
Vision, Modeling, and Visualization (2020)
J. Krüger, M. Niessner, and J. Stückler (Eds.)

Segmenting Computer-Tomographic Scans of Ancient Clay
Artefacts for Visual Analysis of Cuneiform Inscriptions

T. Rolff1 , M. Rautenhaus2 S. Olbrich2 and S. Frintrop1

1Department of Informatics, Universität Hamburg, Germany
2Regional Computing Center, Universität Hamburg, Germany

Abstract
We address the automatic segmentation of computer tomographic scans of ancient clay tablets with cuneiform inscriptions
enclosed inside a clay envelope. Such separation of parts of similar material properties in the scan enables domain scientists to
virtually investigate the historically valuable artefacts by means of 3D visualization without physical destruction. We investigate
two segmentation methods, the Priority-Flood algorithm and the Compact Watershed algorithm, the latter being modified by
employing a distance metric that takes the ellipsoidal shape of the artefacts into account. Additionally, we propose a novel pre-
segmentation method that suppresses the intensity values of the distance transform at contact points between clay envelope and
tablet. We apply all methods to volumetric scans of a replicated clay tablet and analyze their performance under varying noise
distributions. Evaluation by comparison to a manually segmented ground truth shows best results for the novel suppression-
based approach.

CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Image processing; Volumetric mod-
els;

1 Introduction

In Kültepe, Turkey, approximately 22500 archaeological clay
tablets mainly dating back to the nineteenth century BC have been
discovered, with more tablets found at other sites [Mic08; Mic16].
Cuneiform inscriptions on these tablets range from legal docu-
ments, including contracts, to private letters. They hence provide
valuable insight into the customs and rites at the time of their cre-
ation. As shown in Fig. 1, many of these tablets are still sealed
within a protective envelope which is most likely manufactured
from the same material [TC12]. The tablets were handcrafted, and
a variety of different shapes in various conditions has been discov-
ered. While some tablets are completely sealed in their envelopes,
for others the envelope has been lost or has been accidentally shat-
tered. Both the clay tablets and the envelopes feature inscriptions
and illustrations. Therefore, both are of historical value and it is no
option to destroy the envelope to gain access to the tablet content.
A viable alternative solution is to perform computer tomographic
(CT) scans of the discovered artefacts and to analyze the inscrip-
tions using interactive 3D visualization. This raises the need for a
robust segmentation algorithm capable of separating the clay tablet
from its envelope. In this study, we address the challenge of per-
forming such segmentation on volumetric data that was acquired
using a CT scanner.

Figure 1: 3D visualization of the partly cut protective clay envelope
(red) and the enclosed clay tablet (blue) of the artefact available
for our work, segmented using our proposed method. Both parts of
the artefact, envelope and tablet, feature inscriptions that domain
scientists are interested in analyzing. Best viewed in color.
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Segmentation of the scanned volumetric data faces two major
challenges: difficult to distinguish material properties and noise in-
troduced by the scanning process. Considering the first issue, most
of the clay tablet and the envelope consists of silt from a riverbank
[TC12]. The silt is mostly homogeneous in density, except for im-
purities such as stones or shells, implying that it is not practical to
distinguish tablet from envelope by merely comparing density val-
ues. The techniques used in former times to enclose the tablet in
the envelope make the situation even more challenging. Some kind
of separation material including plant or fabric-based layers may or
may not have been used during construction to separate the tablet
from the envelope [CT11; TC12]. But even if separation material
was used, the material may not be discernible in the scanned data.
Reasons are manifold and include scanning parameters such as spa-
tial resolution and noise. Also, since the artefacts were handcrafted,
separation material may have been incomplete, resulting in contact
points and thus physical connections of tablet and envelope.

