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Abstract. We propose distance dependent maximum margin Dirich-
let Process Mixture (STANDPM), a nonparametric Bayesian cluster-
ing model that combines distance-based priors with the discriminatively
learned likelihood of the Maximum Margin Dirichlet Process Mixture.
STANDPM generalizes the distance-based prior introduced in the dis-
tance dependent Chinese Restaurant Process for non-sequential distances
and allows modeling of complex dependencies between data points and
clusters. The generalized distance-based prior is formulated as an ab-
stract similarity measurement between a data point and a cluster. Em-
pirical results show that the STANDPM model with abstract similarity
achieves state-of-the-art performances on a number of challenging clus-
tering datasets.

Keywords: Dirichlet Process Mixture models · Chinese Restaurant Pro-
cess · Gibbs sampling · Probabilistic clustering · Uncertainty modelling.

1 Introduction and Related Work

Cluster analysis is an unsupervised technique that allows organizing a dataset
into groups of similar data points. It has been widely applied to application do-
mains such as data mining [King, 2014] and image segmentation [Achanta et al.,
2012]. Due to the absence of prior information, a number of assumptions on the
characteristics of the clusters, such as the number of clusters or the data gener-
ation process, are often needed to facilitate the clustering process. Reducing the
number of such assumptions and explicitly modeling the uncertainty about the
clusters have been one of the main research goals of this field. Several nonpara-
metric Bayesian methods have been proposed to model the uncertainty about
the number of clusters [Zhu et al., 2011], the generative model [Neal, 2000] or
the hierarchy of the clusters [Heller and Ghahramani, 2005]. One particular class
of methods that has remained popular in the last two decades is the Dirichlet
process mixture (DPM) models. The DPM models can be constructed using the
Chinese Restaurant Process (CRP) [Aldous, 1985] which specifies a prior dis-
tribution on the structure of the clusters. Viewing clusters as tables and data
points as customers in a restaurant, CRP can be intuitively described as fol-
lows: a number of customers sequentially enter a restaurant, and each of them
chooses a table to sit at. If a customer sits at a table, he is said to have a link
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from himself to the table. Each customer can choose to link to an existing ta-
ble with a probability proportional to the number of customers already sitting
at that table, or he can start a new table with a probability proportional to a
scaling parameter. The CRP prior works well when the dependencies between
customers have no impact on the table configurations. A more complex model for
dealing with complex temporal and spatial dependence between data points is
the distance dependent Chinese Restaurant Process (ddCRP) [Blei and Frazier,
2011]. In ddCRP, a customer is linked to a customer instead of a table. In other
words, a customer decides on another customer to sit with instead of a table to
sit at. The prior probability of linking two customers depends on their pairwise
distances.

DPM models often rely on Markov Chain Monte Carlo sampling techniques
such as Gibbs sampling to approximate the posterior distribution of clusters.
To keep the posterior inference tractable, DPM models are often limited by a
number of assumptions such as conjugate prior. It is also challenging for these
models to estimate the component parameters of the mixtures, especially for
mixtures of high dimensional data [Chen et al., 2016]. One recent model that
attempts to overcome these limitations of CRP-based DPM models is the Max-
imum Margin Dirichlet Process Mixture (MMDPM) model [Chen et al., 2016].
The MMDPM model turns the Gibbs sampling process into an online learning
process that efficiently learns the component parameters of the clusters from
high dimensional data. The learning process of MMDPM requires each cluster
to be represented explicitly by a vector of component parameters. In contrast,
ddCRP-based DPM models require an implicit representation of the clusters so
that the clusters can be merged together during the Gibbs sampling process [Blei
and Frazier, 2011]. Consequently, it has remained an open question of how to
combine a distance-based prior and a discriminatively learned likelihood.

