number of grid cells. For each grid cell, P (v) gives
the probability that the grid cell is occupied by an obstacle.
The cell occupancies are independent of each other.

Each of the sensors is a camera that outputs a depth image.
The view xi of each sensor is its translation and orientation
w.r.t. a fixed coordinate system. A depth image is considered as
a set of rays emitted from xi. A ray is emitted in the direction
of each pixel in the depth image, terminating after traversing
a distance equal to the measured depth. We write each ray
r as a sequence of grid cells it traverses through, e.g., r =
(v1, v2, . . . , vk), where vi ∈ V and k is the total number of
grid cells traversed. At view xi, the set of all rays emitted by
the sensor is R(xi).

Fig. 2 illustrates a volumetric grid. For clarity the drawing
is in two dimensions, but in this paper we deal with three
dimensional grids. Three views and their corresponding sets
of emitted rays are shown. For example, the set of rays emitted
from x1 is R(x1) = {r1,1, r1,2, r1,3}. Each ray ri,j is also a
sequence of grid cells. For example, r1,2 is the sequence of
all grid cells traversed by the ray starting at the cell where x1

is located and terminating at grid cell v labeled by the shaded
circle marker near the center of the grid.

Given a real depth image recorded by a sensor, the occu-
pancy probabilities are updated using the inverse sensor model
of [23] as follows. Raytracing is applied to determine which
grid cells are updated. The focal lengths (fx, fy) and the
principal point (cx, cy) of the depth camera are required. Let
d be the measured depth at pixel coordinates (x, y). The ray
direction vector

[
(x−cx)/fx (y−cy)/fy 1

]T
is transformed to

the coordinate system of the volumetric grid, and a ray of

Authorized licensed use limited to: Bibliothekssystem Universitaet Hamburg. Downloaded on July 13,2020 at 14:13:31 UTC from IEEE Xplore.  Restrictions apply. 



2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3007445, IEEE Robotics
and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

length d is emitted in the resulting direction. The grid cells
traversed by the ray are recorded. The grid cell where a ray
terminates is observed as a hit, and other grid cells traversed
by the ray are observed as misses. The log-odds representation
for P (v) is L(v) = log P (v)

1−P (v) . Given an observed grid
cell v and its observation z, the log-odds are updated to
L(v | z) = L(v) + l(z), where

l(z) =

{
log ph

1−ph
if z = hit

log pm

1−pm
if z = miss

(2)

and ph and pm are the hit and miss probabilities, respectively.
The posterior P (v | z) is obtained by inverting L(v | z).

B. Score function for an emitted ray

The ray score function calculates the score of a single ray
as a sum over the grid cells traversed by the ray. At each
grid cell v, a weight term dependent on which other cells the
ray traversed to reach v is multiplied by the information gain
available at v. We formalize this by the following definition,
and give concrete examples afterwards.

Definition 1 (Ray score function). Let r be a ray that traverses
the sequence (v1, v2, . . . , vk) of grid cells. The ray score
function s : V k → R is defined as

s(r) =
k∑

j=1

wj,r(v1, . . . , vj−1)c(vj), (3)

where wj,r : V j−1 → R is a weight term, and c : V → R is
the information gain available at a grid cell. For j = 1, we
define w1,r ≡ 1.

In our experiments we use the widely applied entropy
score [5], [7] by setting the information gain equal to en-
tropy of voxel occupancy, c(v) = −P (v) log2 P (v) − (1 −
P (v)) log2(1 − P (v)), and defining wj,r always equal to
one. This choice encourages exploration by assigning a high
score for views that observe voxels with a high uncertainty.
However, we derive all our theoretical results for the general
form given in the definition above, which includes many
scores proposed in earlier literature. Counting measures [2],
[4] are obtained by setting the weight term always equal
to 1, and the information gain function to return 1 when
the grid cell is unknown and 0 otherwise. Occlusion-aware
scores [7] are obtained by setting the weight term equal to
j−1∏
i=1

(1 − P (vi)), the probability that all grid cells traversed

are free, i.e., the probability that the ray reaches vj−1 before
hitting an obstacle and terminating. A region of interest S ⊂ V
is focused by setting the weight term to depend on the indicator
function of S.