With respect to the second issue, the noise distribution of the
scanned data heavily depends on the exposure time of the scans
[Buz08; PL15]. For the current study, data acquired using a mi-
cro CT scanner capturing volumes at micrometer resolution was
provided by the Deutsches Elektronen-Synchroton (DESY), with
exposure times ranging from 2 hours to 20 hours. While the 20 h
scans exhibit very low noise levels, the 2 h scans show a pro-
nounced noise distribution that heavily impacts the otherwise ho-
mogeneously distributed density values. Fig. 2 shows an example,
highlighting an area in which it is challenging to distinguish be-
tween tablet and envelope. The application of our proposed method
is envisaged to be applied to a larger number of discovered artefacts
in the future. For such activities, scan times of 20 h are infeasible,
and having a segmentation method available that can deal with the
noise levels exhibited by low-exposure time scans is essential.

In the present paper, we propose a segmentation and visualiza-
tion pipeline capable of segmenting clay tablets with the described
characteristics. Our approach aims at minimal user input, allowing
domain scientists with little knowledge in data processing to use
the system. While previous studies [MKJB10; FWMC13; BHM16]
have focused on the detection and extraction of cuneiform letters,
there is to the best of our knowledge no research on the segmenta-
tion of clay tablets which are sealed inside an envelope. However,
there are multiple general approaches for the segmentation of volu-
metric data especially in the medical sciences. An overview of seg-
mentation methods is provided by ELNAKIB, GIMEL’FARB, SURI,
and EL-BAZ [EGSE11] and NOSRATI and HAMARNEH [NH16].
As baseline for our work we choose a variant of the watershed al-
gorithm first introduced by BEUCHER and LANTUÉJOUL [BL79].
It segments an image by interpreting it as a heightmap and then
“flooding” it from its minima. This allows to segment the image
into multiple regions by constructing “barriers” where assumed
“water” in two basins would flow into each other [BL79; GW17].
In the final result, these barriers mark the borders of the generated
segments. However, one disadvantage of the watershed algorithm
is that it tends to generate irregular shapes [NP14]. NEUBERT and
PROTZEL [NP14] addressed this issue by modifying pixel intensity
values by adding the Euclidean distance of each pixel to its seed. In
this work, we further adapt this Compact Watershed algorithm to
the problem at hand by supporting ellipsoidal geometry reflecting

the shape of the artefacts. Additionally, we introduce a novel pre-
segmentation method that suppresses the physical contact points
between envelope and tablet. We compare the performance of our
approach to the original formulation of the algorithms.

In short, we contribute the following:

• We propose a pipeline that has the ability to segment high-
resolution low-exposure volumetric scans (i.e., exhibiting high
noise levels) of clay tablets sealed inside their envelope.
• We generalize the Compact Watershed algorithm by adapting

the distance metric to segment spherical geometry relfecting the
shape of the artefacts under investigation.
• We introduce a novel pre-segmentation method to suppress phys-

ical connections between tablet and envelope in order to improve
the performance of the Watershed algorithm.

The paper is structured as follows. Sect. 2 gives an overview of
the most important mathematical concepts used in the study. Sect. 3
presents an overview of the segmentation pipeline. Sect. 4 intro-
duces the proposed changes to the Compact Watershed algorithm
and presents the novel suppression algorithm. In Sect. 5, we intro-
duce the sample dataset and the annotation process. Sect. 6 presents
the evaluation results by comparing the novel method against the
existing algorithms. The paper is concluded in Sect. 7.

2 Preliminaries

In this section we define some mathematical concepts used in later
sections.

2.1 Superellipsoids

Superellipsoids as defined by BARR [Bar81] are a set of shapes
which can be described through
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where a1, a2, a3 describe the size and ε1, ε2 the shape parameters of
the superellipsoid. In addition to these parameters, BARR [Bar81]
assigns each superellipsoid a rotation and a translation.

The shape itself can be described through the implicit function

f (x,y,z) = 1. (2)

Hence, a point p = (x,y,z)ᵀ is considered on the superellipsoid if
it satisfies the condition above. Otherwise it is either considered
inside f (x,y,z)< 1 or outside f (x,y,z)> 1.

