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Abstract We present a computational framework for

attention-guided visual scene exploration in sequences of

RGB-D data. For this, we propose a visual object candidate

generation method to produce object hypotheses about the

objects in the scene. An attention system is used to pri-

oritise the processing of visual information by (1) localis-

ing candidate objects, and (2) integrating an inhibition of

return (IOR) mechanism grounded in spatial coordinates.

This spatial IOR mechanism naturally copes with camera

motions and inhibits objects that have already been the

target of attention. Our approach provides object candi-

dates which can be processed by higher cognitive modules

such as object recognition. Since objects are basic elements

for many higher level tasks, our architecture can be used as

a first layer in any cognitive system that aims at inter-

preting a stream of images. We show in the evaluation how

our framework finds most of the objects in challenging

real-world scenes.

Keywords RGB-D object discovery � Computational

visual attention � 3D inhibition of return

Introduction

A computational cognitive system that aims at interpreting

a scene by means of visual data is confronted with two big

challenges: the first one is how to process in reasonable

time the huge amount of perceptual input that continuously

arrives via its sensors, e.g. a camera; the second is the

complexity of the task itself: how should pixels be grouped

into units that are semantically meaningful? An important

prerequisite for scene interpretation is the detection of

objects in the scene: several findings emphasise the central

role of object perception in human vision (Feldman 2003;

Pylyshyn 2001).

Biological systems have developed attention mecha-

nisms to cope with the first problem. The biological solu-

tion has been to prioritise the processing of perceptual

input according to its relevance. For example, the human

visual system has attention mechanisms by which only a

fraction of all the visual input is processed (Pashler and

Sutherland 1998). Concerning the second challenge—how

visual data is interpreted in the human visual system—

there are several findings from psychology and cognitive

science: first, authors such as Scholl (2001) argue that

segmentation processes exist on all levels of the visual

system that group regions into perceptually coherent units;

second, Rensink (2000) proposes a model where these so-

called proto-objects are combined by visual attention to

form coherent objects; third, it is known that Gestalt

principles play an important role in object perception

(Wagemans et al. 2012). Furthermore, authors such as

Pylyshyn argue that in the human visual system visual
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elements are individuated before their properties or cate-

gories are known (Pylyshyn 2001).

In this paper, we propose a computational model that

combines these individual findings from human vision into

one coherent framework. It can serve as a basic architec-

ture that can be used by autonomous systems, e.g. robots,

in order to process visual data obtained from a moving

camera. Our framework has at its core an attention system

to prioritise the processing of visual data. The attention

system delivers regions of interest based on saliency

computation, and refines these regions using segmentation

processes to provide accurate boundaries of potential

objects. The resulting object candidates are ranked

according to several criteria such as convexity. Finally, a

spatial inhibition of return (IOR) mechanism inhibits

attended regions to enable a visual exploration of the scene.

In contrast to other works (Itti et al. 1998; Palomino et al.

2011), we root the IOR mechanism in spatial 3D coordi-

nates which corresponds to human vision (Posner et al.

1985; Wang et al. 2016) and enables us to deal with

camera motion.

An overview of the proposed system is shown in Fig. 1:

a camera moves around a scene providing a continuous

stream of RGB-D data. In the lower processing stream, the

depth information is used to build a 3D map of the scene

with the KinectFusion algorithm (Newcombe et al. 2011).

In the upper stream, an attention system computes a sal-

iency map (1) and a segmentation of the image (2). Based

on these two, object candidates are generated (3). Infor-

mation about already attended objects is stored in the 3D

map, raycasted to the current camera pose (4), and used to

inhibit already attended objects (5).

This paper integrates two of our previous approaches

into one coherent system for visual scene exploration. In

Martı́n Garcı́a and Frintrop (2013) we have presented the

spatial IOR mechanism, and in Martı́n Garcı́a et al. (2015),

we introduced a method based on saliency and segmenta-

tion to produce visual object candidates. The new system

integrates these two approaches and we show in the

experiments how the IOR mechanism lets us retrieve most

of the objects in the scene with a small number of object

candidates per frame.

Related work

Since the related literature spans two different fields, we

first present the related work on computational attention

systems that have addressed the IOR problem, and second,

the relevant work on the topic of object discovery.

