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ABSTRACT
We present a novel view on gaze event classification by redefin-
ing it as a time-to-event problem. In contrast to previous models,
which consider the classification as discrete events, our redefinition
allows for estimating the remaining time until the next saccade
event. Therefore, we provide a feature analysis and an initial solu-
tion for compensating the latency of wearable eye-trackers build
in today’s head-mounted displays. Similar to previous classifiers,
we utilize oculomotor features such as velocity, acceleration, and
event durations. In total, we analyze 104 extracted features of three
datasets and apply different regression methods. We identify opti-
mal window sizes for each feature and extract the importance of
all extracted windows using recursive feature elimination. After-
wards, we evaluate the performance of all regressors using earlier
selected features. We show that our selected regressors can predict
the time-to-event better than the baseline, indicating the potential
usage of time-to-event prediction of saccades.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; Virtual reality.
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1 INTRODUCTION AND RELATEDWORK
Gaze event classification describes the assignment of a label to
a captured gaze point for each different type of eye movement,
including saccades, fixations, or smooth pursuits. With each eye
movement having its unique properties that makes it distinguish-
able, it allows for the classification of these events from the gaze
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point data stream of the eye-tracker. This classification has been
researched for decades and several algorithms to solve the identi-
fication of those events have been proposed [Agtzidis et al. 2016;
Andersson et al. 2017; Dar et al. 2021; Komogortsev and Karpov
2013; Salvucci and Goldberg 2000; Startsev et al. 2019; Zemblys
et al. 2019]. As it is a well-researched topic, the output of those
algorithms is often directly used as event labels for the captured
data [Hu et al. 2021; Meghanathan et al. 2015] removing the need
for tedious hand labelling of individual gaze events. As directly
labelling the data stream is often desired for specific applications,
most proposed algorithms are capable of processing the data on the
output stream of the eye-tracker containing all gaze points captured
so far [Komogortsev et al. 2010; Salvucci and Goldberg 2000; Veneri
et al. 2011]. With the rise of deep learning, recent state-of-the-art
algorithm utilize features calculated on gaze sequences [Startsev
et al. 2019; Zemblys et al. 2019] often outperforming classical gaze
label classification. These early deep learning models are typically
not designed for online application, which restricts their usage to
offline processing.

While most of the listed algorithms can be used on the output
stream of the eye-tracker, when deployed in commercial HMD’s,
their output often has a latency of several milliseconds, either due
to latency of the eye-tracker itself [Stein et al. 2021] or due to delay
introduced in the filtering process required to smooth the incoming
gaze data [Schafer 2011]. However, low latencies are essential to
virtual reality (VR) [Stauffert et al. 2020], as eye-trackers in head-
mounted displays (HMD) often only provide low sampling frequen-
cies [Stein et al. 2021]. To mitigate those, recent attempts have been
made to reduce the latency through the probosal of hardware based
solutions [Angelopoulos et al. 2020; Li et al. 2020]. Alternatively,
waiting for the gaze events to be classified before rendering the
frame, for instance, for foveated rendering [Steinicke 2016; Walton
et al. 2021], is usually limited since low rendering latency is required
to avoid visual discomfort or VR sickness [Stauffert et al. 2018].
Therefore, the classification of saccades is often not fast enough
for further processing by other downstream algorithms, as they lag
several milliseconds behind the actual signal [Langbehn et al. 2018;
Stein et al. 2021; Sun et al. 2018]. This makes the direct usage of
gaze events, especially those of saccades, for VR applications quite
challenging. Such applications could be, for example, the estimation
of gaze shifts in gaze forecasting [Hu et al. 2021, 2020], blink or
saccade detection for redirected walking [Langbehn et al. 2018; Sun
et al. 2018], gaze contingent rendering [Arabadzhiyska et al. 2017]
or intend based gaze interaction [David-John et al. 2021]. Hence,
directly classifying these events for a downstream task might miss
the actual timeframe the event has happened or requiring unnatural
actions, such as intentional blinking [Langbehn et al. 2018].
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Figure 1: Schematic representation of our approach to the prediction of saccade events given a set of features. The prediction
itself is done as an online approach by utilizing previously captured features to predict the remaining time until the start of
the next saccade.

