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Abstract—The performance of an audio-visual sound source
separation system is determined by its ability to separate audio
sources given the images of the sources and the audio mixture.
The goal of this study is to investigate the ability to learn the map-
ping between the sounds and the images of instruments in the self-
supervisied mix-and-seperate training paradigm used by state-
of-the-art audio-visual sound source separation methods. Theo-
retical and empirical analyses illustrate that the self-supervised
mix-and-separate training does not automatically learn the 1-to-1
correspondence between visual and audio signals, leading to low
audio-visual object classification accuracy. Based on this analysis,
a weakly-supervised method called Object-Prior is proposed and
evaluated on two audio-visual datasets. The experimental results
show that the Object-Prior method outperforms state-of-the-
art baselines in the audio-visual sound source separation task.
It is also more robust against asynchronized data, where the
frame and the audio do not come from the same video, and
recognizes musical instruments based on their sound with higher
accuracy. This indicates that learning the 1-to-1 correspondence
between visual and audio features of an instrument improves the
effectiveness of audio-visual sound source separation.

I. INTRODUCTION

Humans are capable of recognizing an audio source from
an audio mixture with high accuracy. For example, we can
attend to the speech of a chosen speaker in a crowd or to
the sound from a specific instrument in a duet. Sound source
separation is essential for humans in everyday activities such
as listening to a targeted speaker at a cocktail party, analyzing
a natural scene comprised of many sounds, or in specialized
activities such as transcribing individual instrumental tracks
from a music piece.

Sound source separation remains challenging for machines.
Current research attempts to overcome the difficulties by
learning compact representations of audio and visual signals,
facilitating the sound source separation and selection process.
Because large datasets with object and audio labels are not
available, state-of-the-art approaches rely on a combination of
transfer learning with weakly-supervised learning [2], [3] or
self-supervised learning [1], [4]–[6].

A typical architecture for audio-visual sound source separa-
tion consists of an audio network (ANet), a visual network
(VNet) and a fusion module, as illustrated in Fig. 1. The
ANet acts as a separator of the sound sources of an audio
mixture. The VNet acts as a selector which selects a sound
source based on its visual appearance. The fusion module acts
as a synthesizer responsible for generating the final output
audio signal. The synthesizer is either a linear combination
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Fig. 1. Our audio-visual sound source separation framework at test time. The
audio network takes an audio mixture, e.g., the sum of two spectrograms S1

and S2, and outputs a list of K spectrograms S̃1 . . . S̃K . The visual network
takes one video frame I1 as an object prior according to the sound source
S1 and outputs a discrete probability distribution p(type = i) = σi. The
synthesizer generates the separated sound source estimate Ŝ1 according to its
inputs.

module [1], a multi-instance multi-label learning module [2]
or a deep neural network [4], [5].

The same architecture can be used for the Audio-visual
object classification task [7], [8] in which the category of an
object (e.g. saxophone or guitar) is recognized based on its
sound and visual appearances. In Fig. 2, if each visual and
audio channel in the softmax layer from the VNet and ANet
consistently activate strongly to a particular type of instrument,
then the system is capable of recognizing that instrument based
on its visual and audio features. Given that the same network
architecture can be used for both tasks, a natural question that
arises is whether a late-fusion architecture can be trained to
learn both sound source separation and audio-visual object
classification simultaneously [1], especially when the latter
requires human supervision on the object labels.

Recent works on sound source separation [1], [9] train deep
learning models using the “mix-and-separate” paradigm. Two
video clips of two different instruments are randomly selected,
their audio tracks are mixed and the learning objective is to
separate the sounds simultaneously based on the video frames.
[1] suggested that given enough training data, audio-visual
object classification will emerge during this self-supervised
training procedure, even without any labels for the type of
instruments (e.g. flute or trumpet). However, this conjecture is
not supported by the experimental results of the PixelPlayer
model [1] that achieves a low object classification accuracy



of 42%, indicating most instruments are misclassified by the
VNet. It remains unclear whether the learning of audio-visual
object classification can emerge from the self-supervised mix-
and-separate training procedure for audio-visual sound source
separation.