This paper proposes diSTANce dependent maximum margin Dirichlet Pro-
cess Mixture (STANDPM) model, a nonparametric Bayesian clustering model
that combines the usage of pairwise distances in the ddCRP prior and the learn-
ing process for the likelihood in the MMDPM. The central idea of STANDPM
is to establish the link from a data point to a cluster via the links from that
data point to the existing data points of that cluster. This technique allows
STANDPM to use the pairwise distances between data points in the prior and
avoid merging clusters during Gibbs sampling. The probability of linking a data
point to a cluster in STANDPM depends on a similarity measurement between
a data point and a cluster, denoted as abstract similarity. The term “abstract”
refers to the fact that this similarity measurement is generally not a true dis-
tance metric. Figure 1 illustrates an example of the establishment of the links
from a data point to two clusters during Gibbs sampling. The abstract simi-
larity allows integrating domain knowledge through the prior function rather
than direct regularization of the posterior inference process as in [Chen et al.,
2014]. Our work here also differs from the distance-based priors in [Dahl, 2008]
because the prior distribution in our model does not require normalization of
the customer assignment probabilities. We focus on the integration of pairwise
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Fig. 1. Visualization of the probabilistic clustering process. The customers (data
points) and tables (clusters) are illustrated by squares and circles, respectively. Cus-
tomer 1 is choosing a table to sit. Customer 2 and 3 are sitting at table 1. Customer 4,
5, 6 are sitting at table 2. The prior probability p(.) (solid arrows) of linking customer
1 to a table is proportional to the abstract similarity g(.) between customer 1 and
that table. The abstract similarity is a function of the distances (dashed arrows) from
customer 1 to all existing customers of each table.

distances into the posterior inference using Gibbs sampling instead of variational
Bayesian techniques [Zhu et al., 2011]. This paper has two main contributions:

1) A novel, theoretically justified prior function which allows designing DPM
models that have the distance-based clustering effects of ddCRP prior without
sacrificing the efficient maximum margin likelihood of MMDPM.

2) New state-of-the-art clustering performances for Bayesian methods on a
number of large, high-dimensional datasets without being given the number of
true clusters a priori.

2 Unsupervised clustering with DPM models

We consider the following problem: Let a set X = {xi}Ni=1 of N data points in
RD generated from an unknown number of mixtures in a mixture model and a
pairwise distance function d(i, j) measuring the dissimilarity between every pair
of two data points be given. Estimate the number of mixtures and generate their
corresponding clusters of data points.

The DPM model provides a Bayesian framework for modelling the posterior
distribution over all possible clusterings of a dataset. In this framework, the data
points can be seen as samples generated from K mixtures in a Dirichlet process
mixture model DP(G0, α) with symmetric DP prior [Chen et al., 2016]:

π|α ∼ Dir(α/K, . . . , α/K)

zi|π ∼ Discrete(π1, . . . , πK)

θk ∼ G0

xi|zi, {θk}Kk=1 ∼ p(xi|θzi)

(1)
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where G0 is the base distribution, α is the concentration parameter, π is the
mixture weights, zi is the cluster indicator and θk is the parameter vector of
cluster k.

While the exact computation of the posterior distribution is often intractable,
it can be estimated by the samples generated using Gibbs sampling [Neal, 2000].
Data point xi belongs to cluster k if there is a link zi = k between them. Denote
the vector of all such links from all data points by z. Gibbs sampling samples a
cluster assignment of each data point from a conditional posterior distribution
over zi, keeping all other variables fixed. The conditional posterior in DPM is

p(zi = k|z−i,xi, {θk}Kk=1, α)

= p(zi = k|z−i, {θk}Kk=1, α)p(xi|zi = k, {θk}Kk=1)

= p(zi = k|z−i, α)p(xi|θk)

(2)

where z−i is the link vector z excluding the ith element. Above, p(zi = k|z−i, α)
is the prior and p(xi|θk) is the likelihood of a data point xi.