2.2 Orthogonal Distance Fitting

To fit an implicit surface AHN, RAUH, and RECKNAGEL [ARR01]
proposed an algorithm that minimizes the orthogonal distance of all
points to the surface. Considering that there might be no analytical
solution to calculate the orthogonal distance from a point to an arbi-
trary implicit surface, they propose calculating the distance numer-
ically. Hence, they defined the orthogonal contact point p′ = xΛ(p)
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on the surface described by the parameters Λ and which follows by
minimizing

g(p′, p0,Λ) =

(
f (p′,Λ)

∇ f (p′,Λ)× (p′− p0)

)
, (3)

using a non-linear least squares solver. In this instance, ∇ f de-
scribes the gradient of the function f which defines the implicit
surface. Furthermore, p0 defines the starting parameter of the non-
linear least squares problem and × is the cross product. With the
definition of a contact point it is possible to define the error function
which is used in another least squares minimization process as

σ
2(X ′,X) = (X ′−X)ᵀ ·PᵀP · (X−X ′). (4)

Here X defines the input points used to fit the implicit surface and
PᵀP the covariance matrix of the distances calculated using the
orthogonal contact point algorithm.

3 Method Overview

Fig. 3 illustrates our approach. We base our system model on
a source, filter, and mapper architecture as discussed, e.g., by
SCHROEDER, MARTIN, and LORENSEN [SML18] and SCHU-
MANN and MÜLLER [SM00]. SCHROEDER, MARTIN, and
LORENSEN [SML18] define the source as a processing step that
interfaces with external data sources or generates data from param-
eters, whereas the mapper terminates the visualization pipeline by
generating a visual representation of the data. The filter describes
the transformation process of the data. It generally requires one or
multiple inputs, processes the data and then passes the transformed
data on to one or multiple outputs. Using this framework, we in the
following describe how the data is pre-processed by denoising, and
how the segmentation of the tablet is approached.

Source: Input to our pipeline are 3D density volumes reconstructed
from captured x-ray projections. We input these into the pipeline as
raw volumetric data.

Denoising: To reduce noise, the data are pre-processed by means of
an image denoising algorithm. To avoid smearing cuneiform letters
or closing small gaps that might be part of a symbol we employed
an iterative bilateral filter because of its edge preserving properties
[PKTD09]. To speedup the computation process, we restricted the
denoising using a box window of size 2σ + 1, with σ being the
spatial parameter of the bilteral filter.

Segmentation of Foreground & Background: We refer to the
background as parts of the volume that do not contain any infor-
mation about the actual artefact, such as the air that got captured
in the data acquisition process or the sample holder used to hold
the artefact in place. We define the foreground as all voxels that
belong to the artefact. This includes the materials used for con-
struction as well as impurities including stones. By utilizing the
fact that the density of air and of the sample holder is lower than
the density of the clay we are able to employ a thresholding method
such as Otsu’s method [Ots79] to differentiate between foreground
and background. To perform the foreground-background segmen-
tation we binarize the volume and utilize the 2-dimensional Otsu’s
method [JWY91], which has the advantage of being robust to the
noise that might still be left after the denoising process.

Figure 2: Slice through the noisy volume data. While when viewing
the entire slice it is possible to differentiate between tablet and en-
velope, it is in some regions challenging to distinguish both when
only local information is available. Such a region is magnified in
the red rectangle. Here, tablet and envelope are physically touch-
ing each other and appear as one part. Best viewed in color.

Segmentation of Tablet & Envelope: Using the binarized vol-
ume, we calculate a distance transform [GW17] by computing the
Euclidean distance for all foreground voxels to their nearest back-
ground voxel. This distance-transformed data is subsequently input
to the different segmentation algorithms discussed in Sect. 4. For
the proposed novel suppressed watershed algorithm, an additional
suppression step is applied to the distance-transformed data. One
manual step is included in our approach: All segmentation algo-
rithms require initial markers that act as seeds for the individual
segments to define their labels. These markers have to be hand-
placed by the user inside the volume at voxels known to belong to
either envelope or tablet; thus we require the user to label at least
one voxel of the clay tablet and one voxel of the envelope prior to
the segmentation process. Parts of our proposed approach depend
on superellipsoid geometry for orthogonal distance fitting of the
segmented regions; here we additionally require the user to select
points located on the border between tablet and envelope. We utlize
these user specified points to fit a superellipsoid using orthogonal
distance fitting as described in Sec. 2.2.

