
GazeTransformer:
Gaze Forecasting for Virtual Reality using

Transformer Networks

Tim Rolff1,2[0000−0001−9038−3196], H. Matthias Harms, and Frank
Steinicke2[0000−0001−9879−7414] Simone Frintrop1[0000−0002−9475−3593]

1 Universität Hamburg, Computer Vision Group, Hamburg, Germany
2 Universität Hamburg, Human Computer Interaction Group, Hamburg, Germany

{Tim.Rolff, Frank.Steinicke, Simone.Frintrop}@uni-hamburg.de
harmmatthias.harms@gmail.com

Abstract. In this paper, we propose GazeTransformer, a transformer
architecture for forecasting egocentric gaze points in virtual environ-
ments (VEs) presented on immersive head-mounted displays (HMDs).
In contrast to previous architectures, we do not rely on information that
depends on the application state, but rather focus on data modalities
provided by the eye-tracker or sent to the HMD. GazeTransformer al-
lows to forecast multiple types of eye-movements, including saccades and
fixations, by creating two unfiltered datasets, using the raw gaze from
the eye-tracker for forecasting. Moreover, we analyze six different image
encoding backends in their quality to forecast gaze positions. To eval-
uate the performance of our model, we compared all architectures on
the generated datasets. The results show that our architecture with all
chosen backends outperforms the current state-of-the-art approaches in
forecasting egocentric gaze points in VEs.

Keywords: Virtual reality · Transformers · Gaze Forecasting

1 Introduction

With the recent increase in interest in virtual reality (VR), in particular, driven
by hype around the metaverse [9, 23, 53], as training tool for medical experts and
manufacturing jobs [22, 49], or as a platform for social interactions and meetings
[58, 61], gaze and eye movements of users has shown to be an integral part for
several VR technologies and applications [15, 21, 39, 42, 52, 57]. For example,
it is still challenging to provide highly realistic and immersive dynamic virtual
environments (VE) on mobile VR platforms [35, 68] due to limited GPU perfor-
mance and battery capacity [68]. Utilizing gaze data from an eye-tracker can be a
potential solution for this problem, as the eye has only a small area, the fovea, in
which humans perceive a sharp image [26]. With foveated rendering [18, 51, 57]
a high-resolution image is only rendered in the foveal region, whereas the rest of
the image is rendered with lower resolution and quality, resulting in reduced re-
quirements on GPU and battery performance. Besides foveated rendering, there



2 T. Rolff et al.

are several other proposed methods that try to solve reoccurring challenges of
VR using information provided through gaze data, such as, redirected walking
by performing changes to the VE during saccades or eye blinks [42, 67], gaze-
contingent rendering [39, 52], gaze behavior analysis [64], or content compression
[64]. Many of these solutions rely on knowledge about the human gaze to alter
the VE without user detecting such manipulations. For instance, the duration of
saccadic movements range from 30 to 80 ms [26] where the visual input is usually
suppressed for >100ms [11], such that the user will not notice slight changes to
the VE. However, it may take up to 50ms to detect saccades [66], the possibility
to predict them would greatly improve applicability of suppression techniques.
Hence, knowledge about the user’s eye gaze has enormous advantages, as it can
be utilized for the aforementioned algorithms.

A commonly utilized method to capture the gaze for the previously listed
methods is by utilizing a video-based eye-tracker built in into the head-mounted
displays (HMD). These eye-trackers, however, can only report historic gaze data,
as the output of them often has a latency of several milliseconds due to the
required preprocessing [1, 66]. This latency is often due to the eye-tracker itself
or due to applied algorithms when estimating the gaze. While there are recent
attempts to reduce latency through the proposal of hardware-based solutions
[2, 43], the latency of eye-trackers in widespread commercially available HMD’s
often hinders the direct usage of gaze data for VR applications, especially for fast
eye-movements such as saccades or blinks. Therefore, directly utilizing the gaze
data in downstream tasks might miss such eye movements or requiring unnatural
actions, such as intentional blinking [42] or long saccades [1, 67].

As a software-based solution, Hu et al. [27, 29] proposed a neural network for
forecasting the gaze of individual users. They define gaze prediction as a multi-
modal time series prediction problem, utilizing past gaze, head velocities, object
positions, and saliency, to predict gaze positions. While [29] focuses more on the
prediction of current gaze positions under the assumption that no information
on past gaze data is available, they additionally perform ablation studies, show-
ing that their method can forecast gaze positions when given information about
the user past gaze. In [27], they extend this work by predicting future fixation
points using a pre-filtered dataset, but do not evaluate on other common eye-
movements, such as saccades or smooth pursuits.

We build upon this idea by proposing a different architecture for gaze pre-
diction. In our case, we do not only focus on gaze fixations, but rather include
further important types of eye-movements: saccades, fixations and smooth pur-
suits [26]. For the prediction, we propose the utilization of transformer networks
that have shown recent success in multiple tasks, such as natural language pro-
cessing [4, 12, 13, 70] or image classification [7, 14, 38]. As Hu et al. [27, 29]
only analyzed saliency as an additional data modality, we will evaluate six dif-
ferent image modalities through pretrained networks, including saliency, RGB
and grayscale images, or the output of ResNet.



GazeTransformer: Gaze Forecasting for VR 3

To summarize, our work addresses the following contributions:

– We propose GazeTransformer, a state-of-the-art transformer architecture for
egocentric gaze forecasting in VR handling different eye-movements, like
fixations or saccades from raw gaze data.

– We analyze six different image processing techniques and backends, such as
saliency, grayscale and RGB images, DINO [7] or ResNet [24] on their ability
to predict the task at hand. We optimize GazeTransformer for each backend
independently to find a set of good hyperparameters.

The paper is structured such that we will first explain related work in the up-
coming section. Afterwards, Sec. 3 will describe our method in detail, containing
explanations on input representation and architecture. Next, we will go over our
results along with the utilized datasets and metric in Sec. 4. At last, we will
discuss those results in Sec. 5 along with limitations and future work.

2 Related Work

In this section, we will provide an overview about previous work on visual at-
tention and visual saliency, as well as gaze prediction and gaze forecasting.

2.1 Visual Attention & Visual Saliency

Human gaze is generally considered to be controlled by mechanisms of visual
attention, which drive the human visual system to focus on regions of general
interest [56]. This attention can computationally be modelled through saliency
methods, which are generally divided into two categories of bottom-up and top-
down attention.

