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Real-time detection of saccades is of major interest for many applications in human-computer interaction and mixed reality. However,
due to relatively low update rates and high latencies of current commercially available eye trackers, gaze events are typically detected
after they occur with some delay. This limits interaction scenarios such as intent-based gaze interaction, redirected walking, or gaze
forecasting.

In this paper, we propose a deep learning framework for time-to-event prediction of saccades. In contrast to previous approaches,
we utilize past multimodal data captured from head-mounted displays. We combine the well-established transformer architecture with
a Weibull Mixture Model. This also allows estimating the uncertainty of the prediction. Additionally, we propose a sampling strategy
that differs from conventional approaches to better account for the temporal properties of gaze sequences. We demonstrate that our
model achieves state-of-the-art performance by evaluating it on three datasets and performing multiple ablation studies.
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1 INTRODUCTION

When exploring a scene, we as humans constantly move our eyes to acquire information about the surrounding
environment. One key reason for these constant eye movements is the limited area of sharp vision that our eyes possess,
known as the fovea [Østerberg 1935]. The fovea is responsible for high visual acuity, but only covers a small portion
(the central 2 degree) of the visual field [Davson 1990; De Valois and De Valois 1980], requiring us to constantly move
our eyes to bring different parts of the scene into focus. These eye movements, including saccades, fixations, and
smooth pursuits, are a crucial aspect of perception in both real-world and virtual environments (VEs), while their
analyses provide valuable insights into different cognitive processes and the user’s perception of the current scene.
As each of these types has its inherent properties, it is possible to classify them into their respective category. This
classification has been well-researched, and multiple algorithms have been proposed to identify saccades and fixations
[Agtzidis et al. 2016; Andersson et al. 2017; Dar et al. 2021; Komogortsev and Karpov 2013; Salvucci and Goldberg
2000; Startsev et al. 2019; Zemblys et al. 2019]. However, a major restriction of these classification methods is that they
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can only label a gaze sample after it has been captured, inducing significant latency before the classification can be
used for advanced human-computer interaction (HCI) techniques. Furthermore, they often have to rely on only a few
samples to correctly classify eye movements, as these are of short duration and update rates of wearable eye trackers are
comparably low with sampling rates around 100 Hz [Stein et al. 2021]. This particularly applies for saccades, which are
fast eye movements with a duration of 30-80 ms [Holmqvist et al. 2011] and a peak velocity of up to 900◦/𝑠 [Bahill et al.
1975]. Another limitation is the high latency of wearable eye trackers in head-mounted displays (HMDs), which can
take up to 81 ms [Stein et al. 2021], further adding a delay prior a potential classification. Overall, the described aspects
challenge the real-time utilization of gaze events and may result in an event being classified too lately for being used in
real-time HCI applications. For instance, previous work has suggested inducing changes to the scene during a saccade
or blink, when visual input is suppressed [Langbehn et al. 2018; Sun et al. 2018]. However, these techniques require fast
and reliable detection of such fast eye movements and are rarely applicable due to the aforementioned delays. Previous
approaches aim to mitigate this problem, either by relying on long saccade durations [Sun et al. 2018] or requiring
intentional blinking [Langbehn et al. 2018], deviating from the pure observation of the entirety of natural eye movements.

A different approach for gaze classification was recently introduced by Rolff et al. [2022]. The authors redefined the
problem of gaze classification as a time-to-event prediction problem of gaze events. They particularly focus on predicting
saccades (i.e., time-to-saccade), but the flexibility of the proposed approach also allows the application to other gaze
events, such as fixations or blinks. In contrast to the previously mentioned classical classification approaches, the
remaining time until the next saccade is estimated for each input sample of an eye tracker. The information about the
duration until a specific event occurs is beneficial, as it is often not essential if the class for each time step is known, but
rather when its class will change [Langbehn et al. 2018; Sun et al. 2018]. Furthermore, knowledge about when the next
saccade event will occur can be utilized for a wide variety of HCI applications, including scan path prediction [Yang et al.
2017] or to adaptively increase an eye tracker’s sampling rate shortly before event occurrence [Leube et al. 2017]. Time-
to-saccade prediction has enormous potential for virtual reality (VR) applications, for instance, to estimate gaze shifts in
gaze forecasting [Hu et al. 2021a, 2020], blink or saccade detection for redirected walking [Langbehn et al. 2018; Sun et al.
2018], gaze contingent rendering [Arabadzhiyska et al. 2017], and intent-based gaze interaction [David-John et al. 2021].
Knowing the time to the next saccade could improve the above applications, for example, by forcing a gaze shift during
the saccade in gaze forecasting or by rotating the VE from the exact beginning of the saccade in case of redirectedwalking.