Mapper: Polygonal isosurfaces of the labelled volume are com-
puted by means of the Marching Cubes algorithm [LC87]. Isosur-
face contruction as well as 3D display are implemented using the
Visualization Toolkit [SML18].

4 Compact & Suppressed Watershed

In this section, we discuss the basics of two watershed algorithm
variants; we analyze, the Priority-Flood algorithm as proposed by
BARNES, LEHMAN, and MULLA [BLM14] and the Compact Wa-
tershed algorithm by NEUBERT and PROTZEL [NP14]. We present
our modification to the Compact Watershed algorithm and intro-
duce our novel suppression-based pre-segmentation method that
suppresses physical connections between clay tablet and envelope.

As introduced in Sect. 1, watershed algorithms interpret an im-
age as a height-map, which is “flooded” from its low elevations. In
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Figure 3: Method overview illustrating the proposed pipeline for clay tablet segmentation. The volumetric data from the CT scan is denoised
using a bilateral filter, then foreground and background voxels are segmented using Otsu’s method [Ots79]. Clay tablet and envelope are
segmented in multiple processing steps, including a distance transform followed by contact point suppression (cf. Sect. 4) and application of
either the Priority-Flood or the Compact Watershed algorithm. The segmented data is mapped to a polgonal isosurface for 3D rendering.
For further details see Sect. 3.

general Priority-Flood algorithms are characterized by employing
a priority queue to order cells by their elevation [BLM14], start-
ing with the lowest elevation, in order to achieve improved runtime
performance. For this study, we consider a Priority-Flood variant
proposed by BARNES, LEHMAN, and MULLA [BLM14]. It is not
constraint to a specific connectedness of the data and, particularly
important for our application, generalizes to 3-dimensional input
grids. Additionally, BARNES, LEHMAN, and MULLA are able to
achieve an optimal runtime of O(n) for integer and a runtime of
O(n · log2(n)) for float-point data, important when processing large
volumes like ours.

The Compact Watershed algorithm proposed by NEUBERT and
PROTZEL [NP14] adresses the issue that watershed algorithms tend
to generate irregular shapes of the segmented regions (cf. Sect. 1).
NEUBERT and PROTZEL proposed penalizing pixels that are far-
ther away from their seed (initial marker, cf. Sect. 3) by adding the
Euclidean distance between the currently considered pixel and the
corresponding segment seed to the pixel’s intensity (here the value
of the distance transform), thereby decreasing the pixel’s priority
in the priority queue. Furthermore, they introduced a compactness
factor that is multiplied with the Euclidean distance to control how
much the shape of the segments is influenced.

Fig. 4a shows one particular failure point when computing a
segmentation with the Priority-Flood or the Compact Watershed
algorithm: high-intensity ridges in the distance-transformed vol-
ume. Such ridges emerge from the foreground-from-background
segmentation at locations where tablet and envelop touch or where
background voxels are erroneously classified as foreground. At re-
gions where the contact areas between tablet and envelope are rel-
atively small, the distance-transform value for the affected vox-
els is relatively small as well, as the nearest background voxel is
closeby (Fig. 4d). However, when the contact areas become larger
(Fig. 4c), distances to the nearest background voxel increase and so
the distance-tranform values increase as well. These high-intensity
values at the rigdes cause higher prioritisation of the ridge voxels
in the segmentation algorithm’s priority queue, hence the larger the
ridge’s intensity the more likely the algorithm will connect tablet
and envelope (the ridges will be “flooded” early in the segmenta-
tion process). Once such a connection has been established, it is
likely that the algorithm continues to wrongly label parts of the
tablet as envelope or vice versa.