Bottom-up refers to the visual attention based on low-level image features,
such as color, shape or contrast [10]. In fact, earlier computation saliency models
compute several feature maps from low-level features and fuse them together for
the final saliency prediction [19, 32]. Some of these models are based on work
by Treisman and Gelade [69], who theorized that visual features are registered
in parallel early in the vision process, whereas objects are formed in later stages
from the collected features. More recent approaches rely on modeling fixations
through the help of deep-learning [3] by capturing the datasets either through
the use of eye-trackers [5, 72] or by recording mouse input [34]. A recent trend
for these deep-learning-based saliency predictors is the utilization of transfer
learning [33, 46] that employing pretrained backend networks, mostly trained
for image classification, such as ResNet [24], NASNet [74] or VGG [63].

Top-down is, in contrast to bottom-up, driven through high-level features,
such as task-specific information [10]. Here, multiple works have shown that
gaze is heavily influenced by task or context information that drives the atten-
tion. This also includes prior knowledge or instructions, with a study by Yarbus
[73] showing considerably different eye-movements depending on the information
about the same scene supplied beforehand.



4 T. Rolff et al.

2.2 Gaze Prediction & Gaze forecasting

Gaze prediction describes the process of predicting the next gaze positions, based
on a set of data points. These data points can either be task information [27],
mouse input [41], hand positions [44], or close up images of the eye [50]. This
problem closely relates to visual saliency. However, although gaze and saliency
prediction are similar problems, they both differ in that gaze prediction describes
the process of predicting the gaze point of individuals given a set of input fea-
tures, whereas saliency maps tries to model the general distribution of fixation
points. Gaze prediction has been researched for sometime on a variety of dif-
ferent applications, such as in the use of action recognition [44], in 360◦ videos
[54, 71], or in video games [41]. However, the research on gaze prediction in
VR is fairly recent, with prior work focusing on multiple aspects, like dataset
collection, architecture proposal, and data analysis [29, 30].

Gaze forecasting can be interpreted as an extension of gaze prediction. While
gaze forecasting still outputs a gaze point like gaze prediction, the gaze points
should be predicted several milliseconds into the future. This forecasting allows
mitigating often found challenges with eye-trackers in commercial HMD’s that
often only support low frequency update rates [66]. This lead to other research
studies relying on low latency gaze data in VR to mitigate those challenges by
intentional blinking [42] or relying on long saccade durations [1, 67]. Another
recently proposed approach to mitigate latency was proposed by Rolff et al. [59].
They estimate when future gaze shifts will occur by performing time-to-event
analysis on each captured sample, rather than predicting the gaze points directly.
However, this approach does not report gaze points that can potentially be used
in other downstream tasks.

3 GazeTransformer

In this section, we will give an overview of our GazeTransformer. We start with
an overview of the input representation (Sec. 3.1) and present afterwards the
proposed architecture for the gaze forecasting transformer (Sec. 3.2).

3.1 Input Representation

As gaze datasets often provide different data modalities, such as gaze positions,
head orientations, IMU data, videos, depth, EEG, or task data [17, 20, 25, 27, 29,
36, 40, 45], our model should be able to handle those different data modalities.
Therefore, it is required to represent the input, such that the model can interpret
it. Fortunately, most of the listed data modalities can either be represented as
images or as a temporal sequence, containing an individual feature vector for each
time step. Since the aforementioned datasets provide different representations,
we choose to represent each sample point as a concatenation of different data
modalities, with each modality having a fixed length. As most modalities like
gaze or IMU data are already captured as a sequence, we can directly utilize those



GazeTransformer: Gaze Forecasting for VR 5

(a) Saliency map, generated through the
saliency backend described in Sec. 3.1.

(b) Attention scores generated through
the DINO backend described in Sec. 3.1.

Fig. 1: Visualization of the different backends described in Sec. 3.1 overlaid on
the original image. These are used as input for the transformer model explained
in Sec. 3.2. Note that we only use the center cropped part for saliency and
attention score prediction.

for our model. Here, we focus on four different modalities: the horizontal and
vertical gaze, the head velocity, and depending on the dataset, the current task
and the last rendered frames. For image data, we employ an additional feature
extraction network that processes a sequence of frames to extract 1-dimensional
vectors first. We explicitly choose these data modalities as they are provided
from or, in case of frames, to the HMD without requiring information about the
internal application state, like object positions [29], The only exception is task
information, but recent work [28] has shown that it is possible to infer the task
information from the eye-in-head, gaze-in-world and head data without requiring
the application state. In general, we provide the network with the last 400ms of
input samples to forecast the sample 150ms ahead. As a result, we can describe
our input I as follows:

I =


dt−39

dt−38

...
dt,

 , with dt−i =
(
gazet−i,headt−i, taskt−i, framet−i

)
, (1)

where i ∈ [0, . . . , 39], and t denotes the index of the last captured sample. To
extract 1-dimensional feature representations from the input frames, we will an-



6 T. Rolff et al.

alyze the following image-to-sequence backends:

Grayscale: As a baseline image method, we flatten a grayscale image of the
input into a 1-dimensional vector. This restricts the input to images of the same
size, as otherwise spatial information between image pixels are lost. Furthermore,
if the chosen image size is too large, we hypothesize that the network might
not pick up information on the other modalities. Thus, we transform the input
frames to 32 × 32 grayscale images, resulting in 1024 features for each sample.
Here, we concatenate the full 1-dimensional flattened vector onto each step in
the sequence, as formulated in Eq. 1, differing from previous approaches, like [8],
as they use the individual pixel values of the image as the input sequence.

Patch: To preserve the color information of the image, we transform the
image into a singular 64×64 patch, similar to Dosovitskiy et al. [14]. In [14], they
generate input vectors for their transformer architecture by dividing the original
image into multiple patches. Afterwards, each patch is flattened and processed as
part of multiple patches. However, due to the chosen representation of the input,
as formulated in Eq. 1, this is not feasible. Instead, we resize the input image
down to a singular 64× 64 pixel image patch, conserving the color information,
resulting in a 12288-dimensional feature representation of the input.

Saliency: Since saliency is used by multiple gaze prediction and forecasting
methods [27, 29–31, 71], we also analyze the use of saliency as input modality.
To generate the saliency map of each frame, we employ the approach proposed
by Jia and Bruce [33], acquiring the information on the fixation distribution of
the input image. Other work by Einhäuser and Nuthmann [16] has shown that
the usage of saliency data is beneficial as they correlate with fixation durations.
This correlation might potentially be valuable in case of an upcoming saccade,
as it might contain information on the duration about the currently performed
fixation. However, as we only provide saliency, the latter network layers might
have no awareness of the original content of the image, therefore, losing informa-
tion on color, intensity, or shape. As shown in Fig. 1a, we follow the approach of
Hu et al. [27, 29] and generate the saliency maps from the center-cropped region
of each frame and resizing the output to 24× 24 pixels.

