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Figure 1: Our variable rate shading technique for neural radiance fields using eye tracking to identify high- and low-resolution
parts of the rendered image for foveated rendering (right) in comparison to the corresponding fully rendered image (left).

ABSTRACT

Recent advancements in Neural Radiance Fields (NeRF) provide
enormous potential for a wide range of Mixed Reality (MR) applica-
tions. However, the applicability of NeRF to real-time MR systems
is still largely limited by the rendering performance of NeRF. In
this paper, we present a novel approach for Variable Rate Shading
for Neural Radiance Fields (VRS-NeRF). In contrast to previous
techniques, our approach does not require training multiple neural
networks or re-training of already existing ones, but instead utilizes
the raytracing properties of NeRF. This is achieved by merging
rays depending on a variable shading rate, which reduces the over-
all number of queries to the neural network. We demonstrate the
generalizability of our approach by implementing three alternative
functions for the determination of the shading rate. The first method
uses the gaze of users to effectively implement a foveated rendering
technique in NeRF. For the other two techniques, we utilize shad-
ing rates based on edges and saliency. Based on a psychophysical
experiment and multiple image-based metrics, we suggest a set of
parameters for each technique, yielding an optimal tradeoff between
rendering performance gain and perceived visual quality.

Keywords: neural radiance fields, variable rate shading, virtual
reality, psychophysical experiment

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—HCI design and evaluation methods—User studies;
Computing methodologies—Computer graphics—Graphics systems
and interfaces—Virtual reality

1 INTRODUCTION

Driven by the ever-increasing demand for high-quality graphics
rendering in immersive applications, ranging from gaming and en-
tertainment to Extended Reality (XR) and scientific visualization,

*tim.rolff@uni-hamburg.de

computer graphics have advanced impressively. However, the com-
plexity of today’s virtual environments and the sheer number of
geometric primitives and pixels involved in rendering them still
pose significant challenges to real-time performance, especially
on resource-constrained devices such as mobile phones, handheld
devices, or portable head-mounted displays (HMDs) [41, 59]. To ad-
dress these challenges, various techniques have emerged that reduce
the required rendering cost [27, 70, 71]. These range from today’s
common techniques to upscale image resolution, such as NVIDIA’s
Deep Learning Super Sampling (DLSS) [2] or AMD’s FidelityFX
Super Resolution (FSR) [1], to methods that exploit the inherent
properties of the human visual system. One of these methods is
Variable Rate Shading (VRS) [71, 72], a rendering optimization
technique that allows different shading rates to be applied to dif-
ferent parts of the image based on their importance and structure,
thus reducing the overall shading workload. Another approach is
Foveated Rendering (FR). This method exploits the limited human
visual acuity in the peripheral region and only displays higher levels
of detail in regions displayed to the fovea, resulting in significant
performance gains [27].

In addition to the advancement of techniques that reduce com-
putational costs with little or no visual impact, there has been con-
tinued progress in the field of deep learning-based 3D visualiza-
tion, particularly in the area of neural rendering techniques. Many
of these techniques have already shown impressive results, pro-
viding realistic, high-quality renderings [25, 47, 61, 64]. One of
the most notable examples of these techniques is Neural Radiance
Fields (NeRF) [16, 44, 47], a technique that utilizes a deep learning
model to represent the volumetric density and transmittance of a
3D scene from a set of 2D images and camera poses. Building on
the initial idea, NVIDIA recently released Instant Neural Graphics
Primitives (instant-ngp) [47], a novel implementation of NeRF that
significantly reduces training time while enabling real-time render-
ing for small to medium render volumes. This is achieved by using
a hashing algorithm and an adapted neural network architecture. In
this context, the demand for a photorealistic immersive experience
has also led to several existing solutions for the rendering of NeRFs
in immersive virtual reality (VR) [16, 40]. Despite the performance
gains with instant-ngp, rendering a NeRF model still suffers from
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high computational costs in interactive real-time systems, especially
when applied to stereoscopic VR rendering, where stable high frame
rates must be maintained for a comfortable visual experience [36].

To address this challenge, we propose VRS-NeRF, a novel ap-
proach to accelerate immersive NeRF rendering that exploits the
ray-tracing properties of volumetric rendering. In our paper, we
integrate a variable rate shading technique that merges quadratic
pixels of size n×n into larger superpixels, significantly reducing the
number of neural network queries and required rendering effort. We
design our algorithm in such a way that the function for calculating
the shading rate is exchangeable and can thus be flexibly adapted to
the use case. We evaluate the proposed VRS techniques on different
scenes, both through a psychophysical study and Structural Similar-
ity (SSIM) [66] as well as Learned Perceptual Image Patch Similarity
(LPIPS) [73] metrics. Through the proposed VRS techniques, we
aim to improve the performance of NeRF-based rendering without
lowering its perceived visual quality, thus enabling new applications
and XR use cases that require real-time and interactive rendering.
To summarize, the contributions of this work include:

• A variable rate shading mechanism for neural radiance field
rendering (VRS-NeRF), merging up to 16×16 adjacent pixels
into one superpixel. On average, this improves the perfor-
mance of NeRFs rendered through instant-ngp by 94.69%. An
advantage of our method over previous work, such as [16, 56],
is that it does not require re-training or multiple models.

• A variety of different algorithms for the determination of the
shading rate. We integrate three lightweight methods, based
on (i) the user’s gaze, (ii) edge detection, and (iii) saliency
prediction. VRS-NeRF is not restricted to the three methods,
but they rather serve as a baseline for more advanced methods,
such as adaptive shading [71].

• An evaluation of all three shading rate determination algo-
rithms through a psychophysical user experiment and the iden-
tification of thresholds for each method such that participants
are unable to identify a difference between a scene rendered
with and without VRS in 50% of the cases.

• A quantitative evaluation of our methods using SSIM [66] and
LPIPS [73] through perception-based image metrics.