2.1 The distance-dependent CRP prior

Distance-based priors for DPM models have been studied extensively for their
advantages in modelling complex relationships between data points. The popular
ddCRP [Blei and Frazier, 2011] uses the pairwise distances d(i, j) to model the
prior probability of linking two data points i and j. Note that ddCRP does not
model the links from data points to clusters. Given a DPM model with ddCRP
prior, when using Gibbs sampling for posterior inference, the action of merging
two clusters is inevitable: any new link between two data points in two clusters
will merge two clusters together, resulting in a larger cluster containing all data
points from the two original clusters. Merging two clusters is possible in ddCRP
because the components of the new cluster can be computed directly from all
the data points in the two original clusters without taking into account the
components of the two original clusters.

We denote a link from data point i to data point j by ci = j. Let c be the
vector of size N of all such links. The ddCRP prior probability of establishing a
link ci = j is

p(ci = j|c−i, α) ∝ f(d(i, j)) (3)

where f is a decay function for controlling how distances affect the distribu-
tion over clusterings [Blei and Frazier, 2011] and c−i is the vector c excluding
assignment of data point i.

2.2 The maximum margin likelihood

Computing the likelihood for high dimensional data has been a long standing
problem because of the intractability in computing the normalizing constants and
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updating the parameters of the likelihood distribution [Blei and Jordan, 2005].
The recent MMDPM model [Chen et al., 2016] solves this problem by replacing
the generative model in DPM with a discriminative SVM classifier for learning
the cluster components. Whenever a data point is assigned to or removed from a
cluster, the cluster components are updated with respect to that data point only
instead of re-computing the components from all data points in the cluster. The
MMDPM model uses the vector of components θk as an explicit representation
for cluster k. The likelihood of linking a data point i to cluster k is

p(xi|θk) ∝ exp(xTi θk − λ ‖θk‖
2
) , (4)

where λ is a regularization hyper-parameter to avoid trivial clustering results
and control the separation between clusters. The MMDPM uses the standard
CRP prior which relies only on the size of the clusters:

p(zi = k|z−i, α) =
n−i,k
Z

(5)

where n−i,k is the number of data points in cluster k excluding data point i,
Z = N − 1 + α is the normalization factor. When n−i,k = 0, p(zi = k|z−i, α) =
α/Z. In contrast to ddCRP, the CRP prior links data points directly to clusters.

2.3 Combining the ddCRP prior and the MMDPM likelihood

We focus on the question of using the prior in Equation (3) for the conditional
posterior in Equation (2). During each iteration of the Gibbs sampling, the
maximum margin online learning process in MMDPM takes each data point
and its sampled cluster as a training example. In this training example, the data
point is an input and the sampled cluster is the expected output. The component
parameters {θk}Kk=1 are updated only if the signed margin from the data point
to its sampled cluster is not maximal among all clusters.

If the ddCRP prior were to be used directly, whenever two clusters are
merged, the margins from the data points in the two clusters to all other clus-
ters would have to be computed to simulate the process of linking all these
data points to a new cluster. This would add a significant computational cost of
O(N2×K×D) to each iteration of the Gibbs sampling. Furthermore, this merg-
ing operation has a reverse effect to the learning process which tries to separate
the clusters as much as possible. Since the clusters in MMDPM are explicitly
represented and separately learned, merging them directly would be impracti-
cal. In this paper, we tackle this challenge by adapting the prior function to the
max-margin likelihood learning process.

3 Distance dependent MMDPM

We present the STANDPM model as an extension of the MMDPM model by
replacing the CRP prior in MMDPM with an abstract similarity function. The
STANDPM model resolves the challenge of combining the ddCRP prior and
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the MMDPM likelihood outlined in Subsection 2.3. We show that the abstract
similarity generalizes the clustering effects in CRP and ddCRP priors.