In this paper, we present a new model called Object-
Prior for the audio-visual sound source separation. We use
a simplified learning framework similar to the audio-visual
sound separation task and use it to analyze how the activation
channels in the VNet and ANet are trained in the mix-and-
separate paradigm. We then provide theoretical analysis and
empirical evidence that the learning objective in the audio-
visual sound separation might inhibit the learning of audio-
visual object classification. Our proposed Object-Prior method
first trains the VNet for instrument classification based on
visual images, and then uses this pre-trained VNet to learn
the audio-visual sound source separation task. We find that
the Object-Prior method achieves high performance on both
audio-visual sound source separation and audio-visual object
classification. The Object-Prior method is evaluated on the
MUSIC [1] and AudioSet-SingleSource [2] datasets.

The paper has three main contributions:
• Theoretical analysis and empirical evidence to support

a hypothesis that the learning of audio-visual object
classification does not necessarily emerge from the
self-supervised mix-and-separate training procedure for
audio-visual sound source separation.

• A weakly-supervised audio-visual sound source separa-
tion method called Object-Prior is proposed. Object-Prior
learns audio-visual object classification and audio-visual
sound source separation simultaneously and achieves
state-of-the-art performance on the single sound source
separation task.

• Experimental analyses on the effectiveness and robustness
of the Object-Prior method on both sound source separa-
tion and audio-visual object recognition are presented.

The paper is structured as follows: Section II describes
the related work on sound source separation and cross-modal
learning. Section III develops a simplified mix-and-separate
sound separation framework based on the PixelPlayer [1]
and shows that the learning objective of this framework
does not simultaneously train a model for audio-visual object
classification. Section IV introduces the Object-Prior method
and evaluates its performance on sound source separation and
audio-visual object classification.

II. RELATED WORK

Audio-only sound source separation using mix-and-
separate training paradigm: The mix-and-separate training
paradigm has long been used extensively in the sound source
separation community. Early development of this technique
uses the addition of two signals as the mixture and spectral
clustering for the separation [10]. One of the recent formal
discussions about mix-and-separate training paradigm for deep
neural networks is the work on monaural source separation
of [11], which argues that the mapping relationship between a

mixture of two signals and the separated sources is nonlinear
and should be modeled by nonlinear models such as deep
neural networks. Several further developments such as [12]–
[14] have been made in this direction. [13] combines deep
neural networks and spectral clustering for the separation,
while [14] proposes a new training objective that encourages
the magnitude spectrograms of the original sources and the
predicted sources to be similar. In general, our work differs
from all these blind-source separation works because we
focus on the setting in which the visual cues are essential
in separating the sound sources.

Audio-visual sound source separation: Mixing two sig-
nals by summation works best when the two sources are
independent, however this assumption is unrealistic for “true”
mixed sounds [11]. To mitigate the effect of this artificial
mixing process, [5] chooses component videos of more than
one object (e.g. musical instruments) for the mixtures and
defines a loss function on each object present in all frames of
the component videos, thereby leverages more natural videos
for training. Other works use only a subset of the frames
of each component videos and aim at localizing the objects
that produce the sounds [1], [2], [15], [16]. [6] attempts at
separating sound sources recursively and avoids the constraint
on the number of sources in the mixture. The visual cues in
most of these works are static visual features of an object.
Recently, an object’s motion as a visual cue has also been
investigated [4], [17]. We refer to [18] for an extensive review
of recent deep audio-visual learning methods and applications.
The sound source selection module in all of these approaches
relies on the synchronization between the visual content and
the audio of a video to select the correct sound source based on
the visual cues. Our Object-Prior model extends these works
to the asynchronized setting.

Robust and interpretable cross-modal representation
learning: [9] regulates the training paradigm to make the
activations of visual channels to be sparse, thereby forcing the
VNet and ANet to have the 1-to-1 correspondence between the
visual channels and audio channels. Their approach allowed
the two networks to be trained simultaneously at the cost of
additional complexity in a multi-stage training. However, the
best accuracy of the VNet in [9] was still lower than 50%.
In contrast, the training procedure in our work fine-tunes the
VNet for object recognition and then learn the ANet in the
original mix-and-separate manner without any regularization.
[19] and [20] focused on the correspondence between a human
speech and the fine-grained categorization of an object (e.g.
yellow bird versus white bird), whereas our paper focuses on
the characteristics of the sound of an object and the entry-level
categorization of that object (e.g. flute versus trumpet).