2 RELATED WORK

2.1 Neural Radiance Fields
With the success of deep learning in other areas such as natural
language processing or computer vision, there has been a growing
interest in applying deep learning techniques to 3D graphics [44, 48,
57, 64] in the areas of 3D scene synthesis [75], robot teleoperation
[3, 15] or immersive journalism [14, 33]. NeRF [44] has attracted
considerable attention for its ability to represent complex, volumetric
scenes with high visual fidelity, while requiring only a simple neural
network architecture. But, despite using a small neural network,
NeRF is still computationally expensive due to the need to query
the network multiple times along a ray for each pixel. The original
work by Mildenhall et al. [44] already proposed a solution to reduce
the computational cost by training two neural networks, a coarse
and a fine network. In their original work, the coarse model is used
for hierarchical sampling of the underlying volume to generate a
probability density function (PDF) along the ray that are likely to
contain visible content. Although this approach already reduces
computational complexity, it is still limited in its applicability in
high-quality real-time interactive applications.

To address this challenge, several approaches have been proposed
that aim to improve the efficiency of NeRF-based rendering [4, 16,
26, 29, 47, 49, 74]. One approach is the recently published instant-
ngp [47]. In their work, the authors introduce the concept of a multi-
resolution hash table, which serves as an input encoder for the neural

network. In contrast, Neff et al. [49] utilize a depth oracle network
for the determination of sample importance along each view ray,
without spacial reduction of pixels, allowing for large open scenes.
The technique by Zhang et al. [74], reduces the number of cast
rays and network queries by employing a quadtree as acceleration
structure, significantly reducing training times. In contrast, [29]
utilizes a sparse voxel grid to accelerate ray marching, whereas [26]
rephrases the formulation of the neural network for efficient caching.
Another notable advance is FoV-NeRF [16], a technique designed
for VR and HMDs. It uses two neural networks to render the scene
at different resolutions. Here, they use two seperate models to render
the peripheral and foveal parts of the image, using information about
the current point of fixation from a built-in eye tracker of the HMD.
Moreover, other attempts have been made to incorporate NeRF into
popular game engines, such as Unity [40].

2.2 Adaptive Shading & Foveated Rendering

One recent adaptive shading technique is Variable Rate Shading
(VRS), which takes advantage of hardware capabilities of modern
graphics processing units (GPUs). VRS describes a method to re-
duce the shading workload per fragment by distributing the work
across tiles [63,72]. The general principle of VRS is to reuse shading
calculations across multiple fragments or pixels, avoiding redundant
calculations on visually similar fragments. The underlying algo-
rithms and techniques have been researched for more than a decade,
and several approaches to dynamic shading rates have been pro-
posed [10, 55, 63, 70, 72]. These methods either directly exploit new
hardware capabilities or propose novel rendering pipelines [72]. For
example, [55] and [63] propose a coarse shading technique that de-
couples shading and visibility computations, reducing the workload
by distributing n×m shading values over pixels. Additionally, with
multi-resolution shading and lens-matched shading, there have been
suggestions for VR-focused approaches for adaptive shading [37].
The core idea behind lens-matched shading is to avoid rendering the
scene at parts of the screen that are invisible to the user, whereas
multi-resolution shading reduces the shading rate at the distorted
parts of the image. Independent of the methods already mentioned,
there have been several approaches for adaptive sampling that take
the human visual system into account (e.g., [7,21,72]). For example,
Bolin and Meyer [7] proposed a model based on the human visual
system to compute a Just Noticeable Difference (JND) map. This
map is then used to guide the selection of important samples in
rendering algorithms. Later, Yang et al. [72] focused on exploiting
VRS hardware support by proposing an algorithm for determining
shading rates through a perceptual quality loss, achieving real-time
performance compared to previous work. In addition, due to its high
computational requirements, there have been several suggestions for
adaptive shading in the context of ray-tracing based applications to
reduce the required sampling rate [12, 18, 45, 76].

Besides adaptive shading, other techniques have been developed,
such as dynamic resolution rendering [6], checkerboard render-
ing [13, 20, 69], or projection-based approaches [43, 62]. Projection-
based approaches have become more relevant recently due to their
usefulness in VR applications [62]. Another technique that has
gained interest is foveated rendering (FR) [16, 27, 30, 43]. FR in-
creases rendering performance by exploiting the limited peripheral
vision of the human visual system and applying higher levels of
detail only in the foveal region. In their work, Hsu et al. [30] found
that most users barely notice foveated rendering at an eccentricity of
7.5°. VRS and FR have also been explored as complementary tech-
niques that can be combined to further improve rendering efficiency
and quality. For example, Palswamy and Bhonde [51] proposed a
VRS-based approach that uses FR to selectively apply higher levels
of detail to the central region of interest while reducing shading
workload in the periphery.



3 METHOD

3.1 Variable Neural Radiance Rendering
Rendering an image through a NeRF-based approach, like [44],
require approximately resx × resy × z queries to the neural network
for an image with resolution resx × resy. Each ray requires sampling
z points along the cast ray, with the ray starting at position o(x,y) in
normalized device coordinates (NDC) using the pixel coordinates
x,y and the viewing direction d of the camera. Hence, the ray can
be described by:

rx,y(t) = o(x,y)+ t ·d (1)
The color value C(r) is then calculated by evaluating the accumu-
lated transmittance T , volume density σ , and volume color c along
the ray (cf. [44, 47]), assigning exactly one color value per pixel:

C(rx,y) =
∫ tfar

tnear

T (t) ·σ(rx,y(t)) · c(rx,y(t),d) dt (2)

In our approach, we utilize these ray properties of NeRFs and pro-
pose Variable Rate Neural Radiance Fields (VRS-NeRF). VRS-
NeRF uses the idea of previous variable rate shading strategies
[63,70,72], exploiting the fact that adjacent fragments may share the
processing load if a certain criterion is met. Such a criterion may be,
for example, similar color values within a tile, or whether the entire
tile belongs to a non-salient region. However, since the concept of
fragments does not exist in NeRF rendering, we shade the output pix-
els directly. In fact, our implementation does not use a conventional
render rasterization or ray-tracing-based pipeline. We rely solely on
CUDA, without VRS hardware support or fragment shaders. For the
same reason, we do not decouple visibility and shading computation,
as suggested by Ragan-Kelley et al. [55]. To control the shading rate
s(T ) of these pixels, we define a tile T as a group of n×n square
pixels, each sharing a shading rate. As shown in Fig. 2, this shading
rate specifies the render resolution of all pixels in a tile, with all tiles
having their independent rate. For our particular implementation,
we set the tile size to be 16×16, following the previous approach
of Yang et al. [72] for optimal workload distribution. We explicitly
choose our shading rate to be a power of two for simplicity and
performance, and only allow the values s(T ) ∈ {1,2,4,8,16}= V .
The estimation of a new pixel size n̂ for all pixels in a tile is then
given by dividing the tile size n by the shading rate, resulting in:

n̂(T ) =
n

s(T )
(3)