Most of the time, however, it is not essential for the above listed
use-cases whether the eye-movement for a specific time step is
known, but rather when it will change. For example, how many
discrete time-steps it will take until a saccade will occur when cur-
rently fixating an object. Therefore, predicting the time it will take
for a gaze event to change requires to model durations of different
eye-movements. Previous work has already shown that these fixa-
tion durations are highly variable and depend on multiple factors,
for example, on features of the stimulus such as luminance, edge
contrast, clutter, or other oculomotor constraints such as saccadic
suppression, amplitude of the next saccade, change in saccade direc-
tion or viewing time [Dorr et al. 2010; Kowler 2011; Nuthmann 2017;
Salthouse and Ellis 1980]. Some of those works already propose
statistical models for fixation durations. For example, [Nuthmann
2017; Nuthmann et al. 2010; Walshe and Nuthmann 2021] propose
multiple models to predict fixation durations, with [Nuthmann
2017] estimating fixation durations through linear mixture models
given local image features in combination with additional oculo-
motor and spatio-temporal parameters. In this paper, we propose
an alternative view on the problem of labelling gaze events by es-
timating when the event type will change rather than the direct
discrete classification of each time step, effectively making it a
discrete time-to-event problem [Tutz et al. 2016]. A discrete time-
to-event problem models how many time steps it will take until a
specific mutually exclusive event is going to happen. These type of
problems have long been analyzed in the domains of biostatistics
[Bull and Spiegelhalter 1997], social sciences [Yamaguchi 1991],
or reliability analysis in engineering [Karim et al. 2019]. Thus, a
common synonym for time-to-event problems is survival analysis,
as the problem is often linked to estimating the time of death. As
shown on the right in Fig. 2, we model the time-to-event as the
time until the next saccade happens. We purposely choose saccades
as our target as most previously mentioned use-cases require a
change in state if a saccade has happened. For the estimation of

the time-to-event, we utilize different regression techniques using
the oculomotor features like velocity, acceleration, or fixation du-
ration captured through the eye-tracker. As depicted in Fig. 1 it
would, ideally, allow us to estimate the moment when a saccade
will happen given previously captured features. Rephrasing the
problem further allows modeling latency as part of the system, as
it can be directly accounted for when estimating the timestamp
of the change point of the event. We would also like to note that
our problem definition differs from the above-mentioned fixation
duration studies in that we do not want to predict the total duration
of a fixation, but rather the remaining time the current fixation will
last only given previously captured features. To our knowledge, no
previous research has modeled the classification of saccade events
as such a time-to-event problem. Therefore, we will analyze 104
extracted features on their importance to predict the time-to-event
of saccades using four different regression techniques. In addition,
we will identify the optimal window lengths for each feature and
estimate their importance using four different machine learning
regressors. For a broader overview of the problem, we will utilize
three different real-world and virtual egocentric datasets using four
different regression models.

To summarize, our work proposes the following contributions:

• We propose a novel view on the problem of gaze event classi-
fication by redefining it from a discrete classification problem
of gaze event into a discrete time-to-event problem for the
forecasting of saccades.

• We analyze three different datasets and evaluate 104 different
features for their optimal window length and importance to
predict the time-to-event of saccades.

• We evaluate four different regression methods in their ability
to estimate time-to-event of saccades.
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Figure 2: Left: the methodology with which we performed our experiment, further explained in Sec. 2. Right: time-to-event
curves (purple) overlaid on top of the gaze acceleration (red) and velocity (green) which are for visualization purposes not to
scale. On top, the raw gaze data is shown (blue, orange). Note that a time-to-event curve reaches zero if a saccade event begins,
and its local maxima directly after the start of a saccade, as we are not concerned with predicting the duration of a saccade
but rather the start of the next saccade event.