Single-sensor NBV approaches select a view x by max-
imizing

∑
r∈R(x)

s(r). A naive extension of the single-sensor

NBV approach to a multi-sensor setting selects for each sensor
i the view xi that maximizes

∑
r∈R(xi)

s(r). However, since

there is no incentive for coordination between the sensors,
unnecessarily overlapping views may be selected.

V. AN OVERLAP-AWARE UTILITY FUNCTION FOR
MULTI-SENSOR NEXT-BEST-VIEW PLANNING

To coordinate view selection for multiple sensors, we pro-
pose an overlap-aware utility function to score sets of rays. For
each grid cell, the utility function only takes into account the
ray along which the weighted information gain is maximized.
This captures the intuitive notion that overlap between multiple
sensors should be avoided if possible, and only the most
useful ray traversing through a particular grid cell should be
considered in NBV planning. Our proposed utility function
helps reduce unnecessary overlap in the selected views, as
we later show experimentally. We prove our utility function
is monotonically increasing and submodular, and show how
single-sensor NBV planning arises as a special case when
sensor views do not overlap.

A. Overlap-aware utility

Recall that Xi are the pairwise disjoint sets of available
views for each sensor. Let Ω denote the set of all possible
views obtained as the union of all Xi. The partition matroid
of valid views is (Ω, I) with I = {I ⊆ Ω | ∀i : |I ∩ Xi| ≤
1}. Any independent set I ∈ I contains at most one view
from each Xi. The union of all rays emitted from views in an
independent set is R(I) = ∪xi∈IR(xi). For example in Fig. 2,
R({x1, x2}) = {r1,1, r1,2, r1,3, r2,1, r2,2, r2,3}.

The overlap-aware utility function considers for each grid
cell all the rays that traverse through the cell. For any grid cell
v, we denote by TI(v) the subset of rays in R(I) that traverse
through v. Recalling that any ray r ∈ R(I) is a sequence of
grid cells, we define

TI(v) = {r ∈ R(I)|r ∩ {v} 6= ∅} . (4)

For instance, letting R({x1, x2}) be as in the paragraph
above, and considering the grid cell v indicated in Fig. 2,
T{x1,x2}(v) = {r1,2, r2,2}, containing exactly the two rays
that traverse through v.

We propose the following overlap-aware utility function.

Definition 2 (Overlap-aware utility function). Let (Ω, I) be a
partition matroid of valid sensor views. For any independent
set I ∈ I of views, the overlap-aware utility is

f(I) =
∑
v∈V

max
r∈TI(v)

[wj,r(v1, . . . , vjr−1)c(v)] , (5)

where wj,r(v1, . . . , vjr−1) is the weight term, and c is the
information gain available at v. For I = ∅, set f(∅) = 0.

At any grid cell, only the contribution from the ray that
has the greatest weight term when reaching that grid cell is
considered for overlap-aware utility. For instance, if the weight
term is chosen as the probability that the ray reaches the grid
cell, only the ray with the greatest probability contributes to the
utility. Selecting overlapping views that observe the same grid
cells is implicitly discouraged by the utility function. Emitting
an additional ray that reaches a grid cell only improves the
utility if the additional ray has a greater weight term. For
example, consider the grid cell v indicated by the gray circle
in Fig. 2. The sum term in Eq. (5) that corresponds to v is
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the maximum over the two rays r1,2 and r2,2 that traverse
through v.

B. Proof of submodularity and monotonicity

We prove a supporting lemma and then the main result.

Lemma 1. For any v ∈ V , the set function

gv(I) = max
r∈TI(v)

wj,r(v1, . . . , vjr−1)c(v) (6)

is monotonically increasing and submodular.

Proof. Fix v ∈ V and A ⊆ B ⊆ Ω. Thus, TA(v) ⊆ TB(v),
since adding more views can only increase the number of rays
that traverse through v. The maximum cannot decrease, i.e.,
gv(A) ≤ gv(B), so gv is monotonically increasing.