This allows us to reduce the number of rays for an image patch
from n2 to (n/s(T ))2. Optimally, only one ray is needed to shade
the whole tile, reducing the whole tile to a single superpixel. Note
that our approach is not restricted to square image patches and
could be generalized to reduce pixel sizes along the x- and y-axes
independently. To store each shading rate, we use a shading rate
buffer. This buffer has its resolution scaled down by the tile size,
resulting in ⌈resx/n⌉×⌈resy/n⌉ shading rate values. To determine
the values, we apply an exchangeable, freely definable function
to each tile that either directly calculates the tile’s shading rate or
outputs a continuous value that can be scaled to the range [0,1].
We provide three example functions in Sec. 3.2 to demonstrate the
generalizability of our approach.

With the shading rate calculated for each tile, we can determine
the number of rays required to render the scene. Instead of construct-
ing a ray per pixel, we use the calculated shading rate to determine
new pixel positions. To estimate the superpixel color, we set the new
ray position to the center of each superpixel in the tile, resulting in a
set of rays R(T ):

R(T ) = {ru,v | u = px(T )+ ℓ(T )(x+0.5),
v = py(T )+ ℓ(T )(y+0.5),
0 ≤ x,y < n̂(T )}

(4)

Figure 2: Schematic showing an image as it would have been ren-
dered with all pixels (left) and the variable rate shading buffer cover-
ing multiple pixels (center) with a maximum tile size of 4×4 pixels,
indicated through a black frame. The blue and red checkerboard
pattern indicates the output pixel size of a tile. An example of the
output rendered through our method is depicted on the right.

with ℓ(T ) = s(T )/n describing the size of a superpixel and
(px(T ), py(T )) the screen space position of a tile. This reduces
the workload by spreading the work over several adjacent pixels,
thus reducing the number of rays needed for the final output ren-
der. Therefore, it is only necessary to calculate C(r) for all rays
r ∈ R(T ). The output color for each pixel is set depending on the
color of the corresponding superpixel that covers it. Here, we use the
shading rate to determine the tile size. We shade each pixel using the
screen space origin of the ray at the tile’s center and the tile size to
set the corresponding pixel colors. With the above made adaptions to
the original NeRF algorithm, our method does not require retraining
the neural network as we do not change the rendering mechanism
of NeRF itself. This allows us to reuse the same neural network
and network weights for different VRS algorithms such that it is
possible to change the VRS implementation while the application is
running. To train a network for a specific scene, a loss evaluation
against every pixel is still required to avoid introducing artifacts into
our shading rate determination through noise.

3.2 Shading Rate Determination

To evaluate different approaches to shading rate estimation, we eval-
uated three different baseline algorithms, Gaze, Edges and Saliency.
In our work, we focus on a stationary setup without movement or
relative observer-scene motion. This decision was made based on
previous work on classic VRS [72], which suggests that in motion,
sample rates can be even more reduced without creating a perceiv-
able loss in visual quality. It is therefore to be expected that our
measured performance gains represent a lower limit. Further, the
introduced algorithms should only provide a baseline showing the
generalizability of our method in consideration of different appli-
cations, allowing for more sophisticated techniques in the future.
The first algorithm uses the user’s gaze to estimate the shading rate,
effectively behaving like a foveated rendering method. The other
two use the image’s structural properties, with the first relying on
edges and the second using a saliency prediction method to estimate
salient regions of the image. In all three example cases, we output a
real value that is normalized to the range [0,1]. Using a threshold
mechanism, the real value v(T ) is mapped to a discrete shading rate
s(T ). In the following, we will explain all the above methods in
more detail.

Gaze: For foveated rendering, we use the gaze position cap-
tured by an eye tracker to determine the values v(T ) for each tile
T . In contrast to other approaches such as FoV-NeRF [16], we are
able to render at multiple shading rates between 1 and 16. Instead of
specifying different radii for the foveal and peripheral regions, we
normalize the gaze position

(
gx,gy

)
by dividing it by the maximum



possible distance dmax, which is the distance from the center to the
corner of an image. Hence, we calculate v(T ) through:

vgaze(T ) =

√
(px(T )−gx/n)2 +(py(T )−gy/n)2

(resx/(2n))2 +(resy/(2n))2 (5)

with n = 16 being the tile size. To estimate the shading rate s(T ) of
a tile T , we use the normalized distance vgaze(T ) and thresholds
t0, t1, t2, t3 ∈ [0,1]:

sgaze(T ) =



1 if 0 ≤ vgaze(T )< t0 ·dmax

2 if t0 ·dmax ≤ vgaze(T )< t1 ·dmax

4 if t1 ·dmax ≤ vgaze(T )< t2 ·dmax

8 if t2 ·dmax ≤ vgaze(T )< t3 ·dmax

16 if t3 ·dmax ≤ vgaze(T )≤ 1

(6)

As we have an increased number of thresholds compared to previous
work [16], we need to re-estimate the optimal thresholds. We explain
this process in detail in Sec. 4.

Edges: Edges have been shown to be an influential factor in
the perception of an image [28, 50], as they are the most probable
indicators of discontinuity in surface orientation, range, reflectance,
or illumination [5]. Therefore, details can be preserved by rendering
a more accurate representation of edges using high-resolution tiles,
while low-frequency parts of the render can be combined into larger
superpixels [72]. To achieve this, we first compute the luminance
values of all pixels from the previous render and then apply an edge
detector to each pixel to estimate high frequencies. In our case, we
use a Sobel edge detector [34, 60] on the last frame to compute the
image gradient Ix, Iy along the x-axis and the y-axis. Using both
gradients, we then estimate the magnitude of the gradient by:

I =
√

I2
x + I2

y (7)

and compute the average differential values v(T ) over the whole
16×16 tile, via:

vedges(T ) =
1

162

15

∑
x=0

15

∑
y=0

I(px(T )+ x, py(T )+ y) (8)

Using the average magnitude of the image gradient, we calculate
the maximum and minimum differential values and normalize the
values across all tiles, using the following formula:

v̂edges(T ) =
vedges(T )−min

T
vedges(T )

max
T

vedges(T )−min
T

vedges(T )
(9)

Using the normalized shading values for the edges, we then com-
pute the shading rate sedges from v̂edges by using a different set of
determined thresholds, similar to Eq. 6.

sedges(T ) =



16 if 0 ≤ v̂edges(T )< t0 ·dmax

8 if t0 ·dmax ≤ v̂edges(T )< t1 ·dmax

4 if t1 ·dmax ≤ v̂edges(T )< t2 ·dmax

2 if t2 ·dmax ≤ v̂edges(T )< t3 ·dmax

1 if t3 ·dmax ≤ v̂edges(T )≤ 1

(10)

Note that we invert the shading rate, as edge magnitudes close to
zero likely indicate low luminance variance of the tile.