Ellipsoid-based Compact Watershed: Fig. 5a-c shows the effect
of increasing the compactness factor c of the Compact Watershed
algorithm. For low c, flooding across the ridges occurs, connecting
tablet with envelope. When c is large, the penalty factor dominates
a pixel’s (or in 3D a voxel’s) priority in the priority queue.

a) b) c) d)

Figure 5: Slice of the segmented volume, using Compact Water-
shed with Eucleadian-distance-based compactness factors c of (a)
c = 0, (b) c = 0.1, (c) c = 10, and (d) with our ellisoid-based modi-
fication and c = 0.1. Seed points are marked with a red cross. With
Eucleadian-distance-based compactness (a-c), flooding across the
high-intensity ridges occurs; higher values of c result in the dis-
tance between seed and voxel dominating over the distance trans-
form value (intensity). Ellipsoid-based compactness (d) success-
fully capture the shape of the tablet.

In these cases and for our special case of two seeds, the segmen-
tation simply cuts the region along a planar surface. To counteract,
we modify the algorithm as follows. We assume that the clay tablet
can be approximated by a superellipsoid (or in the simplest case a
sphere) defined by parameters Λ with center of mass pm. Based on
this assumption, a function GΛ(p) is defined for the penalization of
a voxel p depending on its distance to the surface of the superel-
lipsoid (compared to its Euclidean distance to the seed as in the
original NEUBERT and PROTZEL algorithm). Recall from Sect. 3
that the user manually places seeds into tablet and envelope. To de-
fine the shape of the superellipsoid, we require multiple such seeds
{p1

l , ..., pn
l } for each label l and assume that the seeds are all placed

on the boundary of the superellipsoid. To fit a superellipsoid we
utilize orthogonal distance fitting as described in Sect. 2.2 by mini-
mizing the total orthogonal distance of all seed to the respective su-
perellipsoid. We solve this non-linear least squares problem using
the Levenberg-Marquardt algorithm [Lev44; Mar63] resulting in
superellipsoids that approximate the user specified shapes. As the
initial state of the Levenberg-Marquardt algorithm we set the cen-
ter of the superellipsoid equal to the center of mass of the seeds and
derive the initial rotation via Principle Component Analysis (PCA)
[Pea01]. The other parameters a,b,c are set equal to the distance
of the seed furthest from the center of mass and ε1 = ε2 = 1 thus
using a sphere as our initial configuration to fit the superellipsoid.
Hence, for the case of a simple sphere, a single seed for tablet and
envelope each suffices. In this spherical case we define the center
of the sphere as the center of mass of the clay tablet and envelope.
Further, it allows to express GΛ as the orthogonal distance between
a voxel at coordinate p and the sphere’s surface spanned up by the
seed p1

l as GΛ = |||p− pm||2−||p1
l − pm||2| with Λ = {p1

l , pm}.
In the case of a superellipsoid, GΛ becomes GΛ = ||p− xΛ(p)||,
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a)
c)

d)
b)

Figure 4: (a) Original and (b) suppressed distance-transformed data of the slice shown in Fig. 2. The original distance transform contains
strong connections between clay tablet and envelope (white ellipses), making segmentation challenging. The suppressed distance transform
largely improves upon this situation. Panels (c) and (d) zoom in on two selected ridges, see text for details.

where Λ specifies the superellipsoid parameters (cf. Sect. 2.1) and
xΛ(p) is the orthogonal contact point of p (cf. Sect. 2.2).

Suppressed Watershed: Using an ellipsoid-based penalization
largely improves the segmentation; Fig. 5d shows the technique ap-
plied to the section failing when using Euclidean distances. How-
ever, flooding across high-intensity ridges still persists in many lo-
cations, an example is shown in Fig. 7. It is hence desirable to be
able to detect if a voxel at position p belongs to such an “erronous”
connection, and to correct its distance-transform intensity corre-
spondingly. Let I be the original distance-transform intensity field
and f be a classification function indicating whether a voxel be-
longs to an undesired ridge. We define a “suppressed” distance field
I′ (that suppresses the undesired ridges) by

I′ = I · f . (5)

Ideally, f would be

f (p) =

{
0 if the voxel at p is part of a connector
1 otherwise.