ResNet: A different approach for the generation of sequence data from im-
ages was explored by Carion et al. [6]. They evaluated multiple ResNet [24]
architectures by prepending the ResNet module in front of a transformer for
feature extraction. In our work, we extend their idea by utilizing a ResNet50
architecture that was pretrained on ImageNet [60]. First, we extract the image
features for each input image and pass the extracted features into the transformer
architecture. However, to avoid output that fully resembles the class distribu-
tion of in the input image, we discard the final classification layer, resulting in
a feature vector of 2048.

DINO: As the last evaluated backend, we utilize a vision transformer that is
trained through DINO [7], a recently proposed self-supervised training approach.
They interpret self-supervised learning as a form of self-distilation. They train a
student and a teacher model, where the teacher model is provided with the full



GazeTransformer: Gaze Forecasting for VR 7

Fig. 2: Overview of our GazeTransformer architecture. A backend network ex-
tracts a 1D feature vector from the input frames and concatenates it with other
data. Positional encoding is concatenated, and the data is fed into multiple (N)
transformer encoder layers. A head module, consisting of multiple feedforward
layers, reduces the dimensionality of the features and performs the final predic-
tion of gaze points (see Sec. 3 for details).

image and the student model with a randomly augmented and cropped region of
the same image. To perform gradient back propagation, they compute the loss
as the negative log likelihood between the student and the centered output of
the teacher model and propagate the error back through the student network.
Then the exponential moving average of the students gradients is used to update
the weights of the teacher network. They have shown that the attention weights
of the transformer architecture closely correlates with semantic segmentation.
Hence, we use the inner attention state, depicted in Fig. 1b, of a pretrained
model as the input to our transformer, resulting in feature vectors of size 376.

3.2 Transformer Model

We base our architecture on the popular transformer architecture proposed
by Vaswani et al. [70]. For clarity, we divide our proposed architecture into
three modules, see Fig. 2 for an overview. The first module is the input encoder
module that constructs the input representation for later modules (cf. Sec. 3.1).
Next, the transformer encoder module utilizes the transformer architecture of
[70] by stacking multiple transformer layers. At last, the head module is used for
dimensionality reduction and the final gaze forecasting.



8 T. Rolff et al.

Table 1: Configurations used to report final results. Heads and layers refer to
the number of heads and layers in the transformer layers. Compress refers to
the number of units in the linear layer that are employed for the compression of
backend features. Reduce refers to the number of units in the reduction layer of
the head module. The name of the model refers to the used backend.

DGaze [29] dataset

Backend Grayscale Patch Saliency ResNet DINO No Backend

Heads – Layers 4 – 1 4 – 1 2 – 1 4 – 1 6 – 1 6 – 4
Compress – Reduce 16 – 128 16 – 64 16 – 128 16 – 128 16 – 128 / – 64

FixationNet [27] dataset

Backend Grayscale Patch Saliency ResNet DINO No Backend

Heads – Layers 8 – 1 1 – 1 6 – 1 4 – 1 6 – 1 4 – 4
Compress – Reduce 256 – 256 32 – 256 32 – 256 128 – 256 32 – 128 / – 256

Before providing the data to the transformer model, we first process frames
through one of the backend networks listed in Sec. 3.1. These features are further
compressed using a feedforward layer followed by a ReLU [55] and a dropout
layer [65]. These result in 1-dimensional feature representations of the processed
images that we concatenate with the other data samples. Here, we provide the
network with the last 400ms of previous gaze positions, head velocities and task-
related object information, following the previous approach of [27]. This leads to
an input of 40 1-dimensional feature vectors. After the construction of the input
data from the different modalities, we perform positional encoding, allowing the
transformer model to distinguish between different time-steps of the input.

As we expect the different input data modalities to have different sampling
rates, the implementation of our positional encoding is based on [37]. They
propose a trainable model-agnostic representation of time that also depends on
the input and which is concatenated with a scalar interpretation of time. The
entire encoded sequence is fed into the encoder model consisting of multiple
stacked transformer layers. In addition, we follow previous work [4, 14] which
has shown that a decoder model is not required. Note that the number of utilized
layers and transformer heads depend on the backend, see Tab. 1 for more details.

Lastly, the head module consists of a multi-layer perceptron network that
predicts the final visual angle from the screen center. As the transformer ar-
chitecture does not reduce the sequence length, it outputs the same number of
1-dimensional feature vectors that are input into the architecture. Thus, we re-
duce the dimensionality through a feedforward layer in the head module with the
number of units listed in Tab. 1. Afterwards, we reduce the number of features
to two, resulting in an output of 40×2. To apply a non-linearity, we additionally
add a ReLU and a dropout layer after the output of both linear layers. After-



GazeTransformer: Gaze Forecasting for VR 9

wards, we flatten the outputted matrix into a 1-dimensional vector that we then
utilize to forecast the final horizontal and vertical gaze position.

For training the network, we follow the approach of Hu et al. [27], using the
angular error as the loss function, which is defined as the mean angular difference
between the line of sight of the ground truth and the forecasted gaze position.
For the hyperparameters and optimizer, we choose to employ the AdamW [48]
with a learning rate of 0.001, a batch size of 256, dropout of 0.1, and the weight
decay set to 0.01. While training, we monitor the loss on the validation set and
use early stopping after three epochs, if the loss has not decreased. To find a
set of good of hyperparameters for layers, transformer heads, compression, and
reduction units for each backend separately, we evaluate our proposed archi-
tecture on multiple configurations that can be found in the ablation studies,
found in the supplementary. We did not perform additional hyperparameter op-
timization for other parameters, such as batch size or weight decay. Then we
utilize the best performing configuration as our parameters, which are reported
in Tab. 1. For further details on these results and the evaluated parameters, see
the supplementary material.

4 Evaluation

4.1 Metric

For the error metrics, we follow Hu et al. [27], by using the angular error as our
primary metric that describes the angular distance between the ground truth line
of sight and the predicted line of sight, with a smaller value indicating better
performance.

4.2 Datasets

We evaluate our model on two different egocentric datasets fully captured in
VR, namely the DGaze [29] and FixationNet [27] dataset. For capturing the
first-mentioned DGaze dataset, each participant was asked to freely explore 2
out of 5 randomly assigned VEs containing different dynamic visual distractors
in the form of animals. For the recording, each participant was instructed to
record at least 3 minutes of data without any further instructions on a task
or explanation of the environment. In total, the dataset contains 86 samples
from 43 participants with an average sequence length of over 20,000 data points
per session. The FixationNet dataset captures the same data modalities as the
DGaze dataset, but additionally provides information on the current task of each
participant. Here, all participants were instructed to solve a specific search task,
pointing the VR controller onto the target. In total, the FixationNet dataset
contains 162 samples from 27 participants containing on average 12,000 head
and gaze points per trial.