To prove submodularity, fix v ∈ V and A ⊆ B ⊆ Ω. Select
an arbitrary view x ∈ Ω \ B, which is not in B and thus
also not in A. By the definition in Eq. (4), every element in
T{x}(v) is in both TA∪{x}(v) and TB∪{x}(v). Thus,

TA∪{x}(v)=TA(v)∪T{x}(v)⊆TB(v)∪T{x}(v)=TB∪{x}(v),

which implies gv(A ∪ {x}) = max {gv(A), gv({x})} and
gv(B ∪ {x}) = max {gv(B), gv({x})}. Now,

gv(A ∪ {x})− gv(A) = max {gv(A), gv({x})} − gv(A)

= max{0, gv({x})− gv(A)} ≥ max{0, gv({x})− gv(B)}
= max{gv(B), gv({x})} − gv(B) = gv(B ∪ {x})− gv(B),

where the inequality follows as gv is monotonically increasing
and the proof for submodularity is complete.

Theorem 1. The overlap-aware utility function f as defined
in Eq. (5) is submodular and monotonically increasing.

Proof. A sum of monotonically increasing submodular terms
(Lemma 1) is monotonically increasing and submodular.

Recall that a partition matroid with blocks Xi describes the
valid combinations of views the robots may choose. We proved
that the overlap-aware utility function f , Definition 2, is a
submodular function of the independent sets of this partition
matroid. In summary, multi-sensor NBV planning, Eq. (1) is
matroid-constrained submodular maximization.

C. Single-sensor NBV planning is a special case

We prove that if there is no potential overlap between the
views of any sensors, multi-sensor NBV planning reduces to
solving n independent single-sensor NBV planning problems.
Two views are disjoint if the rays emitted from the views do
not traverse through any of the same grid cells.

Definition 3. Two views xi, xj are disjoint if for every grid
cell v ∈ V , the rays emitted from xi and xj do not overlap,
that is, ∀v : T{xi}(v) ∩ T{xj}(v) = ∅.

In Fig. 2, the views x1, x3 are disjoint, and the views x2,
x3 are disjoint, but the views x1, x2 are not disjoint.

The following proposition shows that if there is no overlap
between the views of any two different sensors, the multi-
sensor NBV problem with the overlap-aware utility function
is equivalent to n single-sensor NBV planning problems.

Algorithm 1 Greedy multi-sensor NBV planning
Input: Partition matroid (Ω, I) of views
Output: Independent set Ik ∈ I containing k planned views

1: k ← 0, Ik ← ∅
2: while ∃x ∈ Ω : Ik ∪ {x} ∈ I do
3: x∗ ← argmax

x∈Ω s.t. Ik∪{x}∈I
f(Ik ∪ {x})− f(Ik)

4: Ik+1 ← Ik ∪ {x∗}, Ω← Ω \ {x∗}, k ← k + 1
5: end while
6: return Ik

Proposition 1. Let Xi be pairwise disjoint sets of views for
each sensor i. If for every i 6= j, all xi ∈ Xi and xj ∈ Xj are
disjoint, then Eq. (1) with the overlap-aware utility function

from Eq. (5) is equivalent to
n∑

i=1

max
xi∈Xi

f({xi}).

Proof. Let I = {x1, . . . , xn}. As all views are disjoint,
for any v ∈ V , there exists exactly one xi ∈ I such
that TI(v) = T{xi}(v). The claim is proven by rearrang-

ing Eq. (5):
n∑

i=1

∑
v∈V

max
r∈T{xi}(v)

[wj,r(v1, . . . , vjr−1)c(v)] =

n∑
i=1

f({xi}).

VI. A GREEDY ALGORITHM FOR MULTI-SENSOR NBV
PLANNING

Algorithm 1 is a greedy strategy for solving Eq. (1). The
algorithm starts from the initial solution I0 = ∅ at iteration
k = 0. As long as there exists a view x in the ground set
Ω such that Ik ∪ {x} is an independent set, we repeat the
following two steps. First, find the view x∗ with the greatest
marginal utility that maintains the matroid constraint, that is,

x∗ = argmax
x∈Ω s.t. Ik∪{x}∈I

f(Ik ∪ {x})− f(Ik). (7)

Second, update the solution by Ik+1 = Ik ∪ {x∗}, remove
x∗ from the ground set, and increment k. When the in-
put is the partition matroid of sensor views, the output In
contains exactly one view for each of the n sensors. When
f is monotonically increasing and submodular, In is a 1

2 -
approximation [10], that is, f(In) ≥ 1

2 max
I∈I

f(I).