Saliency: As a visual attention-based approach, we utilize
saliency maps. These capture the regions of potential inter-
est [53] and are often approximated through saliency models
[8, 11, 32, 35, 39, 42, 52]. Current state-of-the-art models use deep
learning techniques to predict human saliency. Usually, these are
directly trained on datasets of human fixation positions captured by
an eye tracker. However, they are often computationally expensive
or require additional GPU resources that are already being used to
render the neural radiance field.

Another approach explicitly designed for real-time prediction of
saliency maps has been proposed by Katramados and Breckon [35],
building on earlier work of Itti et al. [31,32]. They propose replacing
the center-surround filters with Division of Gaussian (DIVoG) filters
to improve the performance of the prediction. The algorithm gener-
ates a Gaussian pyramid from the input image U , down-sampling the
image by half in each operation, and then applies a 5×5 Gaussian
filter. Then the reverse operation is performed, up-sampling the
image and again applying a Gaussian filter after each up-sampling
step, with the last image D with the same resolution as the input.
The saliency map S is then computed by the element-wise division
at each pixel position (x,y) of the input image [35]:

Sx,y = 1−min
(

Dx,y

Ux,y
,

Ux,y

Dx,y

)
(11)

Even though the saliency map is already in the desired range of
0 to 1, we still normalize it to avoid low-resolution images if the
whole image is not salient. Here, we apply Eq. 5 to the saliency
map and perform the thresholding operation (cf. Eq. 10), using a
different set of thresholds. Before the full resolution rendering with
saliency-based VRS, we render a pre-view image of the scene with
the same resolution as the VRS buffer. This acts as a guidance for the
saliency computation and avoids temporal artifacts due to temporal
shifting of salient spots that occur because of different resolutions,
allowing for interactive usage. Further, the low-resolution image of
the pre-view results in a focus on larger objects in the scene, as the
saliency predictor already allows small input resolutions.

4 PSYCHOPHYSICAL EXPERIMENT

We performed a psychophysical experiment for two reasons. First,
we aim to evaluate the practicality of our VRS implementation using
the three exemplary methods mentioned above. Second, we want to
derive for each of these methods a set of parameter values that yield
an optimal trade-off between imperceptibility and computational
performance gain, such that no perceived loss of quality occurs
independent of the user. Here, the user analysis is a necessary step
of a two-step process, of 1) identifying a parameter set for which no
perceived loss of quality occurs, and 2) finding the pair of parameters
within this set that maximize performance. Therefore, we presented
participants with pairs of images, each consisting of two renderings
(i) with and (ii) without one of the three proposed VRS methods, in
a two-alternative forced-choice (2AFC) task.

4.1 Datasets & Visual Stimuli
To cover a wide range of applications, we chose our scenes to include
(i) interior rooms, (ii) dioramas and (iii) single objects from three
different datasets, shown in the supplementary. For the interior
rooms, we used the FoV-NeRF dataset [16], containing four different
settings. For the dioramas, we took one scene from the instant-
ngp [47] and the synthetic NeRF dataset [44]. We define dioramas
to show objects in a semi-open scene that is accessible from at
least one side. Finally, we selected two singular objects from the
synthetic NeRF dataset [44]. These are defined to show only the
object itself, without any additional scenery. We included these
synthetic scenes because they are commonly used when comparing
and benchmarking NeRF approaches and provide a use case similar
to an object viewer.



4.2 Target Parameters
As introduced in the previous section, VRS-NeRF can be applied to
any method that assigns a value between 0 and 1 to each pixel of
the rendered image. The three exemplary methods we implemented
and tested in this experiment are all inspired by human perceptual
processes and have in common that they map values v(T ) to all
possible shading rates si ∈ V using thresholds t0, t1, t2, t3 ∈ [0,1]. To
reduce the required number of parameters to be estimated down to
two, we calculate these thresholds through an exponential function
with method-dependent parameters c and k′:

ti = c · e−k′·(si−1) (12)

For Gaze, the exponential relationship is due to the non-uniform
distribution of cone photoreceptors on the retina, resulting in an
exponential fall-off of the visual acuity starting from its maximum at
the fovea [19]. For Edges and Saliency, we apply the Weber-Fechner
law [22] as suggested by Yang et al. [72]. We compute exponential
thresholds through Eq. 12 to avoid computing the logarithm of v̂ due
to lower computational complexity.

The goal of our psychophysical experiment was to determine
values for c and k′ that represent a good estimate for the specific dis-
play scenario, averaged across users, determining good choices for
c and k′ once per method. This is a necessary pre-step to determine
possible c′ and k′ values where the majority of users will not notice
the visual impact. Afterward, it is then possible to optimize in regard
to a performance metric. To cover a wide range of possible values,
we investigated a set of 9 values for the parameter space of c and
additional 9 values for k′. To determine the range, we compared the
SSIM scores (cf. Sec. 5.1) of generated images with the SSIM thresh-
old determined by Flynn et al. [23]. In their work, they determined
an SSIM threshold of 0.95 for image quality of 2D images through
the JND paradigm such that 50% of participants were unable to tell
the difference between the compressed and uncompressed images.
We assumed that their findings for 2D images can be extrapolated to
stereo images in VR, and therefore utilized their identified threshold
as a guideline for the generation of our parameter range. Hence, for
the range of c, we selected parameters to be equal to:

c ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} (13)

For the estimation of the range of k′, we computed constant values
through the following equation:

k′ =
log(10k · c)

16−1
(14)

resulting in exponentially increasing distances between SSIM curves,
as shown in Fig. 4. Here, we observed that a parameter range of

k ∈ {2,3,4,5,6,7,8,9,10} (15)

gave the best tradeoff between the number of parameters, the in-
vestigated SSIM scores, and duration required for performing the
experiment (cf. Sec. 3).