Related work in computational attention systems

Many computational attention systems have been built

during the last two decades, first for the purpose of mim-

icking and understanding the human visual system (see

survey in Heinke and Humphreys 2004), and second to

improve technical systems in terms of speed and quality

(see an extensive review in Frintrop et al. 2010). The

general structure of attention systems is based on psycho-

logical models such as the feature integration theory (FIT)

(Treisman and Gelade 1980), which states that visual fea-

tures are computed in parallel in separate areas of the brain,

and by means of focused attention the features are bound

Fig. 1 General structure of our system. An RGB-D sensor records a

sequence of a scene. Object candidates are generated based on colour

and depth data and projected into the 3D scene map. Spatial inhibition

of return, rooted in the 3D map, enables the inhibition of already

attended object candidates, naturally resulting in scene exploration
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together. Koch and Ullman (1987) proposed a model where

those features are fused into a saliency map that encodes

where attention should be allocated. One of the first com-

putational attention systems that was implemented based

on this model was the renowned Itti–Koch model (1998),

where feature channels are computed in parallel, image

pyramids enable a multi-scale contrast computation, and

feature contrasts are computed by Difference-of-Gaussians.

One component of attention systems is the inhibition of

return mechanism: a mechanism that inhibits attention

from returning to already attended areas. It was discovered

by Posner et al. (1985) as taking place in the human visual

system, operating in spatial coordinates and not retino-

topical ones, and was hypothesised to enable visual

exploration. Already Itti et al. (1998) proposed a compu-

tational implementation of IOR that consisted in zeroing

values in the saliency map for the regions that had already

been the target of attention. Their method however only

worked on single images. While IOR is simple on indi-

vidual images, image sequences introduce the challenge of

establishing correspondences between objects over time. In

this context, Backer et al. (2001) performed object-centred

IOR by tracking the attended objects. However, their

approach operated on simple artificially rendered scenes

instead of real world data and on 2D images instead of 3D

data as we do. In the work of Palomino et al. (2011) the

authors implemented IOR by visually tracking the objects

that are the target of attention. In contrast to all these

approaches that perform inhibition in image coordinates,

our attention system implements an IOR mechanism that

operates on spatial world coordinates, similarly as in

human vision.

Object discovery and its cognitive background

The problem of object discovery consists in finding the

potential objects that are present in an image, before their

category or identity is known. It defines a strategy for

understanding images, by which first, object candidate

regions are generated, and second, the candidates are

recognised. This strategy is opposed to the older sliding-

window approach, where bounding boxes at every location

and scale of the image are exhaustively examined by an

object classifier (Viola and Jones 2004). Interestingly, this

inversion (to first propose object candidates and then

identify them) has a parallel in the cognitive science lit-

erature in the work of Pylyshyn (2001): Pylyshyn postu-

lates that the human visual system requires a mechanism

that visually individuates the elements in the environment

before their properties or categories are known.

The task of discovering objects in images is a chicken-

and-egg problem: how to look for an object before know-

ing how it looks like and which features it has? Two big

scientific communities, computer vision and robotics, have

developed different approaches to solve this problem.

Computer vision approaches usually operate on colour

images and generate a pool of object candidates, also

known as object proposals, based on various types of image

features which are combined by a machine learning method

(Alexe et al. 2012; Manén et al. 2013). The idea is to

generate promising candidate regions as a pre-processing

for recognition, whose number is significantly smaller than

the number of sliding windows used by default. Since

usually around 1000 to 10,000 candidates are generated,

these approaches are less useful for systems which have to

operate in real time and which potentially aim to interact

with the objects. In the robotics community, it is therefore

preferred to generate a smaller set of object candidates.

Attention systems are a popular approach because of their

ability to focus on the relevant parts of the input: an image

symmetry operator was used in conjunction with Gestalt

principles in Kootstra and Kragic (2011) to generate object

candidates. More recently, an attentional 2.5D symmetry

operator on depth data was proposed by Potapova et al.

(2014) to generate fixation points on the centre of objects;

the approach then uses features such as 3D convexity in

order to produce object candidates. Other groups integrate

several views of the scene into a single 3D reconstruction

of the environment where the discovery takes place (Herbst

et al. 2011; Karpathy et al. 2013). Some approaches use

information about changes over time to segregate objects

from background (Herbst et al. 2011) or interact with

possible object candidates to determine what is an object

(Schiebener et al. 2014). While these are good approaches

to resolve ambiguities, it is certainly desirable to be able to

find objects also without or before interaction, and if pos-

sible already from a single view without the need to regard

a scene over a longer time.