(6)

However, such binary classification would require prior knowledge
about the resulting segmentation and is therefore not feasible.

Instead, we define f as a probability function that represents the
likelihood of a voxel not belonging to an undesired connector. To
avoid false positive assignments, which may result in setting the
intensity value of a voxel in the distance field to zero, we boost
the intensities instead of suppressing them. Therefore, we introduce
similar to NEUBERT and PROTZEL [NP14] a factor γ that increases
the intensity values via

I′(p) = I(p) · (γ f (p)+1) . (7)

We note that we require the user to choose a value for γ for
the Ellipsoid-based Compact Watershed and the Suppressed Wa-
tershed algorithm. For a lower γ the algorithm will weight the dis-
tance transform more, whereas for a higher γ it will boost the inten-
sity values of voxels that do not belong to a connector. As for f a

straightforward formulation can be obtained by noticing that most
ridges are parallel to the normal vectors of a superellipsoid rep-
resenting the tablet. This implies that the gradient of the distance
field along the ridges is orthogonal to the superellipsoid normals.
We hence define f as the dot product between the superellipsoid
normals and the gradient of the distance field:

f (p) =
∣∣∣∣ ∇I(p)
||∇I(p)|| ·

R(p)
||R(p)||

∣∣∣∣ , (8)

where∇I denotes the gradient of the distance field and R represents
the superellipsoid normals:

R(p) = p− xΛ(p), (9)

where xΛ(p) is the contact point for a superellipsoid with param-
eters Λ, as introduced in Sect. 2.2. As previously mentioned, we
fit superellipsoids from initial seeds provided by the user. For our
evaluation, we also consider using a simple sphere instead of a su-
perellipsoid:

R(p) = p− pm. (10)

Fig. 4b shows the resulting distance field as obtained using su-
perellipsoid suppression. The undesired ridges present in Fig. 4a
have largely been eliminated.

5 Data

For the study at hand, we were provided with a dataset consist-
ing of a total of six volumetric CT scans of two replica tablets of
approximately 5cm×5cm×3cm in size, with three scans of varying
exposure time (ranging from 2 h to 20 h) for each tablet. The tablets
were handcrafted as examination objects to mimic tablets found at
archaeological sites. They are enclosed in their envelope with both
containing cuneiform inscriptions on the envelope and the tablet.

Fig. 1 shows a 3D visualization of the segmentation ob-
tained from the only 2 h low-exposure scan in our dataset. The
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scans were conducted at German Electron Synchrotron (DESY)
(www.desy.de) in order to evaluate the quality of the scanned vol-
umes with regards to different scanning parameters, including ex-
posure time and frames per projection. The size of the data volumes
ranges from 2283×2284×1132 to 2283×2284×2304 voxels (ap-
prox. 5.903 to 12.014 gigavoxels) stored as 16 bit intensity values
with a resolution per voxel of 27µm. The scans were conducted
such that the clay tablets where kept at a fixed position, making it
possible to directly compare the scans to each other.

For the reasons discussed in Sect. 1, our particular interest is in
segmenting scans with short exposure times, which exhibit higher
noise levels than the scans with long exposure times. Unfortunately
the datset only contained one such low-exposure scan, hence, re-
ducing our dataset to a single volume. To increase the size of the
test data and to evaluate the algorithm on different grid resolutions,
we subsampled this single volume by factors of 2 to different de-
creased resolutions listed in Tab. 1. Also, to evaluate our approach
for data with varying noise levels, we computed derived volumes
by applying Gaussian noise as listed in Tab. 2.

To obtain a ground truth annotation for evaluation, we utilized
the VAST Lite software (Volume Annotation and Segmentation
Tool) [BSL18] and manually segmented the data, using three differ-
ent labels for background, clay envelope and clay tablet. First, we
coarsely annotated foreground and background using a threshold,
then finely adjusting the initial segmentation. To segment difficult
regions as the one shown in Fig. 2, we assumed that a larger space
corresponds to a cuneiform letter and that a letter is always fully
stamped inside the tablet. Hence, the furthest point outwards from
an empty space, when approached from the center of the clay tablet,
corresponds to the border of the clay tablet.