III. LEARNING DYNAMICS OF MIX-AND-SEPARATE
SELF-SUPERVISED TRAINING

In this section, we present a hypothesis that the self-
supervised mix-and-separate training procedure does not au-
tomatically lead to the learning of 1-to-1 mapping between
the visual and audio channels, thereby explaining the low



h
(1)
1

h
(1)
2

h
(1)
3

σ
(1)
1

σ
(1)
2

σ
(1)
3

fully connected softmax
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Fig. 2. Mix-and-separate training with an audio mixture S1 + S2 which is generated as the sum of the audio tracks of two different videos with their
corresponding video frames I1 and I2. The audio network corresponds outputs a list of K spectrograms S̃1 . . . S̃K resembling the spectrograms from
different sources; for the purpose of illustration we set K = 3. The output of the visual network’s softmax layer provides a discrete probability distribution
over all K object types. The synthesizer assembles the separated audio source estimates Ŝ1 and Ŝ2 as a linear combination of the spectrograms S̃1 . . . S̃K

weighted by the output of the softmax layers σ(1)
i and σ(2)

i .

object classification accuracy of PixelPlayer [1]. The late-
fusion architecture is employed in which the ANet takes as
input the magnitude spectrogram of an audio mixture and
gives as output a list of K spectrograms corresponding to
audio from K different sources; the VNet takes in one or
more images indicating the targeted source and outputs a
discrete probability distribution over all K possible types
of audio source; the synthesizer is a linear combination of
all the output spectrograms from the ANet weighted by the
output probabilities from the VNet. Figure 2 illustrates this
architecture with K = 3. In section III-A, a simplified learning
framework based on PixelPlayer [1] is used to analyze how
the activation channels of the ANet and VNet are updated
after one forward pass and one backward pass of the mix-
and-separate training procedure for the network architecture
in Fig. 1 when the network is trained by gradient descent
algorithms. Section III-B presents the analysis that once one
of the two ANet or VNet confuses the two different audio
or visual signals into one channel, that mistake is propagated
to the other network. In section III-C, the PixelPlayer model
is trained on a small dataset of three instruments and shown
that it does not visually recognize one instrument, thereby
empirically verifying this hypothesis.

A. A Simplified Learning Framework

Analyzing the learning dynamics of the deep neural net-
works in [1] is challenging because of the high dimensionality
of the input signal, the model and the output signal. Instead,
we employ a simplified framework where the input and output
audio signals are represented by a scalar value. In the general
framework, each scalar value represents the magnitude of each
pixel on the spectrogram image of an audio signal.

We denote by x = (I,S) an audio-visual sample with
audio modality S and visual modality I. For simplicity, each
sample has exactly one audio source. Given a training set
X = {x1,x2 . . . ,xN} of N samples, the goal is to train
a sound source separation network in Fig. 2 using gradient
descent learning algorithm in the mix-and-separate procedure.

The network consists of a visual network VNet, an audio net
ANet and a synthesizer. The VNet takes as input the visual
signal I and outputs a discrete probability distribution over
K > 1 possible types of instrument in I. This probability
distribution is computed at the final softmax layer of the
VNet. We denote by h =

[
h1 h2 . . . hK

]T
the vector

of activations of the layer before the softmax layer.
We denote σ : RK → RK the softmax function with ith

component

σi(h) =
ehi∑K
j=1 e

hj

. (1)

To simplify the notation, we omit the h vector and write
σi = σi(h) where it is clear on which activation vector h
the softmax layer is being applied.

The ANet takes as input an audio mixture Smix and outputs
K audio spectrograms S̃1, S̃2, . . . , S̃K . Our analysis applies
for networks whose activation function is the Rectified Linear
Unit (ReLU). As a result, S̃i is non-negative for every time-
frequency bin. The synthesizer is set to be a dot product
layer which computes the predicted audio signal Ŝ as a linear
combination of the K audio signals outputted from the ANet,
weighted by the probability distribution from the VNet:

Ŝ =

K∑
i=1

σiS̃i. (2)



The loss function per time-frequency bin L : R2 → R+ is
computed as the squared error between the true audio signal
S and the predicted audio signal:

`(S, Ŝ) =
1

2
(S−

K∑
i=1

σiS̃i)
2. (3)

The forward pass: In each learning iteration, a pair of
audio-visual samples x1 = (I1,S1) and x2 = (I2,S2) is
randomly selected from the training set. The two videos are
chosen so that they contain two different types of musical
instrument and each video contains one type of instrument.
The forward pass is divided into two branches which output
two predicted audio signals Ŝ1 and Ŝ2, respectively. Using
Equation 2, the predicted audio signals is written as

Ŝ1 =

K∑
i=1

σ
(1)
i S̃i

Ŝ2 =

K∑
i=1

σ
(2)
i S̃i

(4)

where σ(1), σ(2) denote the output of the softmax layer on the
first and second branch, respectively.