However, as the evaluated task of Hu et al. [27] is the prediction of fixation
points, the authors provide a pre-processed dataset with filtered gaze positions



10 T. Rolff et al.

Fig. 3: Sequence of frames showing a prediction of GazeTransformer (red dot) on
the FixationNet dataset [27] along with the ground truth (green dot) and the last
captured gaze position (blue dot). The frames are cropped to the relevant region.
As participants were tasked to search for targets, the left animal disappears due
to its correct classification.

that correspond to the fixation points of the participants. Therefore, we generate
a custom dataset from the raw data of both datasets that do not compute fix-
ation points and therefore account for other eye-movements. We also follow the
same methodology for the DGaze dataset. Both datasets contain videos, gaze,
head velocities captured through the IMU of the HMD, and object positions
of the nearest objects. In these generated datasets, we made sure not to utilize
any internal information only known to the running application, such as object
positions, but rather focused on the information already provided from or to the
HMD, with the only exception being the task information. As both datasets do
not contain gaze events, we follow the methodology of [59] to generate fixation
and saccade events, using the I-VT algorithm [62].

4.3 Results

Tab. 2 shows the result of our proposed GazeTransformer architecture with
all backends introduced in Sec. 3.1. As described in Sec. 4.2, we evaluate our
approach against the state-of-the-art DGaze and FixationNet dataset. As the
baseline, we choose the last known gaze position that is lagging the target by
150ms. For the evaluation, we choose a cross validation approach by validating
across users and scenes. For computational reasons, we only evaluate across the
data of 3 participants as the test sets and used the rest either as our training or
validation data and compute the final results as the mean over all folds.

Overall, Tab. 2 shows that all selected backends outperform the baseline, as
well as the methods introduced by Hu et al. [27, 29]. When utilizing the image
data provided by a backend network, we found that the Patch backend shows the



GazeTransformer: Gaze Forecasting for VR 11

Table 2: Results for the FixationNet [27] and DGaze datasets [29] using the
raw gaze as input. We name the models of GazeTransformer according to their
image-to-sequence backend. The error metric is computed through the angular
error (Mean: mean angular error; Std.: mean standard deviation over different
folds). Best results in blue bold.

DGaze dataset FixationNet dataset

Cross-User Cross-Scene Cross-User Cross-Scene
Model Mean Std. Mean Std. Mean Std. Mean Std.

Baseline
Current Gaze 5.12° 8.00° 5.85° 9.77° 3.67° 7.17° 3.66° 7.01°

State-of-the-art
DGaze [29] 9.58° 6.87° 10.24° 7.65° 8.66° 6.89° 8.76° 6.80°
FixationNet [27] 9.58° 7.37° 10.57° 7.70° 8.49° 6.71° 8.56° 6.76°

Gaze Transformer
Grayscale 4.91° 6.80° 5.27° 7.76° 3.63° 6.07° 3.55° 6.06°
Patch 4.75° 6.75° 5.09° 7.77° 3.49° 6.05° 3.49° 6.09°
Saliency 4.85° 6.77° 5.20° 7.75° 3.49° 6.07° 3.51° 6.04°
ResNet 4.84° 6.76° 5.16° 7.77° 3.58° 6.06° 3.49° 6.09°
DINO 4.81° 6.76° 5.15° 7.76° 3.55° 6.06° 3.61° 6.04°
No Backend 4.71° 6.75° 5.07° 6.89° 3.47° 6.10° 3.44° 6.39°

best performance. Surprisingly, we discovered that utilizing image data does not
improve the predictive performance, as the model that does not use frame data
performs the best on all datasets. The reported mean standard deviation across
all methods is similar, regardless of the employed backend. Surprisingly, the
standard deviation of the best performing GazeTransformer is also not the most
optimal among all our GazeTransformers. As mentioned in Sec. 3, we performed
multiple ablation studies to find a good set of parameters for our architecture,
dependent on the used backend. For more information on these results, see the
supplementary material. Tab. 3 also shows the separate errors for fixations and
saccades between the current state-of-the-art and our No Backend model. Here,
we compute the error metrics on saccades and fixations separately using the
estimate gaze event label.

Additionally, we performed a qualitative evaluation on the output of Gaze-
Transformer and FixationNet. Here, we discovered that the performance of Fix-
ationNet is due to its design choice to only predict fixations and often shifts
towards salient regions. It is unable to handle strong gaze shifts, even though
the network was retrained on our dataset. In contrast, although not instanta-
neous with the target, our model can perform these shifts by reacting faster than
the baseline, with an example shown in Fig. 3.

When running in inference, we achieve real-time performance running at ap-
proximately 329 predictions per second when using the No Backend model on



12 T. Rolff et al.

Table 3: Individual results for saccades and fixations measured on the Fixation-
Net [27] and DGaze datasets [29] using the raw gaze as input. The error metric
is computed through the angular error seperatly across all saccades and fixations
(Mean: mean angular error; Std.: mean standard deviation over different folds).
Best results in blue bold.

DGaze dataset FixationNet dataset

Cross-User Cross-Scene Cross-User Cross-Scene
Model Mean Std. Mean Std. Mean Std. Mean Std.

S
a
cc
a
d
es

State-of-the-art
DGaze [29] 12.81° 10.94° 14.81° 11.07° 12.86° 9.86° 12.96° 9.96°
FixationNet [27] 14.45° 9.56° 15.06° 11.17° 12.91° 9.91° 13.03° 9.93°

Gaze Transformer
No Backend 10.80° 10.21° 11.77° 12.26° 9.96° 10.57° 9.93° 10.57°

F
ix
a
ti
o
n
s

State-of-the-art
DGaze [29] 9.17° 5.45° 9.00° 5.35° 7.85° 5.80° 7.94° 5.84°
FixationNet [27] 9.18° 5.43° 9.20° 5.46° 7.67° 5.56° 7.72° 5.58°

Gaze Transformer
No Backend 3.02° 4.01° 2.96° 3.80° 2.23° 3.64° 2.20° 3.57°

the GPU. To measure the timings, we use a system equipped with an AMD
Ryzen Threadripper 3960X with 128 GB RAM and an NVIDIA RTX 3090 and
performed the execution on the GPU. The other timings, including CPU per-
formance metrics, can be found in the supplementary. When estimating the
run-time, we included the full backend and predict image features twice per
second.