We perform raytracing for each view x ∈ Ω once and store
the best per-voxel scores gv({x}). We initialize gv(I0) to zero
for all voxels. The marginal utility of a view x on Line 3 is then
computed as follows. Initialize the marginal utility to zero.
Loop over voxels visible for x and compare the stored value
gv({x}) to the old value gv(Ik). If the stored value is greater
than the old value, the positive difference is added to the
marginal utility. If the old value is greater than the stored value,
continue to the next visible voxel. After the view x∗ with the
greatest marginal utility is recovered, the old values for visible
voxels are updated to gv(Ik+1) = max{gv(Ik), gv({x∗})}.
If raytracing for one view has computational complexity
O(R), the overall computational complexity of Algorithm 1 is
O(R|Ω|+n|Ω|) where the second term accounts for computing
the marginal utilities of up to |Ω| views for up to n sensors.
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Bathroom 8 Bathroom 9 Bedroom 4 Bedroom 11 Kitchen 6 Kitchen 11 Living room 3 Living room 5

Fig. 3. The types of layouts in the simulation experiments.

TABLE I
AVERAGE AREA UNDER CURVE FOR SURFACE COVERAGE IN THE SIMULATION EXPERIMENTS. BEST AVERAGE VALUES BOLDED.

Method Avg Bathroom 8 Bathroom 9 Bedroom 4 Bedroom 11 Kitchen 6 Kitchen 11 Living room 3 Living room 5

2 cameras
Ours 80.1 82.3 79.0 76.1 85.1 82.6 77.4 78.7 77.0
Single 75.2 77.1 73.7 72.0 80.3 77.5 72.7 73.0 71.3
Random 72.0 71.2 70.4 72.1 75.8 74.2 75.6 70.6 69.4

4 cameras
Ours 89.2 90.5 88.6 86.7 92.1 90.7 87.6 87.5 86.7
Single 84.5 85.9 83.6 82.6 87.9 86.1 82.7 82.2 81.4
Random 83.9 82.2 81.9 83.8 86.0 84.7 86.3 81.8 81.1

8 cameras
Ours 94.6 95.1 94.2 93.4 95.9 95.4 94.3 93.1 92.9
Single 91.9 92.5 91.3 91.0 93.6 92.8 91.4 89.8 89.4
Random 91.4 90.4 90.0 91.6 92.5 91.9 93.2 89.6 89.3
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Fig. 4. Volume explored as a function of the number of views per camera
for 4 cameras (left) and 8 cameras (right) in the simulation experiments. Note
the different vertical axis scales.
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Fig. 5. Surface coverage as a function of the number of views per each of 8
cameras in layouts Bathroom 8 (left) and Kitchen 11 (right) in the simulation
experiments.

The proposed greedy submodular maximization algorithm
provides an approximation guarantee and runs in polynomial
time. Eq. (1) could also be solved by exhaustive search or
a heuristic algorithm. Exhaustive search recovers an optimal
solution but has a worst-case computational complexity of
O(R|Ω| + |Ω|n) as the utility of every independent set must
be evaluated. Heuristic algorithms that start with an initial
solution and modify it locally are also applicable. Examples of
such algorithms include genetic optimization algorithms, tabu
search, or simulated annealing.

VII. SIMULATION EXPERIMENTS

We evaluate our NBV planning algorithm in synthetic
environments and in a robotic setup. This section presents the
results for the synthetic environments.

A. Experimental setup

We use the validation set of SceneNet RGB-D [24], a
collection of rendered RGB-D images from randomly gen-
erated synthetic environments. The validation set consists of
1000 scene configurations. Each scene configuration depicts
a synthetic room layout with randomly sampled objects in
physically plausible poses. The room layout is one of 8
possible choices1 illustrated in Fig. 3. Each scene configuration
has 300 labeled cameras poses along a continuous trajectory.
320-by-240 pixel depth images from the labeled poses are
available to compute a ground truth scene reconstruction.