The loss function on the first and second branches of the
training process is

`1 =
1

2
(S1 −

K∑
i=1

σ
(1)
i S̃i)

2

`2 =
1

2
(S2 −

K∑
i=1

σ
(2)
i S̃i)

2.

(5)

The backward pass: The partial derivative of `1 and `2
with respect to the audio channel S̃j are

∂`1

∂S̃j
= −(S1 −

K∑
i=1

σ
(1)
i S̃i)σ

(1)
j

∂`2

∂S̃j
= −(S2 −

K∑
i=1

σ
(2)
i S̃i)σ

(2)
j .

(6)

The partial derivative of `1 and `2 with respect to the visual
channel hj are

∂`1
∂hj

= −(S1 −
K∑
i=1

σ
(1)
i S̃i)(

K∑
k=1

S̃k
∂σ

(1)
k

∂hj
)

= −(S1 −
K∑
i=1

σ
(1)
i S̃i)σ

(1)
j (

K∑
k=1

(S̃j − S̃k)σ
(1)
k )

∂`2
∂hj

= −(S2 −
K∑
i=1

σ
(2)
i S̃i)σ

(2)
j (

K∑
k=1

(S̃j − S̃k)σ
(2)
k ).

(7)

The derivation of Eq. (7) uses the fact that
∑K
k=1 σ

(1)
k =∑K

k=1 σ
(2)
k = 1 and ∂σj

∂hi
= σj(δji−σi), where δji = I{i = j}

is the Kronecker delta function.

Using gradient descent algorithm, the updated value for S̃j
and hj are

S̃′j = S̃j − α(
∂`1

∂S̃j
+
∂`2

∂S̃j
)

h′j = hj − α(
∂`1
∂hj

+
∂`2
∂hj

),

(8)

where 0 < α < 1 is the learning rate.

B. Mistakes in VNet and ANet

A desirable property of this model is to have discriminative
activations in both VNet and ANet for different types of
instruments. A mistake by the VNet and ANet during training
is defined to be the case when at least one of them has
the strongest activation on the same channel for both video
samples x1 and x2. Concretely, the VNet makes a mistake if
it has the same classification for the two input visual signals.
Formally, there exists a channel j such that

j = argmax
t∈{1,...,K}

σ
(1)
t = argmax

t∈{1,...,K}
σ
(2)
t . (9)

The ANet makes a mistake if one audio channel responds
to the audio mixture while the rest are not activated. Formally,
there exists a channel j such that

∀t ∈ {1, . . . ,K} and t 6= j : S̃t = 0 and S̃j > 0. (10)

Next, we show that in the self-supervised setting where
both networks are trained simultaneously, when one of the
two networks makes a mistake, that mistake is propagated in
the other network.

When the VNet makes a mistake: We assume that the
channel j of the VNet has strongest activations on both
branches of the training procedure. Expanding Eq. (8) for S̃j
and using Eq. (6) we obtain:

S̃′j = β
(1)
j S1+β

(2)
j S2+(1−β(1)

j σ
(1)
j −β

(2)
j σ

(2)
j )S̃j+Cj (11)

where β
(i)
j = ασ

(i)
j and Cj =

∑K
k=1,k 6=j(σ

(1)
k σ

(1)
j +

σ
(2)
k σ

(2)
j )S̃k does not depend on S̃j . The weight 0 < β

(i)
j < 1

indicates how much the audio channel S̃j is pulled towards the
audio signal Si. Since S1 and S2 are the audio signals of two
different objects, the ANet is expected have one audio channel
with the largest weight for S1 and another audio channel with
the largest weight for S2. However, when the VNet makes a
mistake, by the definition in Eq. (9) both β

(1)
j and β

(2)
j are

the largest weights in both branches. Consequently, the audio
channel S̃j is pulled towards both S1 and S2 simultaneously.
Hence, this channel responds to a combination of two audio
sources S1 and S2 instead of one particular audio source.