5 Conclusion and Discussion

In this paper, we proposed GazeTransformer a state-of-the-art transformer ar-
chitecture for forecasting gaze points in VR using the raw gaze data and IMU
data provided by the HMD’s with built-in eye-trackers. For the prediction of
future gaze points, we only utilize data provided from or send to the HMD,
without dependencies on the internal state of the application through object
locations except for task data, which itself has shown to be predictable without
the application state [28]. We forecast the gaze positions 150ms into the future,
allowing us to compare our method against existing literature [27, 29]. To evalu-
ate our proposed architecture, we analyzed its ability on two state-of-the-art VR
datasets. Furthermore, we analyzed multiple image backends, such as grayscale
or RGB images, saliency, attention weights of DINO, and ResNet. Overall, we
discovered that our approach, regardless of the backend, significantly outper-



GazeTransformer: Gaze Forecasting for VR 13

formed all previous state-of-the-art methods when using the raw gaze as input
to the network.

Surprisingly, we found that the best performing approach did not utilize
image data. This contrasts with previous literature [27, 29], which found that
utilizing the saliency directly does improve the final performance of the network,
or with other work heavily relying on RGB data of captured frames [44]. There
are several potential reasons for this finding. First, some utilized backends, like
ResNet, might not provide meaningful information to the transformer layers
and head module. This is since ResNet was pretrained for image classification,
and therefore high-level features will most likely contain information on the
estimated class. Another reason might be that only two frames are used over
the entire input sequence. As the input of GazeTransformer is split by time
instead of splitting by features, like [29] or [27], this causes the duplication of
frames that might potentially result in over weighting the image features, as the
size of the other modalities is significantly smaller than the image feature space.
Moreover, due to memory requirements and analysis on the different backends,
we did not train the backend networks in combination with the transformer
architecture. This might have further impacted the performance of the image-
dependent architectures. At last, this may also be due to the rather small dataset
size, as transformers rely on huge datasets when trained from scratch to capture
meaningful correlations between features [47]. Given this, we also expect that
the need to use different hyperparameters for each data set to achieve optimal
performance will be eliminated if the data set is large enough. However, we also
suspect that conducting a final calibration phase for each user before using a
pre-trained model is a worthwhile research direction, as it could lead to a more
optimal model.

Investigating these observations maybe valuable directions for future work,
as we expect the image data to have a positive impact on the final performance
of the architecture, even though we could not confirm this in our paper. Here,
training these backend networks may be a good initial step on verifying if perfor-
mance can further be improved when image modalities are used. This, however,
might be bound by the memory of the GPU. Therefore, another direction might
be to analyze other virtual and real-world datasets that are similar to the data
in the datasets commonly used for pre-training, such as ImageNet, to make bet-
ter use of the pre-trained networks. With those, it would also be possible to
explore additional image modalities, for example depth data or EEG input. Be-
sides, extending the architecture to directly work with image data that is split
by time as well as by feature would remove the need for duplicated input frames.
Moreover, adding multi-horizontal forecasting, to predict multiple future short-
term and long-term gaze points would be helpful, as we expect the network to
perform better on shorter forecast durations. Besides the surprising results on
image modalities, we found that GazeTransformer significantly outperforms the
state-of-the-art regardless of the backend utilized.



14 T. Rolff et al.

6 Ablation Studies

As mentioned in our paper, we optimize the general architecture of GazeTrans-
former to find reasonable hyperparameters for each model, further described in
Sec. 3 of our Paper, we perform multiple ablation studies on both the DGaze
[29] and the FixationNet [27] dataset. To avoid biasing GazeTransformer for a
specific input modality, we perform the hyperparameter optimization on all im-
age backends: Grayscale, Patch, Saliency, ResNet, DINO, as well as reference
network without any backend (No Backend). We use the angular error metric as
in our paper to report the results below. Since, the different modules depend on
each other, we decided to estimate the parameters in the following order: First
the estimation of units in the reduction layer (cf. Tab. 4 and Tab. 5). Note that
we cannot report results for the No Backend model, as it does not contain a
Compression module. Afterwards, number of units in the compression layer (cf.
Tab. 6 and Tab. 7). At last, the number of transformer heads and layers (cf.
Tab 8 and Tab. 9). To construct the final networks, reported in the paper, we
take the best performing configuration of each analyzed module and retrain the
architecture as explained in the paper. We also perform additional evaluations
on the optimal input resolution when using the Flatten and Patch backend (cf.
Tab. 10). Tab. 11 shows the measured run-time of our model on CPU and GPU
using the system described in the paper. Showing that our model is able to run
in real-time when run on the CPU, as the GPU is might be highly utilized due
with the rendering process.

Table 4: Results for the number of hidden features in the Compression layer,
measured on the DGaze dataset. Best results in blue bold.

Compression Units Grayscale Patch Saliency ResNet DINO No Backend

16 5.59° 5.49° 5.56° 5.66° 5.51° –
32 5.73° 5.56° 5.65° 5.74° 5.56° –
64 5.84° 5.55° 5.62° 5.69° 5.59° –

128 5.78° 5.59° 5.63° 5.67° 5.52° –
256 5.67° 5.64° 5.68° 5.68° 5.75° –



GazeTransformer: Gaze Forecasting for VR 15

Table 5: Results for the number of hidden features in the Compression layer,
measured on the FixationNet dataset. Best results in blue bold.

Compression Units Grayscale Patch Saliency ResNet DINO No Backend

16 3.47° 3.40° 3.40° 3.48° 3.44° –
32 3.48° 3.38° 3.37° 3.43° 3.38° –
64 3.47° 3.45° 3.40° 3.44° 3.40° –

128 3.51° 3.40° 3.40° 3.56° 3.44° –
256 3.47° 3.57° 3.42° 3.58° 3.43° –

Table 6: Results for the number of hidden features in the Reduction layer, mea-
sured on the DGaze dataset. Best results in blue bold.

Reduction Units Grayscale Patch Saliency ResNet DINO No Backend

16 5.81° 5.61° 5.65° 5.83° 5.61° 5.54°
32 5.87° 5.62° 5.63° 5.75° 5.71° 5.55°
64 5.76° 5.50° 5.61° 5.82° 5.64° 5.52°

128 5.71° 5.54° 5.56° 5.67° 5.51° 5.59°
256 5.72° 5.59° 5.56° 10.58° 5.66° 5.64°

Table 7: Results for the number of hidden features in the Reduction layer, mea-
sured on the FixationNet dataset. Best results in blue bold.