4.3 Materials
The psychophysical experiment was conducted on a Meta Quest Pro
with an integrated eye tracker. To implement our VRS approach, we
used instant-ngp [47] as our starting implementation and adapted it
as described in Sec. 3. However, we did not directly perform our
psychophysical experiment through instant-ngp, as some evaluated
values of our parameter space would have required frame timings
that are too high for the participants to feel comfortable in perform-
ing the experiment, potentially inducing simulator sickness [36].
Therefore, we opted to use Unity1, a 3D rendering and game engine,

1https://unity.com/

as our platform for the psychophysical experiment. We pre-rendered
the images generated from our parameter space and displayed them
in our Unity application as if they would have been directly ren-
dered through instant-ngp. Since we focussed on evaluating and
comparing the image quality for two identical viewpoints, we did
not provide a possibility for changing the view to the NeRF scene.
The stimuli shown in the study were displayed as screen space quads
fully enclosing the view, resulting in a fixed stereoscopic viewpoint,
displaying the scene. For the generation of these images, we used a
fixed IPD, equal to 68 mm.

4.4 Methods
We followed a within-subjects design, i.e., all participants performed
2AFC tasks with each of the three methods and all parameter values
described in Section 3.2 and 4.2. To improve generalization across
stimuli, we applied stimulus sampling [46, 67] with respect to the
presented scenes (8 options) and viewpoints (2 options per scene),
thus varying these aspects across participants and treating them as
random factors in the analysis. Two combinations from the resulting
pool of 16 scene/viewpoint stimuli were randomly assigned to every
participant for each method and each pair of parameter values. With
3 methods (Gaze, Edges, Saliency) × 9 parameter values for c × 9
parameter values for k × 2 repetitions with random scene/viewpoint,
this results in a total of 486 trials per participant.

4.5 Procedure & Participants
Before the main experiment, we conducted a preliminary user study
to estimate salient regions in our dataset. For the main experiment,
each participant was asked for their informed consent and filled
out a demographic questionnaire. We invited 13 participants to the
main experiment, 5 female and 8 male (aged between 18 and 64,
with an average age of 40.38±12.73 years). A screening question
was asked for each participant prior to the experiment to ensure
that all participants had a normal or corrected-to-normal vision.
All participants were encouraged to read through the instructions,
but were re-explained the task and materials regardless afterward.
During the experiment, 486 configurations were displayed to the
user (cf. Sec. 4.4) with each trial consisting of 5 phases. Phase (1):
A black screen with a red fixation cross was shown that required
the user’s eyes to fixate on the cross for 500 ms (without deviating
more than 5◦). Phase (2): A scene rendering for 500 ms, with or
without VRS. Phase (3): A black screen for 500 ms. Phase (4):
Display of the opposite condition of the previously displayed scene
from Phase 2 for 500 ms (e.g., with VRS if the first display was
without VRS). Phase (5): The final screen presented the 2AFC with
2 buttons labelled ’First’ and ’Second’ with a dwell time of 400 ms.
In total, each study session took approximately 60 minutes. Further
details on the entire process can be found in the supplementary.

4.6 Bayesian Analysis
The aim of our psychophysical experiment was to calculate the just
noticeable difference (JND) for each of the three VRS-NeRF meth-
ods. In a 2AFC task, the two stimuli (in our case rendering SV RS on
with and SV RS o f f without VRS) are subjectively equal when 50%
of the responses favor SV RS on and 50% favor SV RS o f f (the equiva-
lent of random guessing). Based on this notion, the JND is usually
defined as the point halfway between random guessing and 100%
preference of one of the stimuli. In our case, this corresponds to a
75% probability of participants choosing SV RS o f f , thus experiment
participants noticed a difference in visual quality between stimuli in
half of the cases. The probability ψ of choosing SV RS o f f given the
stimulus parameters c and k is defined by

ψ(c,k;θ ,γ,λ ) = γ +(1− γ −λ ) ·F(c,k;θ) (16)

with F being the underlying psychometric function [68]. γ and
(1-λ ) define the lower and upper bound of ψ , respectively, with γ

https://unity.com/


Figure 3: Pooled 2AFC responses for all combinations of the stimulus parameters c and k. The color represents the proportion of responses
SV RS o f f , thus red corresponds to a preference of SV RS o f f , blue to a preference of SV RS on, and white to the guess level of 0.5. The black
curves for methods Gaze and Edges represent the estimated JND, i.e., F = 0.5. Note that the individual cells show the raw probabilities
measured in the 2AFC before fitting a psychometric function that takes into account the miss rate λ . Raw values can therefore be greater than
0.75 even though they are below the JND curve.

being the guess rate (fixed at 0.5 level) and λ being the miss rate
(to be estimated). To account for observers lapsing, i.e., responding
incorrectly regardless of the stimuli (e.g., due to fatigue effects), the
JND is usually not assumed at the point ψ = 0.75 but at the slightly
shifted midpoint of the unscaled psychometric function F = 0.5.

Since the two stimulus parameters c and k were manipulated in
parallel, calculation of the JND was performed on a two-dimensional
psychometric surface, with c and k on the x and z-axes, respectively,
and the probability on the y-axis. As suggested by DiMattina [17],
we chose the 2D psychometric function F to be sigmoidal, consider-
ing not only contributions of each individual parameter c and k but
also their interaction:

F(c,k;θ) = σ(θ0 +θ1 · c+θ2 · k+θ12 · c · k) (17)

This results in five parameters per method, i.e., λ , θ0, θ1, θ2, and
θ12. We estimated the parameters using Markov Chain Monte Carlo
sampling with a No U-Turn Sampler (NUTS) with 4 chains, 2000
tune and 1000 draw iterations. For the priors, we assumed the
standard normal distribution for θi (i ∈ {0,1,2,12}) and the beta
distribution for λ . The 2AFC response was modeled as a Bernoulli
variable with the success probability given by ψ .

4.7 Results
Estimation of the psychometric function using Bayesian inference
yielded the following values (c,k) for the JND for Gaze (Eq. 18)
and Edges (Eq. 19):

0.5 = σ(1.4048+1.8257 · c−3.4203 · k/10−0.0216 · c · k/10) (18)

0.5 = σ(0.8957+1.7424 · c−4.5764 · k/10−1.8652 · c · k/10) (19)

The divisor 10 was used to perform Bayesian inference with a value
range of [0,1] for both c and k.