In this paper, we propose a deep learning architecture for time-to-saccade prediction. Our framework utilizes historic
data to predict the probability of an event through a probabilistic recurrent Weibull mixture model [Nagpal et al. 2021;
Weibull 1951]. The predicted probability enables to estimate the time-to-saccade while simultaneously expressing the
uncertainty of the output. As fixation durations are highly variational [Nuthmann 2017], we propose the utilization of
task features with other multimodal data samples of the HMDs or wearable eye trackers, such as last gaze positions
and head accelerations. We also propose a sampling strategy for training and evaluation that allows to take temporal
behavior of gaze sequences into account, when compared to previous work of Rolff et al. [2022]. To demonstrate the
benefits of our approach, we will evaluate our proposed architecture against the current state-of-the-art algorithms and
datasets, and perform ablation studies on our architecture regarding model parameters. For this validation, we use the
DGaze [Hu et al. 2020], FixationNet [Hu et al. 2021a], and Ego4D [Grauman et al. 2022] datasets.
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To summarize, our work combines the following contributions:

• We propose a multimodal deep learning architecture that outperforms the previous state-of-the-art approach for
time-to-event prediction of saccades by utilizing historic multimodal data, such as gaze and task, to generate a
prior distribution, which we utilize to modify a Weibull mixture model for the time-to-event.

• We propose a novel prediction strategy utilizing information from classical eye-movement classifiers.

2 RELATEDWORK

2.1 Time-to-Event Prediction

Time-to-event prediction has been extensively studied, with multiple proposed approaches for non-recurrent predictions.
As a result, multiple frameworks have been presented over the years, such as proportional hazards models like the Cox
model [Cox 1972], non-parametric models like the Kaplan–Meier estimator [Kaplan and Meier 1958], survival forests
[Ishwaran et al. 2008; Wright et al. 2017], parametric models using probability distributions [Ranganath et al. 2016],
survival support vector machines [Pölsterl et al. 2015], or, more recently, deep learning-based approaches [Katzman
et al. 2018; Kvamme and Borgan 2019; Lee et al. 2018]. In comparison, recurrent time-to-event prediction is still a recent
research direction, with only a few proposed models so far. An early approach for recurrent time-to-event prediction
using a parametric approach was suggested by Martinsson [2016], who proposes a recurrent neural network using the
Weibull distribution for churn prediction, which was later extended by [Bennis et al. 2021] and [Nagpal et al. 2021]. In
contrast to previously mentioned approaches, the method by Martinsson reevaluates the time-to-event of the same
subject using the provided temporal data for each input sample. Similar approaches were later proposed by [Yang
et al. 2017] and [Avati et al. 2020], who utilized a log-normal distribution as parametric model. Later, Soleimani et al.
[2017] established the use of Gaussian processes for time-to-event prediction. More recently, Neumann et al. [2019]
provided a method for future event prediction in the image domain using a Gaussian Mixture Model heatmap. Another
notable method was recently proposed by Ren et al. [2019] and Hu et al. [2021b], who use a non-parametric approach
by directly predicting the hazard function.

2.2 Time-to-Saccade Prediction & Fixation Duration Analysis

The concept of time-to-saccade prediction was introduced fairly recently, with the current state-of-the-art approach
only utilizing classical machine learning algorithms [Rolff et al. 2022]. The authors found that a linear regressor with
Nyström kernel approximation [Williams and Seeger 2001] performed the best on all evaluated datasets when trained
through stochastic gradient descent (SGD) [Robbins and Monro 1951]. They estimate a good feature set by generating a
total of 104 features calculated from gaze and inertial measurement unit (IMU) data. Furthermore, these features were
ranked in their usefulness for the final prediction. To evaluate their approach, Rolff et al. utilized the mean absolute
error (mae) on a set of randomly sampled time-to-event values. While the predictive model outperforms the baseline of
the average duration length, the authors argue that the predictive error of the analyzed models may be still too high to
be usable for VR or real-world applications.