In the following we will describe our attention system

and how the IOR mechanism is implemented (‘‘The

attention system: saliency computation and spatial inhibi-

tion of return’’ section). Section ‘‘Saliency-based object

discovery’’ will cover the object candidate generation

based on the attention system and RGB-D data. Finally, in

‘‘Evaluation’’ section we will evaluate our two main con-

tributions: the object candidate generation and the IOR

mechanism.

The attention system: saliency computation
and spatial inhibition of return

In this section, we describe our bottom-up computational

attention system VOCUS2 (Frintrop et al. 2015). Attention

is known to have two main components: bottom-up and

top-down. Bottom-up attention is driven by the intrinsic
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properties of the scene and is commonly modelled by

saliency computation. On the other hand, top-down atten-

tion takes into account extrinsic factors such as the task at

hand, the internal state of the agent, etc. We concentrate

here on bottom-up attention since top-down information is

not available. In the first part of this section, we summarise

how VOCUS2 (Frintrop et al. 2015) computes saliency for

a given input image. Then, we address how we incorporate

the spatial IOR mechanism into the attention system.

Extending VOCUS2 with an IOR mechanism that operates

on spatial 3D coordinates is a contribution of this paper.

Saliency computation

The architecture of the VOCUS2 saliency system (Frintrop

et al. 2015) follows the renowned model of Itti and col-

leagues (1998). Contrast is computed by Difference-of-

Gaussians filters: weighted average feature values are

computed for centre and surround regions; then, the centre

value is subtracted from the surround and vice versa. The

method relies on an opponent colour space, which has a

correspondence to the opponent theory of human percep-

tion Hurvich and Jameson (1957). It uses three feature

channels: intensity, red/green and blue/yellow. All three

feature channels are treated equally as opposed to Itti et al.

(1998), where the two colour channels are fused into a

single one, which is later fused with intensity and orien-

tation. By keeping the two colour channels separated until

the fusion into the final saliency map all three channels get

the same relevance.

The second and most important difference to the Itti

model is that we introduce the so-called twin pyramids to

allow for arbitrary centre–surround contrast ratios. In the

Itti model, a Gaussian Pyramid is computed for each of

the feature channels; centre–surround contrast is com-

puted by subtracting layers of the pyramid, approximating

in this way a Difference-of-Gaussians filter. The problem

with this approach is that centre–surround ratios are

restricted to powers of 2: if two consecutive layers of the

pyramid are subtracted we have a 1:2 ratio, if the second

next layer is subtracted we have a 1:4 ratio, etc. Instead,

we compute two pyramids for each feature channel: one

centre pyramid and one surround pyramid; each of them

is computed with a different smoothing factor r, which
means we can compute contrasts of arbitrary centre–sur-

round ratios.

The results in Frintrop et al. (2015) show that VOCUS2

computes precise saliency maps competitive with other

state-of-the-art methods, and it is also very fast: less than

40 ms for a standard 640 9 480 image. An example sal-

iency map is shown in Fig. 4. In ‘‘Saliency-based object

discovery’’ section we explain how saliency is used as a

cue to generate object candidates. In the rest of this section,

we explain an extension to the VOCUS2 system to

implement an inhibition of return mechanism in spatial

coordinates to perform shifts of attention at the object

candidate level.

Inhibition of return in spatial coordinates

How to shift the focus of attention is a classical problem in

computational attention systems. Always choosing the most

salient region as the focus of attention would result in an

attention system that always selects the global maximum as

the target of attention.As in humanvision (Posner et al. 1985),

computational IORhelps exploring a scene by inhibiting those

regions that have already been attended. When working on

singles images, it is often performed by simply zeroing the

region of the saliencymap thatwas already attended (Itti et al.

1998). However, this is not enoughwhen facing a sequence of

frames from a given scene where correspondences between

the visual elements should be established.

We propose a mechanism for IOR that operates on spatial

coordinates. We use the KinectFusion algorithm (Newcombe

et al. 2011) to obtain a 3D map that lets us store the IOR

information in 3D coordinates, so that it becomes independent

of the camera pose. The KinectFusion algorithm represents

the 3D environment in the form of a voxel grid. This voxel

grid is the discretisation of a truncated signed distance func-

tion (TSDF), i.e. every voxel in the grid stores the distance to

the closest surface. At zero crossings of this function, we can

expect to find the actual points of the surface.