When the ANet makes a mistake: The following proposi-
tion shows that under a specific condition, when ANet makes
a mistake then the same mistake is propagated in the VNet.

Proposition 1: When S1 ≥
∑K
i=1 σ

(1)
i S̃i and S2 ≥∑K

i=1 σ
(2)
i S̃i, if the ANet makes a mistake on channel j then

both h(1)j and h(2)j will be increased by the learning algorithm.



Proof: Since the ANet makes a mistake on channel j, using
the definition in Eq. (10) we obtain ∀k 6= j, S̃j−S̃k = S̃j > 0.
On the first branch, since S1 ≥

∑K
i=1 σ

(1)
i S̃i, it follows that

in Eq. (7) the partial derivative ∂`1
∂hj

< 0. Similarly, ∂`2
∂hj

< 0

on the second branch. Consequently, by Eq. (8), h′j = hj −
α( ∂`1∂hj

+ ∂`2
∂hj

) > hj .
The proposition states that when the predicted audio signals

in both branches are smaller than the two input audio signals,
if the ANet makes a mistake then the same visual channel in
VNet in both branches is updated to respond more strongly
toward two different objects. Due to the random initialization,
both the ANet and VNet are expected to make mistakes at
the beginning of the training phase. We hypothesize that these
mistakes are amplified as the training progresses, and when
the training finishes the ANet and VNet are unable to learn
the 1-to-1 correspondence between audio and visual data.

C. Sound source separation experiment with three instruments

To provide empirical evidence for the aforementioned hy-
pothesis, we replicate the sound source separation experiment
for the PixelPlayer model in [1] on a smaller dataset of three
instruments: accordion, trumpet and tuba. These three instru-
ment types are chosen because their classification accuracy by
the VNet and ANet of the PixelPlayer model reported in [1]
are among the highest. We extract 143 solo videos from the
MUSIC dataset [1] and divide them into a training set of 114
videos and a validation set of 29 videos. The number of videos
of each instrument in the training set is 43 for accordion,
28 for trumpet and 43 for tuba. If the VNet in the mix-
and-separate training procedure could learn object recognition,
then on this simplified dataset, after training, it should be able
to discriminate the three instrument classes by assigning one
visual channel for each of the three instruments.

In contrast, after training we find that both the VNet and
ANet are unable to differentiate between videos of trumpet
and tuba. Specifically, for all samples in the validation set,
the first channel (index 1) of the VNet is activated strongest
towards images of both tuba and trumpet videos. The second
channel (index 2) responds strongest to frames of accordion
videos, whereas the third channel (index 3) does not respond
to any instruments. The same behavior is observed on the
audio channels of the ANet. Consequently, if the first visual
channel is assigned to trumpet, then the classification accuracy
of tuba is 0% and vice versa. Surprisingly, this behavior
of the VNet and ANet does not prevent the whole model
from achieving non-trivial performance on the sound source
separation task. The sound source separation performance is
reported in three metrics: Signal-to-Distortion Ratio (SDR),
Signal-to-Inference (SIR) and Signal-to-Artifact Ratio (SAR).
Methods with higher scores in these metrics are considered
better1. The results are reported in Table I, showing that
this newly trained model, denoted as 3-class PixelPlayer, is
approximately 1 dB behind the performance of the pre-trained
model provided by the PixelPlayer authors [1] in all three

1A more detailed discussion of these metrics can be found in [21].

TABLE I
PERFORMANCE ON THE TEST SET OF 29 VIDEOS OF 3 INSTRUMENT

CLASSES.

SDR SIR SAR

3-class PixelPlayer 3.61 7.61 10.06
NMF [22] 3.14 6.70 10.10

Pre-trained PixelPlayer [1] 4.85 8.81 11.16

metrics. Note that this performance is higher to that of the
Non-negative Matrix Factorization (NMF) baseline [22].

The discrepancy in the performance of the visual object
recognition and audio source separation shows that the Pix-
elPlayer model can obtain high performance in audio-visual
sound source separation without learning the 1-to-1 correspon-
dence between visual and audio channels. Consequently, the
explainability of the model is limited.

IV. SOUND SOURCE SELECTION WITH OBJECT-PRIOR

In this section, we propose a method called Object-Prior for
preventing the VNet and ANet from using the same channel
for the audio signals of two different instruments. Section IV-A
describes the motivation for this method based on the theoret-
ical analysis in Section III. Section IV-B and IV-C provides
the empirical performance of Object-Prior in the sound source
separation task and the audio-based object recognition task.