3.1 Abstract Similarity in STANDPM

Let {x}k denote the subset of data points currently linked to cluster k. In our
new STANDPM model, the prior term in Equation (2) is expressed as a function
g of the data point i and {x}k:

p(zi = k|z−i, α) ∝ g(xi, {x}k) , (6)

where g : RD × X → R+ is a non-negative function, X is a set of points in RD.
If the cluster is new, this prior is set to α

N . When g(xi, {x}k) is a function of
the pairwise distances, the link zi is considered being drawn from a distance
dependent prior.

We keep the likelihood in our model the same as in MMDPM. Substituting
the prior in Equation (6) and the likelihood in Equation (4) into Equation (2),
we obtain the general form of the conditional posterior in STANDPM as

p(zi = k|z−i,xi, {θk}Kk=1, α)

∝ g(xi, {x}k) exp(xTi θk − λ ‖θk‖
2
) .

(7)

The normalization factor for the prior distribution is

Zi =
α

N
+

K∑
k=1

g(xi, {x}k) . (8)

Note that the normalization changes for different xi. The hyper-parameter
α controls the probability of generating a new cluster. In practice, this normal-
ization factor does not need to be computed since in each iteration of the Gibbs
sampling, each data point is only processed once.

The function g can be selected so that if the data point i is similar to the set
of data points in cluster k, then g(xi, {x}k) will be large and vice versa. In this
setting, g can be can be any non-negative function that expresses a similarity
measurement from a data point to a cluster of data points, enabling the model to
leverage possible structural information of a collection of data points. The prior
function of this STANDPM model is defined entirely by the distances between
data points and clusters.

Abstract similarity based on the nearest data point in a cluster: One
possible choice for the abstract similarity is a function of the minimum distances
from a data point to the members of a cluster. This setting brings the neighbor-
hood effect in which only a small and diverse set of the nearest neighbors of a
data point influences its decision on which cluster to join, thereby encouraging
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clusters of different sizes instead of always favoring large clusters as the CRP
prior.

This similarity measurement from a data point to a cluster is defined as

gmax(xi, {x}k) = f( min
xj∈{x}k

d(i, j)) (9)

The subscript max reflects the fact that since f is a decreasing function,
f( min

xj∈{x}k
d(i, j)) = max

xj∈{x}k
f(d(i, j)). We denote an STANDPM model with this

gmax function STANDPM-max.

Abstract similarity based on all data points in a cluster: This setting
directly integrates the clustering effect of the ddCRP prior into MMDPM. In
this case, the abstract similarity is a summation over all the links from a data
point to the members of a cluster:

gsum(xi, {x}k) =
∑

xj∈{x}k
f(d(i, j)) (10)

An STANDPM model with the abstract similarity represented by gsum func-
tion is denoted as STANDPM-sum.

3.2 Abstract similarity generalizes ddCRP and CRP priors

The CRP and ddCRP priors can both be constructed from the abstract similarity
gsum. Recall that in each iteration of the Gibbs sampling, each data point i is
processed once to select a cluster k among K existing clusters for linking.

Proposition 1 Let a DPM model with the CRP prior, a uniform distance func-
tion d(i, j) = ln(Z) and an exponential decay function f(d) = exp(−d), where
Z is the normalization factor in Equation (5), be given. Then for the data
point i and cluster k being processed in an iteration of the Gibbs sampling,
gsum(xi, {x}k) is equal to the CRP prior probability of i linking to k.

This proposition is a straightforward result of applying the given distance
and decay functions to Equation (10) which yields Equation (5).

Proposition 2 Let a DPM model with the ddCRP prior, any distance function
d(i, j) and decay function f(d) be given. Then for the data point i and clus-
ter k being processed in an iteration of the Gibbs sampling, gsum(xi, {x}k) is
proportional to the ddCRP prior probability of i linking to k.

Proof. Data point i will be linked to cluster k if it is linked to any data point
already in that cluster. The probability of i linking to k is the sum of probabilities
of links from i to any j in {x}k:
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p(zi = k|z−i, α) =
∑

xj∈{x}k
p(ci = j|c−i, α)

∝
∑

xj∈{x}k
f(d(i, j))

= gsum(xi, {x}k),

(11)

where the proportionality is due to Equation (3).