We extend this voxel grid in order to store the IOR

information. In particular, we want to store whether a point

in space should be inhibited (an IOR flag), and for how

long (an IOR weight). This extended voxel grid is what we

will refer to in the following as the 3D IOR map. The result

of raycasting this 3D IOR map to a particular pose of the

camera will be called the 2D, or raycasted, IOR map.

3D IOR map update

We need a mechanism to store when a particular region of

the scene has been attended, whether it should already be

inhibited, and for how long. Initially, the scene has not yet

been explored and all its regions could potentially be the

target of attention. Thus, the IOR weights and flags are set

to 0 for every voxel in the grid. Then, as the system is

exposed to more frames of the sequence, object candidates

are produced (‘‘Saliency-based object discovery’’ section).

For each frame, the pixel-precise masks of the object

candidates are projected to the 3D IOR map in order to

obtain the voxels that should be updated. The IOR weights

of the corresponding objects voxels are increased by one.

When a certain threshold IOR_LIMIT is reached, the IOR

flag is activated, and the IOR weight is multiplied to a
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factor mf of its value: IOR WEIGHT :¼ IOR

WEIGHT �mf. This means that once the IOR activation

threshold is reached, it will take more time for the inhibi-

tion to die out than it took to reach it. This is done to

prevent the inhibition effect from quickly vanishing and the

attention being allocated again on the same objects.

Meanwhile, the IOR weights of the voxels that were not

part of any object candidate are decreased by one. When

the weights reach zero, the IOR flag is again deactivated.

To sum up, regions in space that are the target of attention

increase their IOR weight, and those that are not, decrease

them. The IOR map update procedure is illustrated in

Fig. 2, while the IOR weight evolution is depicted in

Fig. 3.

2D IOR map

In order to use the inhibition information within our attention

system, we need to obtain a 2D map from the 3D data. Since

our 3D IOR Map is embedded in the voxel grid of

KinectFusion, it is possible to raycast a 2D IORmap I(x, y) for

any given camera pose. The result of such an operation is a

binary map containing white pixels for locations that should

be inhibited, and black pixels for those that should not. We

show in Fig. 4 an example image (left), together with the

saliency map (middle) computed from it, as well as the 2D

IOR map that has been raycasted (right). The white pixels in

the 2D IOR map indicate the locations where attention has

been allocated up to that point in time. In principle, such a 2D

IORmapcanbeused to inhibit points or regions in the saliency

map. We show in ‘‘Inhibition of object candidates’’ section

how we use it to directly inhibit the object candidates.

Saliency-based object discovery

Our approach for object discovery uses saliency as a cue to

estimate the location of objects, and segmentation as a way

to refine their boundaries. The idea to combine saliency

and segmentation has a cognitive motivation in the psy-

chological work of Rensink (2000): in human perception,

so-called proto-objects are detected by segmentation pro-

cesses that bundle parts of the visual field; such processes

are believed to exist on all levels of the visual system

(Scholl 2001). Second, these proto-objects are combined by

focused attention to form coherent objects.

An overview of our approach is shown in Fig. 5. It

operates on RGB-D data, but if only colour data are

available the method works also well. The combination

gives however the best performance, since both modalities

are complementary. From the colour image, we compute a

Fig. 2 IOR Map update process: the object candidates generated on a particular frame are projected to the 3D map. At the voxels in the map

corresponding to the object candidates, the IOR weights are increased. Everywhere else, the IOR weights are decreased

Fig. 3 Illustration of how the IOR weight evolves over time when an

object has been attended long enough to activate the IOR flag. In the

grey area, the object is attended until the IOR weight is high enough

to trigger the IOR flag. The red area depicts the time when the object

is inhibited (colour figure online)
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saliency map. In parallel, we compute a segmentation of

the colour and depth images (‘‘Segmentation’’ section). By

using saliency to select segments, we obtain a set of object

candidates (‘‘Detection of salient blobs’’ section). Since in

many applications it is preferable or even required to

restrict the processing to a small number of candidates,

e.g. to meet real-time requirements, it is important to rank

the candidates according to their quality to be able to select

the k best ones. The ranking strategy is discussed in

‘‘Ranking of the candidates’’ section.