A. Motivation for Object-Prior Method

Suppose that the VNet does not make any mistakes and
without loss of generality, it assigns visual channel 1 to the
object type in the first video x1 = (I1,S1) and channel 2
to the object type in the second video x2 = (I2,S2). In this
case, the probability distribution given by the VNet on the first
branch concentrates on index 1. Formally,

σ
(1)
j =

{
1 if j = 1

0 if j 6= 1.
(12)

Similarly, on the second branch the probability distribution
from VNet concentrates at index 2:

σ
(2)
j =

{
1 if j = 2

0 if j 6= 2.
(13)

Plugging Eq. (12) and (13) into Eq. (11) and removing the
terms equal to 0, the updated values for S̃1 and S̃2 are

S̃′1 = αS1 + (1− α)S̃1

S̃′2 = αS2 + (1− α)S̃2.
(14)

Equation 14 states that each audio channel is updated to-
wards one distinct audio source. When the training converges,
each audio channel gets assigned to the sound of one object
type. The mistakes from ANet at the beginning of the training
process are corrected in the end.

Motivated by this analysis, a two-step training procedure
is developed. Initially, the VNet is trained to recognize the
instrument type in a video frame with one-hot encoding labels.



Next, this pre-trained VNet is used in the mix-and-separate
procedure to learn the whole sound source separation network.
In the second step, the ANet and the synthesizer are trained
while the VNet is frozen. Since this procedure uses an object
recognition network trained a priori to perform sound source
separation, we call this method Object-Prior. Because the first
training step still requires human knowledge to label the types
of instrument in a small number of videos, this approach is
weakly-supervised rather than self-supervised.

B. Experiments

Experiments are carried out to measure the effectiveness of
the Object-Prior method in three aspects:
• The performance on the audio-visual sound source sepa-

ration task
• The robustness against asynchronized audio-visual data
• The ability to recognize an instrument based on its sound
Datasets: the sound separation performance is evaluated

on the MUSIC [1] and AudioSet-SingleSource [2] datasets.
The MUSIC dataset consists of 685 videos of 11 instruments,
with 536 solo videos and 149 duet videos. In this study, we
focus on solo videos. After eliminating videos that are no
longer available for download, we obtain a set of 505 solo
videos. All videos in MUSIC are guaranteed to contain the
visual appearance of their instruments in their frames. The
AudioSet-SingleSource contains 15 solo musical videos of
over 100 instrument types. Each video has a 10-second length
and contains one instrument. All the videos are selected so
that each of them has at least one frame that contains the
annotated instrument. The purpose of this selection step is to
keep the comparison fair for PixelPlayer [1] and our Object-
Prior methods which do not use all frames of a video.

Baseline: We compare the Object-Prior method to Pix-
elPlayer [1], DeepConvSep [23], NMF-MFCC [24], Co-
Separation [5] and AV-MIML [2]. DeepConvSep and NMF-
MFCC are two audio-only based approaches and serve to il-
lustrate the effectiveness of using visual cues for sound source
separation. Co-Separation [5] is a mid-fusion method. AV-
MIML [2] uses Non-negative Matrix Factorization technique
instead of deep learning to process the audio signals.

Implementation Details: Similar to [1], we use the
ResNet18 [25] architecture for VNet and the U-Net archi-
tecture with 7 down-convolutions and 7 up-convolutions for
ANet. To ensure consistency, all videos and audios are pre-
processed similarly to [1]. All videos are sub-sampled at
the rate of 8 fps and all frames are cropped to the size
224 × 224 during training and testing. All audio signals are
sub-sampled to 11kHz. The input audio mixture to the ANet is
converted to a 256×256 Short-time Fourier Transform (STFT)
representation. We use the log-frequency scale for the audio
signal and binary masks for the ANet since they are reported
to have the best SDR and SIR scores in [1]. The SDR, SIR
and SAR metrics are computed using the mir_eval library.
The implementation of the three networks is in PyTorch.