6 Evaluation

This section introduces the metrics used for evaluation and presents
our experimental results on our dataset described in Sect. 5. We
evaluate our results using the Intersection over Union and the (av-
erage) Hausdorff distances to measure the difference between the
automatically obtained segmentations to the ground truth segmen-
tation. Furthermore, we redefine the Hausdorff distance to compare
volumes of different resolutions.

6.1 Intersection over Union

The Intersection over Union (IoU) is categorized by TAHA and
HANBURY [TH15] as an overlapping metric. It calculates the over-
lap between the ground truth St and the generated segmentation Sp
via [TH15]

JAC =
|St ∩Sp|
|St ∪Sp|

, (11)

We choose this metric based on the recommendation by TAHA and
HANBURY [TH15] given that they consider this metric particularly
useful when outliers exists.

6.2 Hausdorff Distance

As the second metric we chose the Hausdorff distance and the av-
erage Hausdorff distance. These metrics are classified by TAHA

and HANBURY [TH15] as distance based metrics and measure the
distance between the contour of the ground truth and the contour
of the prediction. The metric itself is defined as the maximal dis-
tance of all points in the set A to their closest point in the set B
through [TH15]

HD(A,B) = max(h(A,B),h(B,A)), (12)

with h defined as [TH15]

h(A,B) = max
a∈A

min
b∈B
||a−b||. (13)

The metric is considered particularly useful by TAHA and HAN-
BURY [TH15] when comparing the contour between the ground
truth and the generated segmentation.

However, a drawback of the Hausdorff distance is that it is sensi-
tive to outliers; therefore TAHA and HANBURY [TH15] recommend
using the average Hausdorff distance instead. This metric calculates
the average over all closest points by changing h to

h′(A.B) =
1
|A| ∑

a∈A
min
b∈B
||a−b||. (14)

6.3 Normalized Hausdorff Distance

We note that the Hausdorff distance decreases when subsampling
the volume even if the content is kept the same. To avoid this be-
havior we normalized the Hausdorff distance by dividing the clos-
est distance by the total size of the volume s. This transforms the
volume via scaling into an unit volume and can therefore be inter-
preted as a simplified approach of [Sua05]. Thus, we redefine h for
the Hausdorff distance as

hs(A,B) = max
a∈A

min
b∈B

||a−b||
||s|| =

h(A,B)
||s|| (15)

and for the average Hausdorff distance as

h′s(A,B) =
1
|A| ∑

a∈A
min
b∈B

||a−b||
||s|| =

h′(A,B)
||s|| . (16)

Assuming that all points in A and B are in the volume of size s then
the normalized Hausdorff distance ensures that the error is between
zero and one.

6.4 Results

Fig. 6 shows the evaluation metrics for tablet and envelope seg-
mented by the different methods in dependence of subsampling
factor and added noise. For all considered volume sizes and noise
distributions, our proposed suppression-based approach performs
best compared to the alternative algorithms. The top row of Fig. 6
also shows that the suppression-based approach is reasonably sta-
ble with respect to changes in volume size (i.e., subsampling), in
comparison the performance of the ellipsoid-based Compact Wa-
tershed algorithm worsens with increasing subsampling factor. The
Priority Flood algorithm performs worst for all volume sizes. Sim-
ilar results are obtained for varying noise distributions (bottom row
of Fig. 6), although results are less stable with respect to increasing
noise.