Detection of salient blobs

First,weextract salient regions from thecolour imagewhichwe

will need later on to select segments that form the object can-

didates. For the extraction of salient blobs from the saliency

map salðx; yÞ, we first determine the set of local maxima

fl1; . . .; lng. A local maximum is here a (collection of) pixel(s)

which is larger than all neighbouring pixels. For each local

maximumin the saliencymap l ¼ ðxl; ylÞ, where ðxl; ylÞ are the
pixel coordinates of the point, we do seeded region growing

(Adams and Bischof 1994) to obtain a salient region sl. The

region growing recursively investigates all neighbours of li and

adds them to the salient blob sl, as long as the saliency of the

pixel is above some percentage of the saliency of the seeding

point salðlx; lyÞ. Thus, for every candidate point p ¼ ðxp; ypÞ,
we compute whether salðxl; ylÞ� salðxp; ypÞ� salðxl; ylÞ � t,

with 0\t\1. This procedure is repeated for different values of

t (we use 0.6 and 0.7), and the complete set of salient regions

fs1; . . .; smg is stored for the next step.

Segmentation

In parallel to the salient region extraction, the original

image and depth data are segmented. We use colour seg-

mentation and depth segmentation separately to produce

object candidates (as we showed in Martı́n Garcı́a et al.

(2015), both modalities work best when used indepen-

dently). The process by which salient regions select seg-

ments works in the same way for each of the segmentation

methods: for each salient region s, we pick the segments

which overlap at least o per cent with s. We set this overlap

to o ¼ 30% with respect to the segment.

Image segmentation: colour candidates

We chose the algorithm by Felzenszwalb and Huttenlocher

(2004) for segmenting colour images into perceptually

coherent segments. The authors proposed a method that

constructs a graph based on the pixel neighbourhoods, and

Fig. 4 Left original frame from the Coffee Machine Sequence. Middle the saliency map. Right the raycasted 2D IOR Map

Fig. 5 Overview of the

proposed method for object

discovery. A pool of object

candidates from both colour and

depth data generates

complementary candidates

(colour figure online)
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iteratively merges groups of pixels into regions, keeping a

trade-off between the internal variability of the regions and the

difference between neighbouring components. Therefore, it

relies mainly on one parameter, k, that determines the scale of

observation.We set it in all our experiments to 200, to slightly

over-segment the images. The candidates that we obtain with

this method are shown exemplarily in the first row of Fig. 6.

Surface clustering: depth candidates

To segment the depth maps, we use a method similar to

Richtsfeld et al. (2012): we cluster neighbouring points

into uniform planar patches without discontinuities based

on their surface normals. Normal clustering starts at the

point with lowest curvature and greedily assigns neigh-

bouring points as long as they fit to the initial plane model.

The algorithm iteratively creates planar surface patches

until all points belong to some plane or are identified as

noise. An example of the segments and the candidates

obtained with this method is shown in Fig. 6, second row.

Late fusion of colour and surface patches: colour ? depth

candidates

Our proposed method for object discovery consists in a late

fusion of the best candidates from colour and depth. An

early fusion approach of both modalities would imply

producing a segmentation that incorporates both colour and

depth. As we show in Martı́n Garcı́a et al. (2015), the late

fusion approach is preferable to the early one.

Inhibition of object candidates

At this point we can use the 2D IOR map to inhibit those

candidates that correspond to regions that have already

been attended. To decide which candidates to inhibit, we

simply compute the intersection of the 2D IOR map IOR(x,

y) and the object candidate binary mask o as:

Zðx; yÞ ¼ IORðx; yÞ \ oðx; yÞ. We inhibit an object can-

didate if a certain percentage of its pixels are marked as

inhibited in the 2D IOR map:
P

x;y Zðx; yÞ=
P

x;y oðx; yÞ� h;

Fig. 6 Left side the original image; below, the saliency map. right the

successful candidates for each of the segmentation methods: colour-

based (top), depth-based (middle), and the late fusion of both

(bottom). The first column shows the corresponding segmentations;

the second displays the ground truth (gray) and the candidates’ (in

colour) bounding boxes
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we set h ¼ 0:3 in our experiments. Otherwise, the candi-

date goes to the next stage: the ranking of the candidates.

Ranking of the candidates

A critical issue is how to rank the object candidates to be

able to select the best ones first. As mentioned before, this

is important especially in robotics applications to meet

real-time constraints and to select the most promising

candidates for interaction.

In Martı́n Garcı́a et al. (2015) we investigated three

different approaches for ranking the object candidates.