Even though the problem statement of time-to-saccade prediction is different from fixation duration analysis, they
closely relate to one another. The difference, however, is that most fixation duration studies analyze fixation durations
on population data (see [Dorr et al. 2010; Kowler 2011; Nuthmann 2017; Nuthmann et al. 2010; Salthouse and Ellis
1980; Walshe and Nuthmann 2021]) rather than predicting singular gaze events of individuals, which is highly desired
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Fig. 1. Illustration of the sampling strategy: we split the features into multiple sequences at the occurrence of a saccade. Each
sequence contains multiple samples and is placed into the respective dataset. A regression model (green line) is then used to predict
the recurrent time-to-event of the sequence.

for the time-to-saccade prediction task. Nonetheless, these studies analyze the impact of specific data modalities on
the overall fixation duration. For example, Nuthmann [2017] has shown that fixation durations are highly variable
and depend on multiple factors like oculomotor movements and image stimuli, as well as other constraints, such as
saccade suppression, amplitude of the next saccade, change in saccade direction, and viewing time [Dorr et al. 2010;
Kowler 2011; Nuthmann 2017; Salthouse and Ellis 1980]. Some of the listed works already proposed statistical models
for fixation durations based on population data [Nuthmann 2017; Nuthmann et al. 2010; Walshe and Nuthmann 2021].

3 METHOD

In this section, we give an overview of our methodology. For the time-to-saccade prediction, we utilize historical gaze,
IMU data, and task information through our proposed deep learning framework. The time-to-saccade redefinition is
especially well-suited for deep learning, as it transforms a sparse classification problem of event changes into a dense
regression problem, thus enabling the use of advanced concepts from recurrent time-to-event prediction. Additionally,
we propose a different sampling technique that uses the information of classical gaze classification approaches. First,
we will describe our sampling strategy, followed by a brief explanation of time-to-event prediction and Weibull mixture
models. Lastly, we will detail our architecture and describe the loss function.

3.1 Sampling

Eye trackers often report gaze points along with additional information on gaze events like blinks, fixations, or saccades.
With this information, we can start a new prediction directly after the end of the last event instead of predicting
the time-to-saccade at an arbitrary location in the gaze stream. This avoids that the network has to learn to reset
the time-to-saccade at the end of an event while simultaneously providing helpful properties for evaluation. Hence,
we propose a sampling strategy that groups samples of the same time-to-saccade sequence into the same train, test,
or validation dataset, as shown in Fig. 1. This is accomplished by splitting the gaze signal at the occurrence of an
event, rather than selecting samples at random like Rolff et al. [2022], resulting in sequences comprised of multiple
individual samples. This method also offers the benefit of strictly monotonically decreasing time-to-saccade values
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within each sequence, with the rate dependent on the eye tracker’s frequency. Using the update frequency 𝑓𝑖 at step 𝑖 ,
time-to-saccade values (𝑡𝑡𝑠) can be calculated through the equation 𝑡𝑡𝑠𝑖+1 = 𝑡𝑡𝑠𝑖 − 𝑓 −1

𝑖
. The first time-to-saccade value

is equal to the total duration of the sequence, with subsequent values decreasing until the event. In contrast to random
sampling, this provides the ability to take the temporal property of the gaze data into account, as otherwise the samples
of the same time-to-saccade sequence might have been selected for different datasets. As a result, it would be impossible
to evaluate the temporal behavior without the predictor having seen part of the data.

3.2 Survival Analysis & Weibull Mixture-Model

Before going into the details of our framework, we briefly explain the concepts of survival analysis and Weibull mixture
models. First, we assume that gaze data is stateful, independently censored, and can be modeled as a time varying
covariate. Statefulness implies that each step of the prediction is characterized by the preceding steps [Nagpal et al.
2021], whereas the assumption of independently censored data is the common assumption of random non-informative
censoring in static survival analysis [Schober and Vetter 2018]. We argue that all assumptions are met for time-to-saccade
prediction, as the remaining duration 𝑡 of the to be predicted sequences is dependent on previous covariates, and close to
none of the data sequences are censored, as only the time-to-event of the last sequence in a capture is unknown. As we
follow the reinterpretation of gaze classification as a time-to-event problem, we can use the log-likelihood function L
of typical survival models [Moore 2016], defined as the sum of log-likelihoods for uncensored sequences (UC), where
the exact time-to-saccade 𝑡 𝑗