Reduction Units Flatten Patch Saliency ResNet DINO No Backend

16 3.50° 3.43° 3.46° 3.50° 3.46° 3.34°
32 3.48° 3.44° 3.49° 3.58° 3.39° 3.34°
64 3.48° 3.41° 3.41° 3.49° 3.49° 3.44°

128 3.51° 3.41° 3.43° 3.43° 3.44° 3.37°
256 3.39° 3.40° 3.40° 3.41° 3.39° 3.31°



16 T. Rolff et al.

Table 8: Results on the DGaze dataset using different layer and transformer head
configurations. Heads describes the number of attention heads, while Layers de-
scribes the number of stacked transformer encoder layers. Invalid configurations
are marked with ”-”, as the embedding dimension must be divisible by the num-
ber of heads. Best results in blue bold.

Heads –
Layers

Grayscale Patch Saliency ResNet DINO No Backend

1 - 1 6.73° 5.86° 5.75° 8.08° 6.30° 5.63°
1 - 2 8.07° 8.16° 7.63° 10.60° 6.08° 5.59°
1 - 4 10.61° 12.19° 10.57° 11.97° 12.18° 5.53°

2 - 1 10.55° 5.98° 5.69° 7.71° 6.02° 5.62°
2 - 2 7.90° 7.69° 5.89° 10.57° 6.04° 5.61°
2 - 4 10.57° 12.33° 10.56° 12.18° 10.56° 5.51°

4 - 1 6.15° 5.76° 5.89° 7.31° 5.96° 5.65°
4 - 4 12.11° 10.57° 10.57° 12.09° 7.66° 5.48°
4 - 6 10.55° 10.58° 12.29° 10.61° 10.60° 5.46°

6 - 1 — 5.89° 5.91° — 5.93° 5.57°
6 - 4 — 12.06° 12.02° — 7.37° 5.46°
6 - 6 — 10.56° 12.17° — 12.14° 5.50°

Table 9: Results on the FixationNet dataset using different layer and transformer
head configurations. Heads describes the number of attention heads, while Layers
describes the number of stacked transformer encoder layers. Invalid configura-
tions are marked with ”-”, as the embedding dimension must be divisible by the
number of heads. Best results in blue bold.

Heads –
Layers

Grayscale Patch Saliency ResNet DINO No Backend

1 - 1 7.21° 3.47° 3.67° 7.42° 3.73° 3.39°
1 - 2 4.94° 5.06° 5.05° 8.50° 7.65° 3.40°
1 - 4 8.49° 8.50° 8.49° 8.53° 8.48° 3.32°

2 - 1 4.78° 3.54° 3.69° 7.38° 4.20° 3.39°
2 - 2 7.42° 4.88° 4.79° 8.48° 4.17° 3.36°
2 - 4 8.48° 8.50° 8.50° 8.48° 8.47° 3.29°

4 - 1 4.32° 3.97° 3.77° 4.62° 4.09° 3.39°
4 - 4 8.47° 8.49° 8.50° 8.50° 8.49° 3.31°
4 - 6 8.50° 8.49° 8.49° 8.52° 8.50° 3.37°

6 - 1 — 3.70° 3.55° — 3.69° 3.49°
6 - 4 — 8.49° 8.51° — 6.26° 3.34°
6 - 6 — 8.49° 8.49° — 8.50° 3.34°

8 - 1 4.22° 8.48° 3.73° 4.62° 3.92° 3.39°
8 - 4 8.53° 8.51° 8.52° 8.51° 8.51° 3.36°
8 - 6 — 8.50° 8.52° 8.51° 8.49° 3.32°



GazeTransformer: Gaze Forecasting for VR 17

Table 10: Results for different resolutions when using the Flatten and Patches
backends evaluated on the DGaze and the FixationNet datasets. Resolution de-
scribes the number of pixels per axis. OOM stands for out of memory, as our
system had not enough space to handle a sufficient batch size. Best results in
blue bold.

DGaze dataset FixationNet dataset
Resolution Grayscale Patch Grayscale Patch

16× 16 5.81° 5.84° 3.49° 3.53°
32× 32 5.68° 5.80° 3.50° 3.52°
64× 64 5.70° 5.60° 3.50° 3.48°

128× 128 5.74° OOM 3.60° OOM

Table 11: Measured run-time of our proposed architecture on all backends using
the system described in Sec. 4.3 of the paper. The arrows indicate if a higher or
lower value is desired. Best results in blue bold.

Grayscale Patch Saliency ResNet DINO No Backend

GPU
Predictions per second↑ 1137.72 1086.77 886.60 981.91 388.01 329.65
Processing time in ms↓ 0.88 0.92 1.13 1.02 2.58 3.03

CPU
Predictions per second↑ 926.41 200.42 429.43 350.32 14.95 372.38
Processing time in ms↓ 1.08 4.99 2.33 2.85 66.87 2.69



Bibliography

[1] Albert, R., Patney, A., Luebke, D., Kim, J.: Latency requirements for
foveated rendering in virtual reality. ACM Transactions on Applied Per-
ception (TAP) 14(4), 1–13 (2017)

[2] Angelopoulos, A.N., Martel, J.N., Kohli, A.P., Conradt, J., Wetzstein, G.:
Event-based near-eye gaze tracking beyond 10,000 hz. IEEE Transactions
on Visualization and Computer Graphics (TVCG) 27(5), 2577–2586 (2021)

[3] Borji, A.: Saliency prediction in the deep learning era: Successes and limi-
tations. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 43(2), 679–700 (2019)

[4] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,
Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I.,
Amodei, D.: Language models are few-shot learners. Advances in Neural
Information Processing Systems (NeurIPS) 33, 1877–1901 (2020)

[5] Bylinskii, Z., Judd, T., Borji, A., Itti, L., Durand, F., Oliva, A., Torralba,
A.: Mit saliency benchmark (2015)

[6] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko,
S.: End-to-end object detection with transformers. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 213–229. Springer
(2020)

[7] Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P.,
Joulin, A.: Emerging properties in self-supervised vision transformers. In:
Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV). pp. 9650–9660 (2021)

[8] Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., Sutskever, I.:
Generative pretraining from pixels. In: Proceedings of the 37th International
Conference on Machine Learning. vol. 119, pp. 1691–1703. PMLR (2020)

[9] Cheng, R., Wu, N., Chen, S., Han, B.: Reality check of metaverse: A first
look at commercial social virtual reality platforms. In: IEEE Conference on
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW).
pp. 141–148. IEEE (2022)

[10] Connor, C.E., Egeth, H.E., Yantis, S.: Visual attention: Bottom-up versus
top-down. Current Biology 14(19), R850–R852 (2004)

[11] Crevecoeur, F., Kording, K.P.: Saccadic suppression as a perceptual conse-
quence of efficient sensorimotor estimation. eLife 6, e25073 (2017)