Here, we use the one that gave the best results. The

ranking approach ranks object candidates using several

features extracted from the candidate mask: (1–7) Hu’s

image moments (Hu 1962), which are invariant to rota-

tion and scale; (8) a 3D convexity measure (described

below); (9) the object proposal area normalised to the

image area; (10) the average saliency of the proposal;

(11) the perimeter of the object candidate mask nor-

malised to the image area; (12) the normalised average

depth of the proposal.

Convexity is known to be among the Gestalt cues that

influence the figure-ground segregation processes (Kanizsa

and Gerbino 1976). It has been used in computational

systems as a cue to segment objects in image data (Fowlkes

et al. 2007; Kootstra and Kragic 2011) as well as in 3D

data (Karpathy et al. 2013; Potapova et al. 2014). Our 3D

convexity feature is computed following the approach of

Potapova et al. (2014): given an object’s point cloud fpig,
V is the corresponding object’s convex hull, and vj is a set

of visible faces from the current viewpoint. The convexity

measure j is calculated as the mean of the shortest dis-

tances from the object points to the visible surfaces of the

object’s 3D convex hull:

j ¼ 1

n

X

pi

dminðpi;VÞ; ð1Þ

where n is the number of object points and dminðpi;VÞ is the
shortest distance from the point to any visible face

dminðpi;VÞ ¼ min
j

dðpi; vjÞ: ð2Þ

The lower the convexity measure, the more convex

the object candidate is. Given this set of features, we

trained a support vector machine (SVM) (Chang and Lin

2011) to classify between object/non-object. Training

was done on the ground truth annotated scenes of the

Washington Dataset Lai et al. (2011). For every feature

vector, the SVM outputs the probability of the object

candidate being object/non-object. This probability is

used as a ranking score to sort candidates. To train the

SVM, the Washington dataset was divided into two

parts. One part was used for training and the other for

testing and vice versa.

Evaluation

We divide our evaluation according to the two main con-

tributions of this paper. In ‘‘Object discovery evaluation’’

section, we compare our object discovery method against

other state-of-the-art competitors. Here, we will measure

the quality of the object candidates when compared to the

annotated ground truth. Then, in ‘‘IOR evaluation’’ section,

we evaluate the proposed IOR mechanism. Here, we will

show that taking very few candidates per frame is enough

to obtain a high recall of globally discovered objects.

To evaluate our object discovery method we use two

publicly available datasets, the Washington Dataset (Lai

et al. 2011), and the Coffee Machine sequence, which we

introduced in Martı́n Garcı́a and Frintrop (2013). The latter

is a challenging scene for object discovery with high clutter,

and a total of 80 distinct objects appearing throughout the

sequence and up to 48 objects per frame. It lasts for 436

frames, and has manually annotated ground truth for every

30th frame. The Washington dataset (Lai et al. 2011) con-

tains eight sequences recorded with a Kinect camera on

household environments, and is intended to test object

recognition algorithms. Thus, it contains labelled ground

truth where different object instances appear, and serves to

evaluate our generic object candidates. Note, however, that

not all the objects that appear are labelled.

In the Washington Dataset, the ground truth is provided

as bounding boxes, so, in order to measure the overlap we

fit a bounding rectangle on each object candidate mask we

generate. On both datasets, we measure precision as the

number of correct object candidates over the total number

generated in a given frame, and distinguish two types of

recall: global recall, being the number of distinct objects

that were detected over the whole sequence, and frame

recall (or simply recall), the number of ground truth objects

that were retrieved in a single frame. We consider object

candidates as correct if they satisfy the Pascal criterion,

i.e. intersection-over-union ratio is greater than 0.5 (Ever-

ingham et al. 2007).

Object discovery evaluation

In this section, we compare our method of object discovery

to other state-of-the-art methods: the one of Potapova et al.

(2014), the Objectness measure of Alexe et al. (2012), and

the method of Manén et al. (2013). The method of Pota-

pova et al. (2014) relies on both colour and depth cues to

produce object candidates, while the methods of Alexe

et al. (2012) and Manén et al. (2013) use only colour. Our
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methods are denoted as Colour, Depth and Colour ?

Depth (C ? D) respectively, depending on the segmenta-

tion method that was used.

Washington dataset

First, we show our results on the Washington Dataset (Lai

et al. 2011). In Fig. 7, we show average precision and

recall obtained in each of the sequences (1–8) by all

methods. The results show that, in terms of recall, our

method C ? D clearly outperforms all the other methods

with an average recall of 84%. The second best is the

objectness measure of Alexe et al. (81%).