For Saliency, the 2AFC responses could not be adequately mod-
eled by the psychometric function F because (a) the probability of
choosing SV RS o f f did not continuously fall for decreasing stimulus
parameter values c and k, and (b) 40% of the parameter combina-
tions yielded probabilities that were below the assumed guess rate
of 0.5 (see Fig. 3, right). The latter corresponds to a preference
for rendered images with VRS (i.e., partly reduced resolution) over
images with the full resolution, and is therefore not reflected in our
psychometric function F . An interpretation of these results will be
provided in Section 6.

5 SYSTEM EVALUATION

In our system evaluation, we analyzed our proposed VRS-NeRF
using two image-based metrics, SSIM and LPIPS, that account for

Table 1: Average frame timings on all rendering and shading meth-
ods at a resolution of 1800× 1920 (left) and 1600× 1440 (right)
pixels on the FoV-NeRF [16], instant-ngp [47] and the NeRF [44]
datasets. Lower values preferred and best timings in bold.

Enclosing scenes
Instant-npg
w/o DLSS

Gaze Edges

Barbershop 375.43 ms 17.20 ms 22.31 ms
Classroom 388.12 ms 17.06 ms 21.28 ms
Lobby 684.47 ms 19.73 ms 33.64 ms
Stones 517.59 ms 17.75 ms 20.86 ms
Total 491.40 ms 17.94 ms 24.52 ms

Diorama scenes
Fox 343.73 ms 17.27 ms 27.53 ms
Ship 202.60 ms 17.02 ms 21.22 ms
Total 273.16 ms 17.15 ms 24.37 ms

Single objects
Chair 41.61 ms 15.00 ms 18.80 ms
Lego 52.79 ms 15.16 ms 18.74 ms
Total 47.20 ms 15.08 ms 18.77 ms

Across all scenes
Total 325.77 ms 17.50 ms 23.46 ms

Instant-npg
w/o DLSS

Gaze Edges

247.23 ms 12.56 ms 15.91 ms
257.25 ms 12.49 ms 14.95 ms
457.16 ms 14.01 ms 24.51 ms
345.52 ms 12.91 ms 14.58 ms
326.79 ms 12.99 ms 17.49 ms

230.64 ms 12.75 ms 19.76 ms
135.26 ms 12.67 ms 15.30 ms
182.95 ms 12.71 ms 17.53 ms

28.79 ms 10.83 ms 13.75 ms
35.38 ms 11.00 ms 13.82 ms
32.38 ms 10.91 ms 13.79 ms

217.15 ms 12.40 ms 16.57 ms

human perception. Using the results of our psychophysical experi-
ment, we analyzed the frame timings and performance improvements
of our system. For the analysis, we chose the same scenes as in
Sec. 4.1. Peak signal-to-noise ratio (PNSR) values can be found in
the supplementary.

5.1 Metrics
The following section briefly describes the SSIM and LPIPS metrics
used in our systematic analysis.

Structural Similarity: SSIM is a perception-based metric that
measures the structural similarity of images [65, 66]. In their work,
Wang et al. [66] define structural similarity as parts of images con-
taining structural information about their content, representing the
structure of an object in the scene. Furthermore, SSIM considers
additional information by comparing three different properties of
the input signal: the luminance, contrast, and structure of an image.
When applying the metric, two images are more structurally similar
if the output of the metric is close to one.

Learned Perceptual Image Patch Similarity: LPIPS is a
recent metric that uses features extracted from deep learning models
such as VGG [58] or AlexNet [38]. In their work, Zhang et al.
[73] observed that deep learning features extracted from pre-trained
models tend to mimic human perception. To estimate the similarity
of two images, both images are fed to a neural network and their
respective features are extracted and passed to another network for
final regression. For the final prediction, a value closer to zero
indicates more similar images.
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Figure 4: Graphs showing the SSIM (left) and LPIPS (right) curves
of our images generated using the parameters chosen for our psy-
chophysical experiment. We utilize these curves to determine the
parameter space for our evaluation (cf. Sec. 4.2).

5.2 Results

We determined SSIM and LPIPS scores for images generated
through the three tested VRS methods and plotted the results against
the perceptual threshold reported by Flynn et al. [23] (see Fig. 4).
From the images mentioned in Sec. 4, we computed the SSIM and
LPIPS values by comparing the VRS-NeRF generated output with
the reference rendered through instant-ngp. In addition, we com-
puted the Pearson correlation [24] between the SSIM scores and the
JND functions listed in Sec. 4.7 (cf. Eq. 19 and 18). This revealed
a strong correlation between the reported SSIM scores and JDN
both for Edges (r =−0.9557) and Gaze (r = 0.8969). An additional
investigation of our parameter space (cf. Sec. 4.2) was performed
to validate that the parameter combinations that were empirically
determined through the JND boundary have a SSIM score close to
the perceptual threshold of 0.95. As expected, this was not the case
for Gaze, as this method highly degrades the images at the peripheral
regions, therefore strongly influencing the SSIM score.

While the obtained LPIPS scores can serve as a basis for compar-
ison with FoV-NeRF [16], we would like to explicitly note that we
did not compare with FoV-NeRF directly due to its egocentric coor-
dinates, that require all camera poses to be inside a sphere with the
size of the near depth, which is not the case for all of our data sam-
ples. For the frame timings listed in Tab. 1, we rendered 1000 frames
of each scene and changed the camera position to a different pose
of the training set after 10 frames. We determined the viewpoints
by iterating through the camera positions of the dataset. To get an
overview of the performance on the Quest Pro and the HTC Vive Pro,
we measured the timings at the per-eye resolutions of both devices,
i.e. 1800×1920 (Quest Pro) and 1600×1440 (HTC Vive Pro). To

Table 2: Average frame timings (FT) and parameters from our JND
analysis across all scenes at a resolution of 1800× 1920 with the
parameter values determined through the JND functions for Edges
(Eq. 19), Gaze (Eq. 18), and Saliency (cf. Sec. 5.2) using the FoV-
NeRF [16], instant-ngp [47] and the NeRF [44] datasets. Lower
values preferred and best timings in bold.