[12] Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.:
Transformer-xl: Attentive language models beyond a fixed-length context.
arXiv preprint arXiv:1901.02860 (2019)



GazeTransformer: Gaze Forecasting for VR 19

[13] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

[14] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit,
J., Houlsby, N.: An image is worth 16x16 words: Transformers for image
recognition at scale. In: 9th International Conference on Learning Repre-
sentations (ICLR). OpenReview (2021)

[15] Duchowski, A.T.: Gaze-based interaction: A 30 year retrospective. Com-
puters & Graphics 73, 59–69 (2018)

[16] Einhäuser, W., Nuthmann, A.: Salient in space, salient in time: Fixation
probability predicts fixation duration during natural scene viewing. Journal
of Vision 16(11), 13–13 (2016)

[17] Emery, K.J., Zannoli, M., Warren, J., Xiao, L., Talathi, S.S.: OpenNEEDS:
A dataset of gaze, head, hand, and scene signals during exploration in open-
ended vr environments. In: ACM Symposium on Eye Tracking Research and
Applications (ETRA). ACM, New York, NY, USA (2021)

[18] Franke, L., Fink, L., Martschinke, J., Selgrad, K., Stamminger, M.: Time-
warped foveated rendering for virtual reality headsets. In: Computer Graph-
ics Forum. vol. 40, pp. 110–123. Wiley Online Library (2021)

[19] Frintrop, S.: VOCUS: A visual attention system for object detection and
goal-directed search, vol. 3899. Springer (2006)

[20] Fuhl, W., Kasneci, G., Kasneci, E.: TEyeD: Over 20 million real-world eye
images with pupil, eyelid, and iris 2d and 3d segmentations, 2d and 3d
landmarks, 3d eyeball, gaze vector, and eye movement types. In: IEEE
International Symposium on Mixed and Augmented Reality (ISMAR). pp.
367–375. IEEE (2021)

[21] Guenter, B., Finch, M., Drucker, S., Tan, D., Snyder, J.: Foveated 3d graph-
ics. ACM Transactions on Graphics (TOG) 31(6), 1–10 (2012)

[22] Gurusamy, K.S., Aggarwal, R., Palanivelu, L., Davidson, B.R.: Virtual real-
ity training for surgical trainees in laparoscopic surgery. Cochrane Database
of Systematic Reviews (CDSR) (1) (2009)

[23] Han, D.I.D., Bergs, Y., Moorhouse, N.: Virtual reality consumer experience
escapes: preparing for the metaverse. Virtual Reality pp. 1–16 (2022)

[24] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 770–778 (2016)

[25] Hollenstein, N., Rotsztejn, J., Troendle, M., Pedroni, A., Zhang, C., Langer,
N.: ZuCo, a simultaneous eeg and eye-tracking resource for natural sentence
reading. Scientific Data 5(1), 1–13 (2018)

[26] Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H.,
Van de Weijer, J.: Eye tracking: A comprehensive guide to methods and
measures. OUP Oxford, Oxford, England (2011)

[27] Hu, Z., Bulling, A., Li, S., Wang, G.: FixationNet: Forecasting eye fixations
in task-oriented virtual environments. IEEE Transactions on Visualization
and Computer Graphics (TVCG) 27(5), 2681–2690 (2021)



20 T. Rolff et al.

[28] Hu, Z., Bulling, A., Li, S., Wang, G.: EHTask: Recognizing user tasks from
eye and head movements in immersive virtual reality. IEEE Transactions
on Visualization and Computer Graphics (TVCG) (2022)

[29] Hu, Z., Li, S., Zhang, C., Yi, K., Wang, G., Manocha, D.: DGaze: Cnn-based
gaze prediction in dynamic scenes. IEEE Transactions on Visualization and
Computer Graphics (TVCG) 26(5), 1902–1911 (2020)

[30] Hu, Z., Zhang, C., Li, S., Wang, G., Manocha, D.: SGaze: A data-driven eye-
head coordination model for realtime gaze prediction. IEEE Transactions
on Visualization and Computer Graphics (TVCG) 25(5), 2002–2010 (2019)

[31] Huang, Y., Cai, M., Li, Z., Lu, F., Sato, Y.: Mutual context network for
jointly estimating egocentric gaze and action. IEEE Transactions on Image
Processing (TIP) 29, 7795–7806 (2020)

[32] Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert
shifts of visual attention. Vision Research 40(10-12), 1489–1506 (2000)

[33] Jia, S., Bruce, N.D.B.: EML-NET: An expandable multi-layer network for
saliency prediction. Image and Vision Computing 95 (2020)

[34] Jiang, M., Huang, S., Duan, J., Zhao, Q.: SALICON: Saliency in context.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 1072–1080 (2015)

[35] Kanter, D.: Graphics processing requirements for enabling immersive vr.
AMD White Paper pp. 1–12 (2015)

[36] Kastrati, A., Plomecka, M.B., Pascual, D., Wolf, L., Gillioz, V., Watten-
hofer, R., Langer, N.: EEGEyeNet: a simultaneous electroencephalography
and eye-tracking dataset and benchmark for eye movement prediction. In:
Proceedings of the Neural Information Processing Systems (NIPS) Track
on Datasets and Benchmarks (2021)

[37] Kazemi, S.M., Goel, R., Eghbali, S., Ramanan, J., Sahota, J., Thakur, S.,
Wu, S., Smyth, C., Poupart, P., Brubaker, M.: Time2vec: Learning a vector
representation of time. arXiv preprint arXiv:1907.05321 (2019)

[38] Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Trans-
formers in vision: A survey. ACM Computing Surveys (2021)

[39] Konrad, R., Angelopoulos, A., Wetzstein, G.: Gaze-contingent ocular par-
allax rendering for virtual reality. ACM Transactions on Graphics (TOG)
39(2), 1–12 (2020)

[40] Kothari, R., Yang, Z., Kanan, C., Bailey, R., Pelz, J.B., Diaz, G.J.: Gaze-
in-wild: A dataset for studying eye and head coordination in everyday ac-
tivities. Scientific Reports 10(1), 1–18 (2020)

[41] Koulieris, G.A., Drettakis, G., Cunningham, D., Mania, K.: Gaze prediction
using machine learning for dynamic stereo manipulation in games. In: IEEE
Virtual Reality. pp. 113–120. IEEE (2016)

[42] Langbehn, E., Steinicke, F., Lappe, M., Welch, G.F., Bruder, G.: In the
blink of an eye: leveraging blink-induced suppression for imperceptible po-
sition and orientation redirection in virtual reality. ACM Transactions on
Graphics (TOG) 37(4), 1–11 (2018)