In terms of precision, the method of Potapova et al.

(2014) turns out to be the best: it produces very few object

hypotheses but these are mostly correct. Our proposed

methods achieves a precision of about 10%, whereas the

methods of Alexe and Manén only reach 4 and 3%

respectively. The generally low precision values come partly

from the fact that few objects are present in the scenes, and

not all objects are labelled as ground truth in this dataset.

In Fig. 8 we can see the global recall plot as it evolves

over time. This metric shows the percentage of objects that

have been discovered throughout the sequence, as time

passes. We show the results for two sequences of the

dataset but very similar results are obtained for the rest.

The plots reflect that the dataset is relatively easy, and after

a few frames, all the objects in the sequence are found by

all the methods we applied.

A complementary view for these results is shown in

Fig. 9, where precision and recall values are plotted over

the number of object candidates. It averages over all eight

sequences in the Washington dataset. This is useful for

deciding how many object candidates to generate. There,

one can see that by taking about 20 candidates from

method C ? D, approximately 75% of the objects are

detected in each frame.

Fig. 7 Average precision (left) and recall (right) values on the Washington dataset. Numbers in parenthesis denote the average recall/prec. over

all sequences

Fig. 8 Global recall over time for two sequences of the Washington dataset. In parenthesis, the area under curve (AUC) values
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Finally, in Table 1 we show the F-score values

obtained by each of the methods. The highest value is

achieved by the method of Potapova (0.30), followed by

our proposed approach (0.20). The relatively low value

that we obtain comes from the fact that few objects are

labelled in this dataset, and so our precision decays as

we take more candidates: by considering the same

number of candidates that the method of Potapova et al.

(2014) produces (about 12), we would obtain an F-score

of 0.56.

Coffee Machine sequence

The high recall obtained by most methods in the Wash-

ington dataset shows that the benchmark is relatively easy.

Thus, we evaluate all the methods in a sequence (Mar-

tı́n Garcı́a and Frintrop 2013) that contains many more

objects (on average 36 per frame, some frames have up to

48 objects) and plenty of clutter.

As before, we show in Fig. 10 the precision and

recall values over the number of candidates. The

Fig. 9 Precision and recall values over number of proposals/candidates on the Washington dataset. In parenthesis, the area under curve (AUC)

values

Table 1 F-score values for all

the methods in the Washington

and Coffee Machine Sequence

datasets. The three first columns

correspond to our methods

Colour ? Depth Colour Depth Alexe Manen Potapova

F-score

Washington 0.20 0.19 0.21 0.09 0.07 0.30

Coffee 0.32 0.28 0.34 0.15 0.19 0.27

Fig. 10 Coffee Machine sequence results. Left precision over number of candidates. Right recall over number of candidates. In parenthesis, the

area under curve (AUC) values
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difficulty of the sequence is reflected in lower recall

values than for the Washington dataset for all the

methods. Despite this difficulty, most of the methods

achieve a considerably higher precision (compare the

AUC values in Figs. 9 and 10). This is due to the fact

that in this dataset, all objects were labelled for the

ground truth. Finally, the F-score values are shown in

Table 1: in this dataset our proposed method obtains

the highest score (0.32).

The top 20 candidates of our method C ? D are shown

in Fig. 11 for several frames. There, one can see examples

of objects that were successfully retrieved (that satisfy the

Pascal criterion w.r.t the ground truth).

IOR evaluation

In this section, we evaluate the IOR mechanism in terms of

howwell it serves for visual scene exploration: our purpose is

to show that with a few object candidates we can still detect

most of the objects in the scene by the end of the sequence.

Thus, we constraint our object discovery method to pro-

ducing a very small number of object candidates, ranked

according to the SVM score. The experiment is illustrated in

Fig. 12 for a few frames of the Coffee Machine Sequence.

Propagation of ground truth annotations

We manually annotated our Coffee Machine Sequence on

every 30th frame. That means, we created greyscale masks

for every 30th frame, where every object kept a consistent

greyscale level (or ID) throughout the sequence. This was

already enough to evaluate our object candidates in ‘‘Ob-

ject discovery evaluation’’ section, however, in order to test

the IOR mechanism we require ground truth available in

every frame: the IOR mechanism takes place from frame to

frame, and so, its effect would be ‘‘lost’’ if we evaluated the

results on every 30th frame.