We could confirm these quantitative results by a qualitative vi-
sual analysis of the data. As Fig. 7a shows, our approach is able to
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Figure 6: Evaluation results for the scan described in Sect. 5. Upper row shows evaluation metrics (cf. Sect. 6) comparing automatic
segmentation to ground truth segmentation for volumes of varying resolution (cf. Tab. 1); bottom row shows metrics for data with added
Gaussian noise (cf. Tab. 2). Our suppression-based method results in more stable segmentations for all datasets, while the Compact Watershed
worsens with decreasing resolution and increasing noise. The Priority-Flood algorithm is the least stable and often generates the worst result.

preserve fine details of the inner clay tablet. For example, it is ca-
pable of maintaining a ruling on the inner clay tablet that was used
to align the handwritten letters, whereas the other algorithms often
mislabel parts of the envelope as tablet (e.g., Fig. 7b). While this
is less the case for the ellipsoid-based Compact Watershed com-
pared to the Priority-Flood algorithm, it still mislabels part of the
envelope, whereas the suppressed watershed only keeps tiny blobs.
We note that all algorithms tend to generate erroneous patterns at
locations where envelope and tablet exhibit physical connections.
For instance, the patterns shown in Fig. 8 manifest themselves as
multiple planar surfaces similar to a “crystal” and could potentially
obscure letters or decrease the readability.

7 Summary and Conclusion

We investigated an unmodified Priority-Flood algorithm and an
ellipsoid-based formulation of the Compact Watershed algorithm in
terms of their ability to segment volumetric CT scans of clay tablets
enclosed inside an envelope and proposed an additional novel pre-
segmentation method. It suppresses physical contact points be-
tween the clay tablet and the envelope, resulting in a more stable
output with regards to noise and resolution of the input. Compar-
ison of automatically obtained segmentation with a ground-truth
segmentation by means of both qualitative inspection and quanti-
tative similarity metrics showed that our novel suppression-based
approach largely improves upon the existing algorithms.

For the dataset available in this study, the proposed method is
able to produce a segmentation that is capable of preserving fine
details. However, all methods still produce some erroneous patterns
at locations where the tablet is physically connected to the enve-
lope. Also, we noticed that all algorithms tend to mislabel parts
of the envelope as clay tablet to some extent. While for the pro-

Scale SNR Resolution
1 ~0.88 2124×1411×2191
2 ~0.88 1061×704×1094
4 ~0.88 530×351×546
8 ~0.88 264×175×272

Table 1: Subsampling resolutions used in this study. Scale denotes
subsampling factor, SNR denotes signal to noise ratio.

posed suppression-based watershed algorithm, these incorrectly la-
belled parts visually are only barely noticeable, further investiga-
tion needs to determine whether they can potentially impact the
readability or alter the meaning of the inscriptions. In this context,
to improve readability, it will also be useful in future work to in-
vestigate visual analysis techniques that extract and highlight the
inscribed cuneiform letters. Given the stable output on the subsam-
pled dataset it would be worth considering using the algorithm in
an hierarchical approach or directly segmenting the polygonal mesh
generated from the isosurface to speedup the computation. In con-
clusion we note, however, that the CT data available to us for this
study is too small for generic statements. Hence, further research
will be required to validate our results using a larger number of
scanned clay tablets with different characteristics.
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a) b)

Figure 7: Left: Inner clay tablet segmented using our novel
suppression-based method. Our method preserves many fine de-
tails, including a ruling used to align the text. Right: Segmentation
obtained with the ellipsoid-based, unsuppressed Compact Water-
shed algorithm. This algorithm considers parts of the envelope as
tablet, resulting in regions of the tablet being obscured. Also, the
blobs discussed in Sect. 6 are visible.

Figure 8: Example showing the “crystal” pattern discussed in
Sect. 6 (blue rectangle). This pattern occurs at locations where the
clay tablet physically touches the envelope. This results in the algo-
rithm making an artificial cut between the envelope and the tablet.

Sigma SNR Resolution
150 ~49.98 2124×1411×2191

1500 ~4.99 2124×1411×2191
7500 ~1.00 2124×1411×2191
15000 ~0.51 2124×1411×2191
22500 ~0.40 2124×1411×2191
30000 ~0.37 2124×1411×2191

Table 2: Gaussian noise distributions added to the original
scanned data. Sigma denotes Gaussian standard distribution in
voxels, SNR denotes signal to noise ratio.
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