𝑖
is known, and right-censored sequences (RC), where the time-to-saccade is known to be

greater than 𝑡
𝑗
𝑖
:

L(𝜃 ) =
∑

𝑗 ∈UC

𝑛 𝑗∑
𝑖=1

log 𝑃 (𝑇 = 𝑡
𝑗
𝑖
|𝜃 ) +

∑
𝑗 ∈RC

𝑛 𝑗∑
𝑖=1

log 𝑃 (𝑇 > 𝑡
𝑗
𝑖
|𝜃 ) . (1)

Here, 𝑛 𝑗 denotes the length of the sequence 𝑗 . Due to the observation that there are less than 0.66% censored samples in
our dataset, we simplify the log-likelihood by assuming that all samples are uncensored. Note here that 𝑃 (𝑇 = 𝑡

𝑗
𝑖
|𝜃 ) is

not the probability of a saccade occurring at time 𝑡 𝑗
𝑖
but its likelihood. Further, the likelihood function of a gaze sequence

𝑗 is dependent on the set of 𝑛 𝑗 previously made recurrent observations 𝑋 𝑗 = {(𝑥 𝑗
𝑖
, 𝑡

𝑗
𝑖
) |1 ≤ 𝑖 ≤ 𝑛 𝑗 }, with 𝑥

𝑗
𝑖
being the

corresponding observation at time step 𝑖 , and 𝑡 𝑗
𝑖
being the observed time-to-saccade. The simplification together with

involvement of the recurrent observations lead to the following log-likelihood for all steps within a sequence 𝑗 :

L(𝜃 |𝑋 𝑗 ) =
𝑛 𝑗∑
𝑖=1

log 𝑃 (𝑇 = 𝑡
𝑗
𝑖
|𝑥 𝑗
𝑖
, 𝜃 ) . (2)

For a continuous probability density function (PDF) 𝑓 , the likelihood 𝑃 (𝑇 = 𝑡) of a saccade happening at time 𝑡 is
equivalent to the value 𝑓 (𝑡). When using a Weibull distribution, defined through shape 𝛽 and scale 𝜂, as the PDF, the
likelihood can be calculated through:

𝑃 (𝑇 = 𝑡
𝑗
𝑖
|𝑥 𝑗
𝑖
, 𝜃 ) = 𝑓 (𝑡 𝑗

𝑖
|𝑥 𝑗
𝑖
, 𝜃 ) =

𝛽𝑖 (𝑥 𝑗𝑖 , 𝜃 )

𝜂𝑖 (𝑥 𝑗𝑖 , 𝜃 )

(
𝑡
𝑗
𝑖

𝜂𝑖 (𝑥 𝑗𝑖 , 𝜃 )

)𝛽𝑖 (𝑥 𝑗

𝑖
,𝜃 )−1

· 𝑒
−
(

𝑡
𝑗
𝑖

𝜂𝑖 (𝑥
𝑗
𝑖
,𝜃 )

)𝛽𝑖 (𝑥 𝑗
𝑖
,𝜃 )

(3)

Here, the parameters 𝛽 and 𝜂 are recurrently estimated for each step 𝑖 through a neural network 𝜃 . For now, we assumed
5
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Fig. 2. Illustration of our proposed architecture for time-to-saccade prediction. We use two modules for the prediction of saccades,
one utilizing historical data (left) and the other one using the historical context information along with newly sampled data for a
recurrent time-to-event prediction (right). We describe our architecture in more detail in Sec. 3.3.

just a singular Weibull distribution; however, the probability distribution might be dependent on multiple factors
shortening or lengthening the time-to-saccade. Therefore, we propose the utilization of a mixture model as the PDF 𝑓

for time-to-saccade prediction:

𝑃 (𝑇 = 𝑡
𝑗
𝑖
|𝑥 𝑗
𝑖
, 𝜃 ) = 𝑓 (𝑡 𝑗

𝑖
|𝑥 𝑗
𝑖
, 𝜃 ) =

∑
𝑐

𝑝 (𝑐 |𝑥 𝑗
𝑖
, 𝜃 ) 𝑓 (𝑡 𝑗

𝑖
|𝑥 𝑗
𝑖
, 𝑐, 𝜃 ), (4)

with 𝑓 denoting the probability distribution of the mixture coefficients, 𝑐 being a latent variable, and
∑
𝑐 𝑝 (𝑐) = 1.