[43] Li, R., Whitmire, E., Stengel, M., Boudaoud, B., Kautz, J., Luebke, D.,
Patel, S., Akşit, K.: Optical gaze tracking with spatially-sparse single-pixel



GazeTransformer: Gaze Forecasting for VR 21

detectors. In: IEEE International Symposium on Mixed and Augmented
Reality (ISMAR). pp. 117–126. IEEE (2020)

[44] Li, Y., Fathi, A., Rehg, J.M.: Learning to predict gaze in egocentric video.
In: Proceedings of the IEEE International Conference on Computer Vision
(ICCV). pp. 3216–3223 (2013)

[45] Li, Y., Liu, M., Rehg, J.M.: In the eye of beholder: Joint learning of gaze and
actions in first person video. In: Proceedings of the European Conference
on Computer Vision (ECCV). pp. 619–635 (2018)

[46] Linardos, A., Kümmerer, M., Press, O., Bethge, M.: DeepGaze IIE: Cali-
brated prediction in and out-of-domain for state-of-the-art saliency model-
ing. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV). pp. 12919–12928 (2021)

[47] Liu, Y., Sangineto, E., Bi, W., Sebe, N., Lepri, B., Nadai, M.: Efficient
training of visual transformers with small datasets. Advances in Neural
Information Processing Systems (NeurIPS) 34 (2021)

[48] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101 (2017)

[49] Matsas, E., Vosniakos, G.C.: Design of a virtual reality training system for
human–robot collaboration in manufacturing tasks. International Journal
on Interactive Design and Manufacturing (IJIDeM) 11(2), 139–153 (2017)

[50] Mazzeo, P.L., D’Amico, D., Spagnolo, P., Distante, C.: Deep learning based
eye gaze estimation and prediction. In: 2021 6th International Conference
on Smart and Sustainable Technologies (SpliTech). pp. 1–6. IEEE (2021)

[51] Meng, X., Du, R., Zwicker, M., Varshney, A.: Kernel foveated rendering.
Proceedings of the ACM on Computer Graphics and Interactive Techniques
(PACMCGIT) 1(1), 1–20 (2018)

[52] Murphy, H.A., Duchowski, A.T.: Gaze-contingent level of detail render-
ing. In: Eurographics 2001 - Short Presentations. Eurographics Association
(2001)

[53] Mystakidis, S.: Metaverse. Encyclopedia 2(1), 486–497 (2022)
[54] Naas, S.A., Jiang, X., Sigg, S., Ji, Y.: Functional gaze prediction in egocen-

tric video. In: Proceedings of the 18th International Conference on Advances
in Mobile Computing & Multimedia (MoMM). pp. 40–47. ACM, New York,
NY, USA (2020)

[55] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th International Conference on Inter-
national Conference on Machine Learning (ICML). ACM, New York, NY,
USA (2010)

[56] Pashler, H.E.: The Psychology of Attention. MIT Press (1999)
[57] Patney, A., Salvi, M., Kim, J., Kaplanyan, A., Wyman, C., Benty, N., Lue-

bke, D., Lefohn, A.: Towards foveated rendering for gaze-tracked virtual
reality. ACM Transactions on Graphics (TOG) 35(6), 1–12 (2016)

[58] Perry, T.S.: Virtual reality goes social. IEEE Spectrum 53(1), 56–57 (2015)
[59] Rolff, T., Steinicke, F., Frintrop, S.: When do saccades begin? prediction of

saccades as a time-to-event problem. In: ACM Symposium on Eye Tracking
Research and Applications. ETRA ’22, ACM, New York, NY, USA (2022)



22 T. Rolff et al.

[60] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Im-
ageNet large scale visual recognition challenge. International Journal of
Computer Vision (IJCV) 115(3), 211–252 (2015)

[61] Rzeszewski, M., Evans, L.: Virtual place during quarantine–a curious case
of vrchat. Rozwój Regionalny i Polityka Regionalna (51), 57–75 (2020)

[62] Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-
tracking protocols. In: Proceedings of the 2000 Symposium on Eye Track-
ing Research & Applications. p. 71–78. ETRA ’00, Association for Comput-
ing Machinery, New York, NY, USA (2000), https://doi.org/10.1145/
355017.355028

[63] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-
scale image recognition. In: 3rd International Conference on Learning Rep-
resentations (ICLR) (2015)

[64] Sitzmann, V., Serrano, A., Pavel, A., Agrawala, M., Gutierrez, D., Masia,
B., Wetzstein, G.: Saliency in VR: How do people explore virtual envi-
ronments? IEEE Transactions on Visualization and Computer Graphics
(TVCG) 24(4), 1633–1642 (2018)

[65] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The
Journal of Machine Learning Research 15(1), 1929–1958 (2014)

[66] Stein, N., Niehorster, D.C., Watson, T., Steinicke, F., Rifai, K., Wahl, S.,
Lappe, M.: A comparison of eye tracking latencies among several commercial
head-mounted displays. i-Perception 12(1), 1–16 (2021)

[67] Sun, Q., Patney, A., Wei, L.Y., Shapira, O., Lu, J., Asente, P., Zhu, S.,
McGuire, M., Luebke, D., Kaufman, A.: Towards virtual reality infinite
walking: Dynamic saccadic redirection. ACM Transactions on Graphics
(TOG) 37(4), 1–13 (2018)

[68] Sun, Y., Chen, Z., Tao, M., Liu, H.: Communications, caching, and com-
puting for mobile virtual reality: Modeling and tradeoff. IEEE Transactions
on Communications 67(11), 7573–7586 (2019)

[69] Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cog-
nitive Psychology 12(1), 97–136 (1980)

[70] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Advances in
Neural Information Processing Systems (NIPS). vol. 30. Curran Associates,
Inc. (2017)

[71] Xu, Y., Dong, Y., Wu, J., Sun, Z., Shi, Z., Yu, J., Gao, S.: Gaze prediction in
dynamic 360 immersive videos. In: proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 5333–5342 (2018)

[72] Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via
graph-based manifold ranking. In: Computer Vision and Pattern Recogni-
tion (CVPR), 2013 IEEE Conference on. pp. 3166–3173. IEEE (2013)

[73] Yarbus, A.L.: Eye movements and vision. Springer (2013)
[74] Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable archi-

tectures for scalable image recognition. In: Proceedings of the IEEE Confer-

https://doi.org/10.1145/355017.355028
https://doi.org/10.1145/355017.355028


GazeTransformer: Gaze Forecasting for VR 23

ence on Computer Vision and Pattern Recognition (CVPR). pp. 8697–8710
(2018)


	GazeTransformer: Gaze Forecasting for Virtual Reality using Transformer Networks