We developed a method to automatically propagate

the sparse ground truth annotations to the unlabelled

frames. The method proceeds as follows. We run the

KinectFusion algorithm a first time in order to build the

3D map of the scene. The idea is that we want to use

every annotated frame to generate interpolated ground

truth for the closest frames before and after it. For

example, manually annotated ground truth frame 90 will

be used to automatically generate the ground truth of

frames 75–105. Thus, we run KinectFusion another two

times: once backwards, generating ground truth for the

15 frames before every annotated one; and once

Fig. 11 Candidates that matched an object out of the top 20 object candidates on several frames of the Coffee Machine Sequence

Cogn Process (2017) 18:169–182 179

123



forwards, generating the ground truth of the 15 frames

following every annotated one.

So, for every frame for which ground truth exists, we

project the annotated ground truth masks to the 3D map,

and store the object labels in the corresponding voxels. For

every frame for which no ground truth exists, the object

labels are raycasted according to the current camera pose to

form a raycasted ground truth map. The results of this

method are shown in Fig. 13 for some frames of the

sequence.

Results

We show the results of our experiments in terms of global

recall over time in Fig. 14. Here, we are interested in

seeing how many objects of the scene we are able to

retrieve with as few object candidates as possible. First, we

show the effects of altering the multiple factor parameter

mf, i.e. , the parameter that controls how long does the IOR

effect last. Higher values for this factor have the effect that

once the IOR activation value is reached, it takes longer to

die out (see ‘‘3D IOR map update’’ section for details). We

show the results obtained when generating 20 candidates

per frame for our C ? D object discovery method, for three

different values of mf: 2, 4 and 6 (green, black and pink

curves respectively in Fig. 14). The global recall values

achieved were 86% for mf ¼ 2 and 4, and 91% for mf ¼ 6.

In the second part of this set of experiments we compare

the results of running our object discovery method with

IOR and without it. We chose the method that performed

best in terms of global recall in the previous experiment: 20

candidates per frame method with IOR and mf ¼ 6. We

compare it to two different configurations without IOR:

generating 20 candidates (red curve) and 255 candidates

per frame (blue curve). As the results show, fixing the

number of candidates on 20, using the IOR mechanism

makes a big difference in terms of global recall: 91 (value

reached by the pink curve) versus 73% (value reached by

the red curve). Furthermore, the results were only 2%

behind w.r.t. the method generating 255 candidates per

frame.

In short, the results show that by using the IOR mech-

anism we can rely on a much smaller number of candidates

per frame (20 as opposed to 255) and still retrieve most of

the objects in the scene (91%). A small number of candi-

dates is beneficial because it means less queries for

recognition are required and/or less interactions with the

potential objects.

Conclusion

In this paper, we have presented a computational

framework for visual scene exploration that sequentially

processes the video frames of a 3D scene and produces

visual object candidates. An attention mechanism guides

the processing of visual information by generating visual

object candidates. Exploration of new areas of the

Fig. 12 Illustration of the IOR experiment: on top some frames from

the Coffee Machine Sequence; the green bounding boxes show the

candidates that successfully matched an object. The bottom row

shows the 2D IOR map at those frames. The red arrows depict

candidates that have been attended long enough to activate the

inhibition flags (colour figure online)
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environment is allowed by an inhibition of return

mechanism implemented in spatial coordinates. Our aim

was not to model how biological systems work, but

rather to draw inspiration from findings about the human

visual system in order to build a technical system that

can successfully generate visual object candidates for

understanding 3D scenes. A principal element of our

system is attention: we believe it has a key role in

biological systems as a way to prioritise the processing

of sensory input. The same challenge is faced by

technical systems: interpreting visual data is extraordi-

nary complex, and the amount of incoming data in a

video stream can be overwhelming.

The results of our experiments show that on images

containing a great deal of clutter, our object discovery

method is able to find most of the objects. The evaluation

shows that the IOR mechanism can be applied when

sequentially exploring a scene, and with as few as 20

candidates per frame, is able to retrieve up to 90% of the

objects that are present.

Fig. 13 Manually annotated and interpolated ground truth for the Coffee Machine sequence

Fig. 14 Global recall over time on the Coffee Machine Sequence:

left, results obtained by generating 20 candidates per frame with the

IOR mechanism and different values for the mf parameter; right,

results with 20 candidates per frame with (pink) and without IOR

(red), and with 255 candidates without IOR (blue) (colour

figure online)
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