Proposition 2 shows that the abstract similarity gsum exhibits the same clus-
tering effect as the ddCRP prior: data points whose distances are small will have
high prior probability of being in the same cluster.

3.3 Time Complexity Analysis

The time complexity of each iteration in the Gibbs sampling of the proposed
model depends on the specific implementation of the abstract similarity g. For
gmax and gsum, the time complexity of each iteration is O(N2 +N ×D2 ×K),
larger than the O(N×D2×K) complexity of MMDPM. In practice, the speed of
convergence depends strongly on the speed of reduction in the number of clusters
K, so an MMDPM model converging to a large number of clusters might still
be slower than a STANDPM model converging to a small number of clusters.
In addition, the additional O(N2) is still orders of magnitude lower than the
additional O(N2 × K × D) that would have been required if merging clusters
was used. In general, the significance of the abstract similarity is in its ability
to model a larger range of clustering effects and to integrate domain-specific
constraints naturally for cluster analysis, rather than to reduce time complexity
of the inference of a DPM model.

4 Experiments

We study the effectiveness of the two abstract similarity functions gmax and
gsum by comparing the two models STANDPM-max and STANDPM-sum with
a number of baseline methods on several low and high dimensional datasets.

Baselines: the STANDPM is compared directly to three baseline models:
ddCRP, DPM and MMDPM. We also include a number of other state-of-the-
art clustering methods: Bayesian Nonparametric Kmeans (BN-Kmeans) [Kulis
and Jordan, 2012], Gaussian Mixture Model (GMM) [McLachlan et al., 2003],
Spectral clustering, DP Variable Clustering (DPVC) Palla et al. [2012]. Because
BN-Kmeans, Spectral and GMM require a pre-defined number of clusters, they
do not directly solve the problem of interest which involves estimating the num-
ber of clusters. In the experiments, they are given the number of ground truth
clusters and their performances serve only as upper bounds for their respec-
tive approaches. When possible, some results of the baseline methods are taken
from [Chen et al., 2016].
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Datasets: The models are evaluated on 10 datasets shown in Table 1, in-
cluding three synthetic datasets Aggregation, Jain and Flame (available online1);
four small datasets from the UCI Machine Learning Repository: Wdbc, Glass,
Iris, Wine 2; the MNIST dataset 3; two large datasets Reuters21578 [Cai et al.,
2005] and 20 Newsgroup4. All datasets are pre-processed and normalized similar
to [Chen et al., 2016] for a fair comparison. The Aggregation dataset is generated
from 7 Gaussian mixtures and thus the performance of the DPM model is the
upper bound for all other methods [Chen et al., 2016]. The ddCRP model is not
tested on Reuters21578 and 20 Newsgroup since it does not scale to these large
datasets, taking more than 12 hours to complete a Gibbs sampling iteration.

Table 1. Number of data points N , di-
mensionality D and number of classes
of all datasets.

Dataset N D #Classes

Jain 373 2 2
Aggregation 788 2 7
Flame 240 2 2

Wdbc 569 30 2
Glass 214 9 6
Iris 150 4 3
Wine 178 13 3

MNIST 2000 784 10

Reuters21578 8293 18933 65
20 Newsgroup 10000 61188 20

Evaluation measure: The cluster-
ing performance is measured in F-
score [Rijsbergen, 1979], V-score [Rosen-
berg and Hirschberg, 2007] (equivalent to
the Normalized Mutual Information met-
ric Becker [2011]) and Adjusted Rand In-
dex (ARI). F-score belongs to the class
of pair-matching metrics which favors a
high number of pairs of data points that
are in the same clusters in two cluster-
ing results [Amigó et al., 2009]. On the
other hand, V-score belongs to the class of
entropy-based metrics which measure ho-
mogeneity and completeness of clusters.