Substituting 𝑃 for 𝑃 into Equation 2 yields the following log-likelihood for a sequence 𝑗 :

L(𝜃 |𝑋 𝑗 ) =
𝑛 𝑗∑
𝑖=1

log 𝑓 (𝑡 𝑗
𝑖
|𝑥 𝑗
𝑖
, 𝜃 ). (5)

3.3 Model

As gaze is captured over time, it inherits temporal properties which are captured as sequential data. Another obser-
vation is that changes in gaze events rarely occur when compared to the sample rate, with sometimes hundreds of
samples being captured before the next event. Here, it is beneficial to redefine gaze event forecasting as a time-to-
event instead of a classification problem when applying deep learning. This is due to the observation that directly
classifying the gaze event would result in a sparse problem, whereas the reformulation results in a dense label for
each sample containing the remaining time until the actual event will happen. Hence, we build upon the idea of recur-
rent estimation of the time-to-event as initially proposed by Martinsson [2016] and later extended by Nagpal et al. [2021].
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Moreover, the sequential nature of the data allows us to utilize past gaze samples by employing the well-established
transformer architecture [Vaswani et al. 2017], which we adapt with a temperature parameter for the self-attention
layers as detailed by Lee et al. [2021]. We particularly choose a transformer-based architecture to be able to evaluate long
sequence lengths but also because of its success on time-series data [Jiang et al. 2022; Tang and Matteson 2021; Zerveas
et al. 2021; Zhou et al. 2021] and event forecasting [Yang et al. 2022; Zhang et al. 2020; Zuo et al. 2020]. Further, we split
our architecture into two parts. First, the history encoder is used to predict an initial belief about the time-to-saccade
𝑡
𝑗

0 at the start of the sequence 𝑗 using all recent historic samples 𝑥 𝑗hist of the data. This module predicts the shape
𝛽0, location 𝜂0, and mixture coefficients of our Weibull mixture model, estimating the initial probability distribution
𝑓 (𝑡 𝑗0 |𝑥

𝑗

hist, 𝜃 ) of an event occurring at the time 𝑡 𝑗0 given 𝑥
𝑗

hist. As input, we use up to ten of the past seconds of multimodal
data samples containing the last gaze positions, IMU data, and task. We base the inclusion of those features on the
findings of Rolff et al. [2022], which measured the feature importance of different data modalities. Here, we opted to
incorporate only the unprocessed data points into our analysis to avoid biasing the network with further extracted
features and with the success of task data in gaze prediction [Hu et al. 2021a], we also choose to include it. As our
second module, we use another transformer that we train through a generative pre-training (GPT) [Radford et al. 2018]
approach, which masks the self-attention of the transformer model. Therefore, the prediction module has only access to
previous samples, avoiding data leakage of the real time-to-saccade. As an additional input, we feed a generated context
vector from the historic encoder along with the new samples for which we want to predict the time-to-saccade. As
shown in Fig. 2, we add a final LSTM layer [Hochreiter and Schmidhuber 1997] to the time-to-saccade predictor. The
inclusion of an LSTM in our transformer-based architecture follows the same idea as Lim et al. [2021], by using an
LSTM layer for locality enhancement. We hypothesize that the locality helps in filtering the output to generate a more
coherent time-to-saccade. We then use the output of the LSTM layer to update the initial shape and scale parameters
of the probability distributions along with the mixture coefficients. To calculate the loss of our network, we use the
log-likelihood function derived in Equation 5. Hence, we train our model by maximizing the probability of an event
occurring at time 𝑡 𝑗

𝑖
, which is equivalent to minimizing the negative log-likelihood. Furthermore, as we estimate two

probability distributions, we must maximize the log-likelihood for the historic encoder 𝜃hist:

Lhist (𝜃hist |{𝑥
𝑗

hist, 𝑡
𝑗

0 }) = log 𝑓 (𝑡 𝑗0 |𝑥
𝑗

hist, 𝜃hist), (6)

and the log-likelihood of the predictor 𝜃pred:

Lpred (𝜃pred |𝑋 𝑗 ) =
𝑛 𝑗∑
𝑖=1

log 𝑓 (𝑡 𝑗
𝑖
|𝑥 𝑗
𝑖
, 𝑥

𝑗

hist, 𝜃pred). (7)

Here, the PDF for the time-to-event occurring at step 𝑡 𝑗
𝑖
given the input 𝑥 𝑗

𝑖
is defined through:

𝑓 (𝑡 𝑗
𝑖
|𝑥 𝑗
𝑖
, 𝑥

𝑗

hist, 𝜃pred) =
𝜙 (𝛽0) + 𝛽𝑖

𝜙 (𝜂0) + 𝜂𝑖

(
𝑡
𝑗
𝑖

𝜙 (𝜂0) + 𝜂𝑖

)𝜙 (𝛽0)+𝛽𝑖−1

· 𝑒
−
(

𝑡
𝑗
𝑖

𝜙 (𝜂0 )+𝜂𝑖

)𝜙 (𝛽0 )+𝛽𝑖

, (8)

with 𝜙 being the stop gradient function masking the gradient on backpropagation. Note that we omit 𝜃pred and 𝜃hist as
in Eq. 3 for the shape and location parameters for clarity. Finally, we define our weighted loss over all sequences as:
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Table 1. Results on the listed DGaze, FixationNet and Ego4D datasets for the state of the art (SGD) by Rolff et al. [2022] and our
proposed architecture. For comparison, we also evaluate a single-layer LSTM with the recurrent deep survival machine (RDSM) loss
proposed by Nagpal et al. [2021]. We measure the mean squared error and mean absolute error with a lower error being preferred.

Metric
Dataset Avg. Time-to-Event SGD [Rolff et al. 2022] LSTM-RDSM [Nagpal et al. 2021] Ours

DGaze FixationNet Ego4D DGaze FixationNet Ego4D DGaze FixationNet Ego4D DGaze FixationNet Ego4D

mean squared error↓ 0.1854s2 0.2455s2 0.0796s2 0.1087s2 0.1851s2 0.0472s2 0.0699s2 0.1251s2 0.0305s2 0.0795s2 0.1184s2 0.0317s2
mean absolute error↓ 0.3039s 0.3391s 0.2000s 0.2369s 0.3079s 0.1559s 0.1976s 0.2289s 0.1276s 0.1879s 0.2196s 0.1228s

L = −
∑
𝑗

𝑛 𝑗 · Lhist (𝜃hist |{𝑥
𝑗

hist, 𝑡
𝑗

0 }) + Lpred (𝜃pred |𝑋 𝑗 ). (9)

As our model supports different data modalities, we encode discrete input using embeddings as Vaswani et al. [2017].
For the continuous values like gaze and IMU data, we first discretize the value, following the work of Reed et al. [2022].
Therefore, we first transform the continuous values using the 𝜇-law and then bin the transformed samples into 256
different bins. We use 12 layers for both the time-to-saccade predictor and the history encoder modules with 12 heads
and 16 units per head, a hidden dimension of 192, and the multi layer perception (MLP) dimension set to 384. We use
100 samples as input for the historic encoder and 32 mixture components for prediction. We would like to note that
we did not perform hyperparameter optimization due to computational constraints. For training, we use an AdamW
[Loshchilov and Hutter 2017] optimizer and train for 50 epochs. We schedule the learning rate as Vaswani et al. [2017]
with a warm-up learning rate going from 1e−7 to the maximum learning rate of 3e−4 for 2500 steps, which we then
reduce over 100,000 steps down to 1e−6. To reduce overfitting, we set the dropout to 0.5 and weight decay to 0.1. For
comparison, we also train a single layer LSTM Recurrent Deep Survival Machine (LSTM-RDSM) [Nagpal et al. 2021]
with a layer width of 192 neurons and 4 mixture components, which is equivalent to our proposed loss when setting
the history length to zero and using a Weibull probability distribution.

4 EVALUATION

4.1 Datasets

For our evaluation, we use three different egocentric VR and real-world datasets: DGaze [Hu et al. 2020], FixationNet [Hu
et al. 2021a], and Ego4D [Grauman et al. 2022]. DGaze and FixationNet provide video, gaze, and IMU data along with
information on the nearest object captured from different VEs. DGaze includes over 20,000 gaze points per session
from 43 participants in 86 sessions, captured using a 7invensun eye-tracker at 100 Hz. FixationNet includes 12,000 gaze
points per session from 27 participants in 162 sessions, also captured at 100 Hz using a 7invensun eye-tracker. Ego4D
captures egocentric videos of real scenes along with gaze data, covering a wide range of real-world scenarios. We only
utilized data points with a specified eye-tracker, the Pupil Labs Invisible, resulting in a set of 27 sessions with 150,000
gaze points per session. As all datasets do not provide gaze labels, we use a similar labeling approach to Rolff et al.
[2022]. In our case, we utilize the I-HMM algorithm, which has been shown to be more robust against noise [Salvucci
and Goldberg 2000]. We provide details on the pre-processing and gaze classification in the supplementary materials.