2 METHOD
2.1 Overview
In this section, we give an overview of our methodology. In this
work, we will explore how well classical regression models can
already solve our task: the prediction of the remaining time until a
saccade event. We explicitly choose classical regression models for
their interpretability but also to provide a well-understood baseline
for our specific problem statement. The interpretability of those
methods also provides insight into the importance of the selected
features, as it is not evident which features should be utilized for
the time-to-event prediction due to the novelty of our redefinition.
Moreover, this importance can also be used as an indicator for
their potential usage in other regression techniques, which do not
provide such interpretability. To determine the importance of the
features, we will follow the methodology as shown in Fig. 2. First,
we pre-process the raw data by applying multiple filters for noise
reduction, see Sec. 2.3 for details. Next, we classify the gaze labels
for all gaze points if the dataset does not provide them, see Sec. 2.4.
Afterwards, we obtain our feature set by extracting 104 different
features from the pre-processed data. These features are mainly
selected from [David-John et al. 2021; George and Routray 2016] and
are computed from the captured pre-processed gaze and inertial
measurement unit (IMU) data of the HMD and the eye-tracker
(further explained in Sec. 2.5). Given the extracted features, we then
perform multiple phases for the feature selection, see Sec. 2.6.

In the feature selection process, we first utilize multiple regres-
sion models to identify the optimal window length of each feature,
with the window describing the optimal number of the last captured
feature points that should be provided to the regressor. The estima-
tion of the window length also helps to identify, which features do
not require a sequence, as we also check if a feature has an optimal
sequence lengths of one. Using these windows we predict the time-
to-event for each new sample. Next, we estimate the importance
of each feature window by applying recursive feature elimination,
resulting in a rank for each feature window that corresponds to the
importance of the particular feature. We would also like to point out
that we perform both steps on an undersampled dataset, to avoid

adding a bias towards the time-to-event of zero. This is due to the
observation that all time-to-event curves will reach that time point
eventually, resulting in an imbalance in the dataset. Now, with the
window length and the rank, we retrain all regression methods on
the full training set to estimate their final performance on our test
set.

2.2 Datasets
We analyze the data of three different egocentric virtual and real-
world datasets, namely DGaze [Hu et al. 2020], FixationNet [Hu
et al. 2021] and EGTEA Gaze+ [Li et al. 2018]. The first provides
videos, gaze, and IMU data for head accelerations from 43 par-
ticipants that were asked to freely explore 2 out of 5 randomly
assigned virtual environments. The shown scenes contain different
dynamic distractors, which move randomly across the environment.
Each participant was instructed to record at least 3 minutes of data
without any further specification of a task or explanation of the en-
vironment. Further, all participants were provided with a HTC Vive
controller, allowing free movement inside the scene. In total, the
dataset contains an average sequence length of 20,803 gaze points
per session. To capture the data, an HTC Vive in combination with
a 7invensun eye-tracker was used.

The FixationNet dataset is similar to the DGaze dataset, such
that it can be viewed as an extension of it. It includes the same
data modalities, with two dynamic and two static scenes containing
3 variants of the same animals and static objects. The data was
captured from 27 participants with the same hardware setup used
for the DGaze dataset. However, in contrast to the DGaze dataset,
all participants were instructed to solve a specific search task by
pointing onto a target while the other two object variants served as
distractors. Each participant was tasked to record one static and one
dynamic environment with at least 3 trials for each environment,
resulting in 162 captured trials. The dataset contains, on average,
12,000 head and gaze points and 7,800 frames per trial with ad-
ditional information on user ID and task. The gaze data for both
datasets was captured with 100Hz.
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At last, we evaluate the EGTEA Gaze+ dataset, which captures
29 hours of real-world egocentric videos of cooking activities from
32 participants with a total of 86 sessions [Li et al. 2018]. The partic-
ipants were tasked to prepare 7 different meal preparation tasks in
a kitchen environment. As data points, egocentric videos at 24 Hz
and gaze points at 30 Hz were captured for each participant. After-
wards, additional annotations for frequent actions were provided.
Unfortunately, the dataset does not contain any additional data
points from the IMU of the eye-tracker, such as head acceleration,
or orientation.