Hyper-parameters setting: The
Euclidean distance metric is used for the
computation of the pairwise distances in
the prior function. The decay function has
the form f(d) = exp(−dγ ) where γ is a de-

cay factor, mini,j d(i, j) ≤ γ ≤ maxi,j d(i, j). The generative model in ddCRP
is specified by the Normal-Inverse-Wishart distribution. Similar to [Chen et al.,
2016], we find that the hyper-parameter λ has the highest impact on the number
of clusters. A random search on the range from 0.001 to 5 is used to tune λ. The
number of burn-in iterations in all experiments is T = 100. After the burn-in
phase, 5 clusterings are sampled and their average score is reported. All experi-
ments are run on a computer with Intel(R) Core(TM) i7-5930K CPU 3.50GHz
and 32 GB of RAM.

Results and Analysis

Small low and high dimensional datasets: The clustering performance on
the first 8 small datasets are shown in Tables 2 and 3. The STANDPM models
1 http://cs.joensuu.fi/sipu/datasets/
2 http://archive.ics.uci.edu/ml
3 http://yann.lecun.com/exdb/mnist/
4 http://qwone.com/ jason/20Newsgroups/
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Table 2. Results by F-score on the first 8 small datasets of STANDPM and
baseline methods. Bold numbers indicate the best scores for each data set. Underlined
numbers indicate that the scores of STANDPM are better than or equal to MMDPM.

ddCRP BN-Kmeans DPM MMDPM STANDPM-max(ours) STANDPM-sum(ours)

Jain 0.37 0.57 0.59 0.73 0.76 0.87
Aggregation 0.59 0.77 0.91 0.79 0.84 0.83
Flame 0.63 0.627 0.43 0.6 0.73 0.74

Wdbc 0.61 0.80 0.43 0.85 0.85 0.87
Glass 0.39 0.49 0.49 0.51 0.54 0.52
Iris 0.75 0.74 0.71 0.75 0.75 0.76
Wine 0.33 0.87 0.36 0.68 0.88 0.90

MNIST 0.21 0.239 0.18 0.368 0.320 0.275

Table 3. Results by V-score on the first 8 small datasets of STANDPM and
baseline methods. Bold numbers indicate the best scores for each data set. Underlined
numbers indicate that the scores of STANDPM are better than or equal to MMDPM.

ddCRP BN-Kmeans DPM MMDPM STANDPM-max(ours) STANDPM-sum(ours)

Jain 0.43 0.46 0.46 0.41 0.47 0.56
Aggregation 0.81 0.76 0.90 0.75 0.86 0.85
Flame 0.52 0.53 0.41 0.29 0.63 0.61

Wdbc 0.003 0.51 0.26 0.57 0.59 0.62
Glass 0.03 0.30 0.43 0.38 0.46 0.42
Iris 0.73 0.71 0.66 0.68 0.73 0.67
Wine 0.03 0.78 0.42 0.48 0.81 0.85