instant-ngp Gaze Edges Saliency

avg. FT c k avg. FT c k avg. FT c k avg. FT
325.77 ms 0.1 5 16.49 ms 0.1 3 28.71 ms 0.5 2 32.76 ms
325.77 ms 0.2 6 16.65 ms 0.2 3 22.93 ms 0.9 3 32.75 ms
325.77 ms 0.3 6 17.06 ms 0.3 3 21.08 ms
325.77 ms 0.4 7 16.98 ms 0.4 3 20.42 ms
325.77 ms 0.5 7 17.27 ms 0.5 4 23.59 ms
325.77 ms 0.6 8 17.08 ms 0.6 4 23.15 ms
325.77 ms 0.7 8 17.27 ms 0.7 4 22.77 ms
325.77 ms 0.8 9 17.11 ms 0.8 4 22.49 ms
325.77 ms 0.9 9 17.31 ms 0.9 4 22.28 ms

Table 3: Average number of tiles at a resolution of 1800×1920 on
the entire dataset. For the full details, see the supplementary.

Method Tile size 1 Tile size 2 Tile size 4 Tile size 8 Tile size 16

Instant-ngp 3456000 0 0 0 0
Gaze 256 569 5988 11886 10204

Edges 29539 21749 32990 24748 4772
Saliency 54680 70896 67852 21332 2621

select c and k used to determine our shading rates, we followed the
analysis explained in Sec. 4. We chose the parameters closest but
below our JND curves in Fig. 3 and computed the average across
all frame timings. To render all images, we used the same neural
network and network weights trained through instant-ngp and just
varied our VRS implementation for direct comparability between
the frame timings. This approach revealed an average performance
improvement of 94.69%. Further investigation showed that opti-
mal frame timings were achieved for the parameters k = 3,c = 0.4
for Edges and k = 5,c = 0.1 for Gaze (cf. Tab. 2). As Saliency
could not be adequately modeled through the suggested psychome-
tric function, we computed the potential performance gain using
the perceptual SSIM threshold. The parameters k = 2,c = 0.5 and
k = 3,c = 0.9 selected on this basis yielded frame timings of 32.76
ms and 32.75 ms, respectively, for a resolution of 1800×1920, with
the saliency estimation taking 3.05 ms. Further investigating the
origin of the system performance, we evaluated the number of tile
sizes and rays across the dataset. Even without our method, the ray
count is highly dependent on content, as instant-ngp already disables
rays [47]. When rendering a fully enclosed scene at 1800× 1920
it usually requires 3,456,000 rays. Using our VRS method, we
measured an average reduction by 99.16% (28,903 rays) for Gaze,
96,71% (113,798 rays) for Edges, and 93,71% (217,381 rays) for
Saliency. This closely correlates with the performance increase of
94.6% for Gaze, 92.8% for Edges, and 89.9% for Saliency, indicat-
ing a correlation in runtime and number of rays. As shown in Tab. 3,
we found that approximately 25.96% of the image is rendered in
full detail and 21.75% of pixels belonged to a tile size of 8, when
using Edges (cf. the supplementary for more details). We performed
our evaluation on a RTX 3090 and an Intel i9-12900KF workstation
with 64 GB of RAM.

6 DISCUSSION AND LIMITATIONS

For Gaze and Edges VRS, parameterized by the values closest to but
below the perceptual threshold as determined in our psychophysical
experiment, we found a significant average performance gain of
94.1%. In Tab. 2, we provide additional details on the average
frame timings over all scenes when observed for a single parameter
configuration. With these initial positive results on performance gain,
and based on the proposed perceptually inspired mapping of gaze and
edge values to shading rates, further studies can follow to investigate



(a) No VRS method applied (b) Gaze with c = 0.1, k = 5

(c) Edges with c = 0.4, k = 3 (d) Saliency with c = 0.9, k = 3

Figure 5: Rendering of the barbershop scene with overlaid shading
rate using all three different approaches with parameters chosen
from Tab. 2. We encourage the reader to zoom into the images.
Here, a more reddish tone corresponds to a high shading rate of
1×1 pixels, whereas a blueish tone refers to tiles that are rendered
16×16 pixels. More examples can be found in the supplementary.

alternative mapping functions. For such follow-up studies, a suitable
parameter space could be based not only on our results but also on
the SSIM score. The strong correlation between the SSIM scores
and our determined JDN functions (cf. Sec. 5.2) supports our initial
hypothesis that the perceptual SSIM threshold of 0.95, which was
determined by Flynn et al. [23], translates into VR applications.
The results of our psychophysical experiment do not indicate a
noticeable visual quality loss due to saliency-based VRS of the
rendered NeRF scenes within the tested parameter value range (with
one exception for the extreme values c = 0.9 and k = 2). While the
measured parameter value range was not sufficient for a meaningful
fitting of a psychometric sigmoid function, the empirical results are
consistent with those of the SSIM benchmark, according to which
the structural similarity of saliency-based VRS images for almost
all parameter combinations is above a perceptual SSIM threshold of
0.95. These results warrant further investigation, as there is also a
high potential for performance gain (e.g., 89.9% for parameter values
k = 2,c = 0.5 and k = 3,c = 0.9, which yielded both a probability
of less than 75% in the psychometric experiment and an SSIM value
> 0.95). Moreover, frequent values below the guess rate of 0.5 in
our psychometric experiment support the interpretation that saliency-
based reduction of resolution may actually lead to an improvement
in perceived visual quality, possibly by reducing visual noise [54].
This could lead to an even better performance, but would require the
collection of more empirical data that would allow the fitting of a
different psychometric curve.

As mentioned in Sec. 5.2, we deliberately did not compare against
the ground truth used to train the neural network for two reasons.
First, we do not aim to produce more accurate NeRF representa-
tions of scenes than previous approaches, but rather to provide an
approach for improving the rendering performance of NeRF. Sec-
ond, due to the design of our experiment, the original polygonal
renderings were never shown to the participants, meaning that the
control image known to the participants is the NeRF rendering from

instant-ngp. Compared to previous VRS approaches, we also do not
decouple visibility from shading. This results in visually perceivable
pixel blocks that might even be noticeable in the peripheral region.
One participant noted that it was possible to determine the quality
of some images depending on the “roundness” of objects in the
peripheral region. Further work on decoupling the shape of objects
and their shading might be a promising direction to reduce these
visual artifacts.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed VRS-NeRF, a novel variable rate shading
algorithm for neural radiance fields rendering. Our method builds
on the idea of reducing queries to the neural network by merging
multiple rays into one to compute superpixel tiles. These tiles allow
us to share workload between multiple pixels to reduce the overall
rendering time required to display NeRF scenes. Furthermore, we
provided three different algorithms for the estimation of shading
rates, which we evaluated through a psychophysical experiment.
Using the thresholds determined in the experiment, we performed a
system analysis computing the frame timings for renderings gener-
ated with VRS-NeRF. Here, we were able to improve the rendering
time by 94.1% compared to instant-ngp.