4.2 Metrics

As suggested by Rolff et al. [2022], we do not use common metrics for quantitative evaluation of time-to-event data,
such as the concordance index [Harrell Jr et al. 1996], cumulative dynamic AUC [Hung and Chiang 2010], or the brier
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Table 2. Ablations on DGaze [Hu et al. 2020], FixationNet [Hu et al. 2021a], and Ego4D [Grauman et al. 2022] datasets with (W/
LSTM) and without (W/o LSTM) final LSTM layer using the parameters described in Sec. 3.3. The errors shown here are the mean
squared error and mean absolute error, with a lower value being preferred in both cases.

Model MSE MAE
DGaze FixationNet Ego4D DGaze FixationNet Ego4D

W/ LSTM 0.0795𝑠2 0.1184𝑠2 0.0317𝑠2 0.1879𝑠 0.2196𝑠 0.1228𝑠
W/o LSTM 0.0709𝑠2 0.1212𝑠2 0.0323𝑠2 0.2075𝑠 0.2798𝑠 0.1451𝑠

score [Graf et al. 1999]. Instead, we also compute the mean absolute error (mae) and the mean squared error (mse)
between the time-to-event and the prediction and use our earlier introduced sampling strategy (cf. Sec. 3.1) to evaluate
on sequences rather than individual random samples, contrasting previous work by Rolff et al. [2022].

4.3 Results

Table 1 shows our quantitative results, comparing our approach against the state of the art. Our proposed architecture
reliably outperforms the state-of-the-art approach on all metrics by an average of 27.72%. For the mse, we were able to
increase the performance by 31.91% and for the mae by 23.53%. On average, our model has a mae of 0.1768s and an
averagemse of 0.0765s2, whereas the state-of-the-art model has an averagemae of 0.2336s2 and an averagemse of 0.1137s.

Table 2, shows the difference in performance without a final LSTM layer. With the exception of DGaze, we found that
the model with a final LSTM layer outperforms the model without an LSTM on all datasets and metrics. On average, the
model without final LSTM layer achieves a mse of 0.0748s2 and a mae of 0.2108s. Additionally, we performed several
ablation studies on our architecture with different lengths of utilized historic samples and mixture components, which
can be found in the supplementary materials.

5 CONCLUSION AND DISCUSSION

In this paper, we proposed a transformer-based architecture for time-to-saccade prediction of gaze events. Our architec-
ture builds upon the idea of utilizing historic data to predict an initial prior distribution. We employ another network
that uses a generated context vector for the prediction of the time-to-saccade using a Weibull mixture model. We
showed that our model outperforms the state-of-the-art method for time-to-saccade prediction by Rolff et al. [2022] on
all evaluated datasets, achieving an average improvement of 27.72%. In comparison to the single-layer LSTM with RDSM
loss that Nagpal et al. [2021] proposed for general time-to-event prediction, we only achieved a small improvement
of the mean square error on the FixationNet dataset and of the mean absolute error across all datasets. Based on a
qualitative inspection, we believe this is due to a more coherent output of the LSTM, whereas our network often predicts
steps, thus, requiring more research to smooth out the generated time-to-event. However, despite the reported 27%
improvement, we would still like to note that we believe that the predicted error is still too large for accurate utilization.
As [Celikcan et al. 2020; Drewes et al. 2021] found differences in gaze behavior, we believe more research on differences
in prediction on real-world and VR datasets is required. This also includes possible data modalities that might be
available depending on the application. Furthermore, more research on optimal neural network architectures need to be
made that fit the task at hand. Another future direction of research is the utilization of visual data for time-to-saccade
prediction, for example, by using information about the environment or video data. Another addition might be a
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user-specific calibration to further increase performance. Moreover, we would like to emphasize that more work needs
to be done on the collection of big datasets for robust pretraining of the networks, especially with a focus on the
annotation of events. Their current unavailability limits further research on deep learning methods for time-to-saccade
prediction, with data quality depending on automated event annotation.
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