MNIST 0.12 0.262 0.06 0.389 0.505 0.45

consistently outperform ddCRP and MMDPM in both F-score and V-score on all
datasets. The clustering results on the synthetic Aggregation dataset are shown
in Figure 2. It can be observed that the separation between two rightmost clusters
are captured almost perfectly by STANDPM, while MMDPM fails to do so, sug-
gesting that the abstract similarity helps improving the max-margin likelihood
learning process. In the task of character clustering on MNIST dataset, while
slightly staying behind in F-score, STANDPM models outperform MMDPM by
large margins in V-score. Without access to the true number of clusters, they
also outperforms BN-Kmeans on all datasets.
Document clustering: The Reuters21578 dataset consists of 8293 documents
of 65 categories. This dataset is challenging because the distribution of data
points into classes is highly unbalanced, with 44.77% of the data in one single
class and nearly 80% of the data in the five largest classes. As a result, meth-
ods assuming a CRP prior with “richer get richer” effects such as DPM and
MMDPM are advantageous over other methods. This advantage is reflected in
Table 4 where DPM and MMDPM outperform other methods in F-score and
ARI. However, both STANDPM models have higher V-score than MMDPM,
indicating that clusters generated by STANDPM have higher degree of homo-
geneity and completeness simultaneously. We conjecture that the abstract simi-
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Fig. 2. Visualization of the ground truth (left), clustering output by MMDPM (mid-
dle, F-score=0.79, V-score=0.75) and clustering output by STANDPM-max (right,
F-score=0.84, V-score=0.86) for the Aggregation dataset. Notice the data in the two
rightmost classes are directly connected and yet the STANDPM is able to find an
almost perfect separation between the two classes.

Table 4. Experimental results on the Reuters dataset of STANDPM in comparison
with baseline methods. GMM and spectral clustering are provided with the ground
truth number of clusters.

GMM Spectral DPM DPVC MMDPM STANDPM-max(ours) STANDPM-sum(ours)

F-score 0.173 0.09 0.484 0.32 0.507 0.335 0.379
V-score 0.464 0.432 0.472 0.395 0.335 0.372 0.434
ARI 0.123 0.062 0.383 0.211 0.416 0.265 0.273

larity could not capture the imbalance in this dataset as effectively as the CRP
prior because the Euclidean distances become less effective for high-dimensional
and sparse features [Aggarwal et al., 2001]. The same observation can be seen
in [Chen et al., 2016] where the deterministic K-means with the true number of
clusters failed to compete with MMDPM in F-score and ARI.

News article clustering: To further demonstrate scalability, we perform an
additional experiment on the 20 Newsgroup dataset with 18846 documents of
61188 vocabularies. We extract 10000 documents and project them onto 250
most frequent words similar to [Chen et al., 2016]. On this large dataset, the
STANDPM-max model outperforms MMDPM by a large margin and achieves
the best result in V-score; the STANDPM-sum model achieves the best result
in F-score, tie with MMDPM. This shows that STANDPM scales up to large
datasets. The results are given in Table 5.

Number of generated clusters: Figure 3 shows the number of clusters gener-
ated by STANDPM and MMDPM in comparison to the ground truth. Since the
abstract similarity is less dependent on the size of the clusters, STANDPM tends
to generate more clusters than MMDPM. In some cases, this leads to scattered
clusters of small sizes. Since the summation in gsum implies that large clusters
tend to have higher prior probability, it often generates more clusters gmax.
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Table 5. Experimental results on the 20 Newsgroup dataset of STANDPM in
comparison with baseline methods. GMM and spectral clustering are provided with
the ground truth number of clusters.

GMM Spectral DPM DPVC MMDPM STANDPM-max(ours) STANDPM-sum(ours)

F-score 0.088 0.095 0.094 0.09 0.10 0.077 0.10
V-score 0.104 0.061 0.049 0.02 0.066 0.18 0.061

Jain Aggregation Flame Wdbc Glass Iris Wine MNIST
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Fig. 3. Number of clusters generated by MMDPM and STANDPM for different
datasets.

5 Conclusion

This paper introduces STANDPM model, an efficient and scalable solution to
the challenge of integrating of the distance-based ddCRP prior into the max-
margin discriminatively learned DPM model. The distances are integrated via
the abstract similarity measurement between a data point and a cluster. The
abstract similarity can be flexibly chosen so that either only a subset of nearest
neighbors of a data point (gmax) or the whole set of data points (gsum) con-
tributes to the computation of the prior. We formally show that the abstract
similarity can generalize the clustering effects of ddCRP prior and there ex-
ists efficient Gibbs sampling inference for its DPM models. Experimental results
show that STANDPM models achieve state-of-the-art clustering performance on
challenging real datasets without access to the true number of clusters.
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