In terms of future work, we believe that our approach can be
further improved by considering the shape of the objects, similar
to [55], and by allowing non-square superpixels to be processed. In
addition, a more in-depth investigation into saliency as a predictor of
shading rate might be needed, as it shows promising results that need
to be further investigated. Future studies are also needed to clarify
whether the results can be applied to dynamic scenarios where the
user can explore a scene, potentially focusing on non-salient points.
At these non-salient points, a merging of rays is performed, but
due to the approach of the saliency predictor, the presence of fine
structures is less likely, so that a merging may not be visually notice-
able. We would also like to emphasize that there may be aliasing
artifacts due to the reduced sampling. However, we believe a more
in-depth analysis for prolonged exploration of virtual scenes, includ-
ing relative movements between the user’s head and the (potentially
dynamic) objects in the scene to be a worthwhile research direction.
Here, previous work has also shown that blur applied uniformly dur-
ing head motion, while being perceivable, may be more suitable for
VR as it significantly reduces induced motion sickness [9]. While
an evaluation in terms of perceptibility and induced motion sick-
ness is beyond the scope of this paper, we recommend a thorough
investigation of the optimal transitions between our techniques for
(nearly) stationary sequences and common motion blur strategies
for dynamic sequences. Additional future extensions to the method
may incorporate other factors to determine a variable shading rate.
Inspired by work on classic rendering of dynamic scenes, such as
Motion Adaptive Shading [72], rays could be merged for moving
scene objects and/or when the user moves their head. However, we
also believe more research is needed to address potential NeRF noise
interference when using traditional VRS techniques for shading rate
determination. For rendering in VR headsets, the specific lens optics
and resulting image distortions could be considered to reduce the
shading rate at the usually highly compressed image edges or to even
stop rays completely if corresponding pixels would be discarded
during the rendering pipeline anyway [37]. Compared to classical
rendering, NeRF opens up another dimension for reduction, namely
the number of samples along each individual ray. While VRS ad-
justs the local resolution of the rendered image, ray sampling would
affect the color accuracy of individual pixels and thus could be used
complementary to VRS. Finally, VRS-NeRF is not limited to im-
mersive environments and, due to the flexibility of the shading rate
determination, does not depend on the availability of an eye tracker.
In the future, it could therefore also be investigated for common 2D
applications.
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[21] J.-P. Farrugia and B. Péroche. A progressive rendering algorithm using
an adaptive perceptually based image metric. In Computer Graphics
Forum, vol. 23, pp. 605–614. Wiley Online Library, 2004.

[22] G. T. Fechner, D. H. Howes, and E. G. Boring. Elements of psy-
chophysics, vol. 1. Holt, Rinehart and Winston New York, 1966.

[23] J. R. Flynn, S. Ward, J. Abich, and D. Poole. Image quality assess-
ment using the ssim and the just noticeable difference paradigm. In

Engineering Psychology and Cognitive Ergonomics. Understanding
Human Cognition: 10th International Conference, EPCE 2013, Held
as Part of HCI International 2013, Las Vegas, NV, USA, July 21-26,
2013, Proceedings, Part I 10, pp. 23–30. Springer, 2013.

[24] D. Freedman, R. Pisani, and R. Purves. Statistics (international student
edition). Pisani, R. Purves, 4th edn. WW Norton & Company, New
York, 2007.

[25] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa. Plenoxels: Radiance fields without neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5501–5510, 2022.

[26] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin.
Fastnerf: High-fidelity neural rendering at 200fps. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp.
14346–14355, 2021.

[27] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3d
graphics. ACM transactions on Graphics (tOG), 31(6):1–10, 2012.

[28] T. Hansen and K. R. Gegenfurtner. Independence of color and lu-
minance edges in natural scenes. Visual neuroscience, 26(1):35–49,
2009.

[29] P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debevec.
Baking neural radiance fields for real-time view synthesis. ICCV, 2021.

[30] C.-F. Hsu, A. Chen, C.-H. Hsu, C.-Y. Huang, C.-L. Lei, and K.-T.
Chen. Is foveated rendering perceivable in virtual reality? exploring
the efficiency and consistency of quality assessment methods. In
Proceedings of the 25th ACM international conference on multimedia,
pp. 55–63, 2017.

[31] L. Itti and C. Koch. A saliency-based search mechanism for overt and
covert shifts of visual attention. Vision research, 40(10-12):1489–1506,
2000.

[32] L. Itti and C. Koch. Computational modelling of visual attention.
Nature reviews neuroscience, 2(3):194–203, 2001.

[33] S. Jones. Disrupting the narrative: immersive journalism in virtual
reality. Journal of Media Practice, 18:171 – 185, 2017.

[34] N. Kanopoulos, N. Vasanthavada, and R. L. Baker. Design of an
image edge detection filter using the sobel operator. IEEE Journal of
solid-state circuits, 23(2):358–367, 1988.

[35] I. Katramados and T. P. Breckon. Real-time visual saliency by division
of gaussians. In 2011 18th IEEE International Conference on Image
Processing, pp. 1701–1704. IEEE, 2011.

[36] E. M. Kolasinski. Simulator sickness in virtual environments. US Army
Research Institute for the Behavioral and Social Sciences, 1995.

[37] M. Kraemer. Accelerating your vr games with vrworks. In NVIDIAs
GPU Technology Conference (GTC), 2018.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in Neural
Information Processing Systems, vol. 25. Curran Associates, Inc., 2012.
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methods for rendering virtual reality. In High Performance Graphics,
pp. 163–171, 2016.

[63] K. Vaidyanathan, M. Salvi, R. Toth, T. Foley, T. Akenine-Möller,
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