Training the instrument recognition network: The VNet
is fine-tuned on the 11 instrument categories of MUSIC

dataset. We use 90%, 5% and 5% of the solo videos in the MU-
SIC dataset for training, validation and testing, respectively.
For each video in the training set, frames are extracted at the
rate of 1 fps (i.e. 1 frame per second). For each video in
the validation and test sets, frames are extracted at the rate
of 0.5 fps (i.e. 1 frame per 2 seconds). We find empirically
that such small sampling rates are effective in reducing the
training time and preventing overfitting. In the end we have
55691 images for training, 1695 images for validation and
1903 images for testing. The VNet is fine-tuned for 20 epochs
with a constant learning rate of 0.001. The VNet takes an
image of size 224 × 224 × 3 as input and outputs a feature
vector of size of K = 11 which subsequently goes through a
softmax layer. The ground truth index of each instrument is
defined as its index in the sorted list of instrument names, i.e.
the index of the accordion is 0 and the index of the xylophone
is 11. The fine-tuning converges quickly after 5 epochs and
obtains approximately 90% accuracy on validation and test set.

Training the sound source separation network: Having
the VNet fine-tuned for instrument recognition, the ANet
and synthesizer are trained with the prior information about
object type from the VNet. From 505 usable solo videos in
the MUSIC dataset, we split these videos into 300 videos
for training, 130 videos for validation and 75 videos for
testing. The performance of the PixelPlayer [1] was reported
on a validation set, which can lead to an overly optimistic
estimation of its performance [26]. We instead report the
performance of the Object-Prior method and the PixelPlayer
on the held-out test set of 75 videos.

We train the Object-Prior on 300 videos in the training set
with the same hyper-parameters provided by the authors in [1].
The learning rate for VNet is set to 0. The number of training
epochs is 100. The learning rate is set initially at 0.001 for both
ANet and synthesizer and subsequently reduced by a factor of
10 at epochs 40 and 80.

C. Analysis

We first show that the Object-Prior method obtains higher
sound separation performance than the baseline methods on
the MUSIC and AudioSet-SingleSource datasets. Next, the
robustness of the Object-Prior method on asynchronized data
is illustrated. Finally, we compare the ability to classify an
instrument from its sound of the Object-Prior method and
the PixelPlayer [1] and show that the Object-Prior has a
significantly higher classification accuracy.

1) Sound source separation performance: The results on
the MUSIC dataset of the Object-Prior and the baselines are
shown in Table II. All the baseline methods use one frame
from each video as input to the VNet during training and
testing, even though methods like Co-Separation [5] browse
through all frames in a video to detect one suitable frame
as input to the VNet. The performances of the PixelPlayer,
NMF-MFCC and Co-Separation are taken from [5] and the
performance of DeepConvSep is taken from [1]. The Object-
Prior method outperforms the baselines by a large margin in
both SDR and SIR on the MUSIC test set with over 1dB higher



TABLE II
SOUND SOURCE SEPARATION PERFORMANCE ON THE MUSIC DATASET

SDR SIR SAR

PixelPlayer [1] 7.30 11.9 11.9
DeepConvSep [23] 6.12 8.38 11.02
NMF-MFCC [24] 0.92 5.68 6.84
Co-Separation [5] 7.38 13.7 10.8

Object-Prior (Ours) 8.92 14.49 11.44

TABLE III
PERFORMANCE ON THE FILTERED AUDIOSET TEST SET.

SDR SIR SAR

PixelPlayer [1] 1.66 3.58 11.5
AV-MIML [2] 1.83 - -

NMF-MFCC [24] 0.25 4.19 5.78
Co-Separation [5] 4.26 7.07 13.0

Object-Prior (Ours) 6.58 12.33 9.28

in both SDR and SIR compared to the second best method.
Since the SDR and SIR measure sound separation quality, this
result indicates that the prior information about object type
improves the mix-and-separate training paradigm. The Object-
Prior obtains a slightly smaller SAR than the PixelPlayer
method, indicating that the signal-to-artifact ratio in the output
of Object-Prior is higher but it does not significantly impact
the sound separation quality.

The performance of Object-Prior and other methods on the
AudioSet-SingleSource is reported in Table III. The reported
results are the average value of five runs with five different
random seeds from 0 to 4. Object-Prior outperforms the
baselines significantly on SDR and SIR with approximately
2 dB higher in SDR and 5 dB higher in SIR. These results
come from the same Object-Prior model in Table II, which is
not trained on the AudioSet dataset, indicating that the VNet
and ANet in Object-Prior generalize to the unseen videos in
the AudioSet dataset.