We consider n = 2, 4, or 8 sensors, and split the camera
poses in each scene configuration into n disjoint subsets Xi.
Each subset contains possible views for sensor i and spans
the entire trajectory. We plan a sequence of 20 views for
each sensor by Algorithm 1. We compare to independent
single-sensor NBV planning of views as described in Subsec-
tion IV-B, and to selecting the next views uniformly at random.
Each experiment is repeated 10 times. The true depth images
are applied to update occupancy probabilities as described in
Subsection IV-A. We use hit and miss probabilities ph = 0.9
and pm = 0.1, respectively. We use a voxel grid with a reso-
lution of 0.05 m per voxel. The initial occupancy probability
is P (v) = 0.5 for all voxels. To vary the prior information
about the scene, the first views are sampled randomly in
each experiment and are the same for all methods. We use
a resolution of 0.1 rays per pixel and a maximum range of
10 m for raytracing.

We record the explored volume and the surface coverage as
a function of the number of views per camera. We compare
these values to the ground truth model created from all images.
For computing the surface coverage, a point in the ground truth
model is considered observed if there is a point closer than
0.05 m to it in the reconstruction.

1We omit the “Office 14” layout as it has only one scene configuration.
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B. Results

Fig. 4 shows for 4 and 8 cameras the average fraction
of explored volume as a function of number of views. The
numbers in parentheses in the legend show the micro-averaged
area under curve (AUC) value of the respective methods. Our
algorithm reaches 90% explored volume with between 2-3
fewer views per camera compared to the other two methods.
Single-sensor planning does not coordinate view selection of
multiple sensors, and prefers strongly overlapping views in
the first 2-4 steps. Random view selection has no preference
for such views, and thus performs better during these steps.
After strongly overlapping views are removed from future
consideration, single-sensor planning avoids selecting useless
views on subsequent steps and outperforms random over the
entire span of 20 views. Our algorithm avoids overlapping
views, outperforming single-sensor planning and random view
selection for any number of selected views.

Table I shows the overall micro-averaged AUC for surface
coverage, and the AUC for each layout. On average, our
algorithm observes more surface points than single-sensor
planning or randomly selecting views. As the number of
cameras increases, the amount of potential overlap between
the views increases. With 4 or 8 cameras, the performance
of single-sensor planning and random are similar, while ours
performs significantly better. This shows our algorithm is able
to successfully coordinate views with increasing amount of
potential overlap. Our method performs best in layouts with
many rooms and occluding walls, such Bathroom 8, Kitchen 6,
and Living room 5 (see Fig. 3). The improvement is smallest
in layouts consisting of a single room such as Kitchen 11,
especially when the number of cameras is 8. Single planning
with 4 or 8 cameras also performs almost identically to random
in both of the living room layouts.

Fig. 5 shows the surface coverage with 8 cameras in Bath-
room 8 and Kitchen 11. Numbers in parentheses in the legend
show the AUC. Our method performs best for any number
of views in the Bathroom 8 layout that has many connected
rooms separated by walls that occlude views (see Fig. 3). In
the Kitchen 11 layout consisting of a single room with no
occluding walls, our method still performs best with less than
8 views per camera, and then equally well as random view
selection. Single-sensor planning selects strongly overlapping
views and performs worse than randomly selecting views.

For both planning algorithms, raytracing to compute the per-
voxel scores takes most of the runtime. The average runtime
was 0.8 s per candidate view.

VIII. REAL-WORLD EXPERIMENTS

We set up three scenes: a scene with light clutter (Fig. 6,
left), the same scene with a large obstacle added (Fig. 6, right),
and a scene with unsorted metal waste (Fig. 1, top). Intel
RealSense D435 depth cameras are attached to the two KUKA
LBR iiwa robot arms. For each robot, we sample 20 candidate
views around the workspace. In each view, the camera points
to the center of the workspace. We plan a sequence of 8 views
by the proposed multi-sensor NBV planning (Ours), single-
sensor NBV planning (Single), or random view selection

TABLE II
AVERAGE UNKNOWN VOLUME (CM3 ) AND ITS 95% CONFIDENCE

INTERVAL IN THE REAL-WORLD SCENES. BOLDED VALUES SHOW ALL
STATISTICALLY SIGNIFICANTLY BEST-PERFORMING METHODS.

Scene Method After 3 views After 5 views After 8 views

Clutter
Ours 11404 ± 128 7016 ± 55 5064 ± 55
Single 11592 ± 89 7104 ± 222 4888 ± 55
Random 18844 ± 3267 10018 ± 1009 5869 ± 426

Obstacle
Ours 17360 ± 400 13592 ± 55 11628 ± 83
Single 17696 ± 277 13556 ± 6 11492 ± 128
Random 24627 ± 3960 15954 ± 1226 12064 ± 390

Waste
Ours 14296 ± 133 6400 ± 0 4476 ± 39
Single 16584 ± 33 9260 ± 139 4984 ± 11
Random 20274 ± 2887 10549 ± 1144 5210 ± 547

Fig. 6. The clutter scene (left) and the obstacle scene (right).

(Random). As there are only two cameras, for Ours we find the
independent set that maximizes overlap-aware utility directly
by evaluating all combinations. Other experimental settings
are as in Section VII.

Table II shows the average unknown volume2 (lower is
better) and its 95% confidence interval, after 3, 5, and 8 views
in each scene. In the “Waste” scene, Ours outperforms Single.
The views in the scene overlap strongly, and our method avoids
redundant views. In the “Clutter” and “Obstacle” scenes, there
is no significant difference between Ours and Single. In the
“Obstacle” scene, the difference of Single, Ours, and Random
after 8 views is not significant. Randomly selecting 8 views is
sufficient for a good reconstruction. In all cases, the random
baseline performs worst.

In all scenes, Ours selected the same sequence of views in
each repetition. This was the case for Single as well. In Table II
the variation for Ours and Single is due to unpredictable events
such as localization or sensor noise.

Fig. 7 qualitatively compares Ours and Single. Our method
explicitly considers that the two sensors’ fields of view over-
lap, and selects views with less overlap. Single maximizes
utility for each sensor independently, and selects views that
overlap resulting in less explored volume. After the two views,
the remaining unknown volume was 34 000 cm3 (Ours) and
38 000 cm3 (Single).

IX. DISCUSSION AND CONCLUSION

Several topics beyond the scope of this paper remain un-
explored. Future work could investigate how the granularity
of the candidate view sampling affects performance. Consid-
ering more candidate viewpoints is guaranteed to improve

2Unknown volume never reaches zero as object insides are unobservable.
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(a) Initial view (b) Ours (c) Single

Fig. 7. Qualitative results in the “Waste” scene. The left subfigure shows the initial reconstruction and views (red and blue frustum). The middle and right
subfigures show the second views selected by Ours and Single, respectively. The reconstruction color corresponds to height above the tabletop. The coordinate
axes indicate the current pose of each sensor. Compared to Single, our method selects a view for sensor 2 (blue frustum) that avoids overlap with sensor 1
(red frustum) and observes the region to the bottom left.

performance, but it might not be beneficial in practice due
to the increased computational cost. Dynamic generation of
candidate viewpoints could also be considered, e.g., similar
to [21]. Many formulations of information gain have been
proposed and compared in single-sensor object reconstruc-
tion [7], while we applied only the entropy score. Comparing
information gain formulations in the multi-sensor case is a
direction for future work. The demands for NBV planning vary
depending on the application [8], [11], [12], and studying the
quality of the reconstructions with respect to the parameters
of the algorithm can help fit our proposed method to specific
applications.

In conclusion, we propose a monotonically increasing and
submodular overlap-aware utility function for multi-sensor
next-best-view planning with a volumetric environment rep-
resentation. Our greedy planning algorithm is guaranteed
to produce a solution within a constant factor from the
optimum. Experimental results show the algorithm avoids
planning overlapping views, outperforms independent single-
sensor planning and random view selection methods, and can
be implemented in a real-world robotic system.
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