2) Sound source separation performance on asynchronized
data: We further evaluate the robustness of the Object-Prior
method on asynchronized data where the frame and the audio
do not come from the same video. We use the MUSIC dataset
for this experiment. Before inputting into the VNet, each frame
of the two videos in a mixture is replaced by another frame
from a randomly chosen video in the test set of the same
instrument. For example, if the frame in a video contains a
flute then it is replaced by a frame from another video also
containing the flute. The results of the PixelPlayer and Object-
Prior methods are reported in Table IV. The Object-Prior
outperforms the PixelPlayer by roughly 1 dB on SAR and 2
dB on SIR, indicating that the Object-Prior works much better
on asynchronized data. This result shows that the Object-Prior
model is applicable for asynchronized sound source separation
on an audio recording whose visual stream is not available.

3) Audio-visual instrument classification: To evaluate the
ability of the ANet to recognize an instrument based on

TABLE IV
PERFORMANCE WITH ASYNCHRONIZED DATA ON A HELD-OUT TEST SET

FROM THE MUSIC DATASET

SDR SIR SAR

PixelPlayer [1] 6.43 11.18 11.16
Object-Prior (Ours) 8.22 13.88 11.03

TABLE V
CLASSIFICATION ACCURACY BASED ON VISUAL AND AUDIO CHANNELS

OF THE PIXELPLAYER [1] AND OBJECT-PRIOR.

By Visual Channel By Audio Channel

PixelPlayer [1] 46.2% 68.9%
Object-Prior (Ours) 96.15% 92.31%

its sound, for each instrument we compute the classification
accuracy based on the strongest activated audio channel when
presented with a video of that instrument. For each of the 130
videos in the validation set, we a perform mix-and-separate
procedure with the input of both branches are the same video
of interest. For each network, the index of the channel with the
strongest activation is considered to be the classifying result.
For VNet, the strongest activated channel is taken directly
from the softmax layer. For ANet, since each audio channel
is a 256 × 256 two-dimensional array, the activation of a
channel is considered to be the average value of its elements.
The ground truth index of an instrument is identical to its
index in the fine-tuning process of the VNet. The confusion
matrix is then computed from the classification results of all
videos in the validation set. Fig. 3 illustrates the confusion
matrix of the ANet in terms of the percentage of samples
of each instrument. It can be observed that all of the 11
instruments have more than 50% classification accuracy based
on the ANet, and 7 out of 11 instruments have more than 90%
accuracy. Overall, the classification accuracy of the ANet is
92.31%, substantially higher than the reported 68.9% of the
PixelPlayer [1]. An interesting observation from the confusion
matrix in Fig. 3 is the discrepancy in the performance of
the ANet on wind instruments: the three instruments with
the lowest accuracy (saxophone, clarinet and flute) belong to
the same category of woodwind instruments, whereas the two
brasswind instruments (trumpet and tuba) are in the group
of highest classification accuracy. Given that the numbers of
woodwind and brasswind videos are similar [1], this result
indicates that certain characteristics of woodwind instruments
are more challenging to separate. Since the VNet of Object-
Prior is explicitly trained for instrument recognition, it is
expected to obtain a much higher classification accuracy than
that of the PixelPlayer. Detailed results of both ANet and VNet
are shown in Table V. We conclude that the prior information
on instrument type indeed increases the discrimination in acti-
vations of the audio channel on different types of instruments.

V. CONCLUSION

In this paper, we have proposed the Object-Prior model for
audio-visual sound source separation. This model emerges as



Fig. 3. Confusion matrix of object classifier based on audio channels. All
eleven instrument types have more than 50% accuracy.

a solution to an apparent weakness of the mix-and-separate
training procedure for audio-visual sound source separation.
We provided both theoretical and empirical analyses on the
learning process for a late-fusion mix-and-separate training
procedure, showing that the VNet and ANet are unable to
learn the proper 1-to-1 correspondence between the visual
and audio channels when they are trained simultaneously.
The effectiveness and robustness of the Object-Prior model
are evaluated empirically on two challenging datasets. The
results indicate that the Object-Prior model achieves state-of-
the-art performance on the sound source separation task while
being robust to asynchronized audio-visual data. However, the
Object-Prior model still relies on human supervision to train
the VNet and therefore is not a self-supervised method. Future
work includes regularization methods which can enforce the
1-to-1 correspondence between visual and audio channels
without relying on human supervision.
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