2.3 Pre-Processing
To pre-process the datasets , we filter the raw gaze data first. As
a first step, we transform the raw gaze points from angular view
coordinates into normalized screen coordinates ranging from 0
to 1. Further, we set invalid and nan values to zero, avoiding the
destruction of temporal information and follow a similar filtering
process like [Dar et al. 2021]. Here, spikes are removed using a
heuristic spike filter [Stampe 1993]. To filter additional noise, two
filters are utilized. First, a Savitzky-Golay filter [Savitzky and Golay
1964] with a filter length of 130ms and a polynomial order of 2 is
applied to the raw gaze data. Afterwards, we estimate the velocity
of each axis independently, using the update rate of the eye-tracker
as the time delta. To smooth out fluctuations in velocity, we apply
a small median filter of size 3 to each axis and calculate the total
velocity using the L2-norm. Then an analogous approach has been
applied for computing the acceleration. As the DGaze dataset con-
tains head accelerations captured with 200Hz, we sub-sampled all
input features to match the frequency of the eye-tracker used to
capture the dataset, which corresponds to 100Hz for the DGaze and
FixationNet. Further, as the EGTEA Gaze+ does not contain IMU
data for the computation of head accelerations, we initialized them
with zeros with the same frequency as the eye-tracker.

2.4 Eye Movement Classification
After pre-processing, eye-movement classification for the DGaze
and FixationNet datasets was performed on the filtered data using
the I-VT algorithm [Salvucci and Goldberg 2000], as these datasets
do not contain gaze event labels. This algorithm utilizes the velocity
of the raw gaze to cluster them into a fixation if they do not exceed
the specified threshold of 80◦/𝑠 , similar to the one reported by
[Hu et al. 2021]. Although, we discarded the clustering step that
is usually performed to find the fixation center and only utilized
I-VT for the classification into fixations and saccades, assuming that
a saccade occurred if the threshold got exceeded. As a result, we
obtain a binary label for each time-step of the input, indicating if the
participant was fixating at the time or if a saccade was performed.
To discard noise, we removed saccades smaller or equal than 10ms
and choose 200ms as our minimal fixation duration to comply
with typical fixation durations reported by [Holmqvist et al. 2011].
Longer fixation durations also allow to mitigate for the latency
added by our method along with the possibility to analyse multiple
time-to-event estimates of our model, for example by calucalating
uncertainty, mean, or filtering.

2.5 Feature Extraction
For our feature set we extracted 104 features in total, including gaze
positions, velocities, accelerations, event labels, head velocities,
and durations mostly extracted from gaze and head data. We also
include metadata such as user or video IDs. For the selection of
features, we mainly based the selection of extracted features on
[David-John et al. 2021; George and Routray 2016] and included
additional data for head accelerations and event durations. The full
list of all extracted features is included in the supplementary. As
our gaze data, we utilize the gaze positions that were smoothed
through the filtering process described in Sec. 2.4, as well as the
head accelerations, and gaze events. We also extracted the gaze
velocity, acceleration, normalized screen coordinates from the gaze
data using the update rate of the eye-tracker as the time delta. As
our target data, we extracted the number of discrete time steps until
the desired gaze event happened.

We additionally extracted low-level features over the time-span
of each event. However, we still keep the temporal sequence, mean-
ing that we strictly enforce to use feature points that were observed
before the currently processed data point. These features include:
cluster point of event positions, distance from the cluster center,
standard deviation of event, time until the event, time since the
last event, duration of the current event and the travelled distance
during the current event. Further, we extracted the mean, median,
minimum, maximum, standard deviation, skewness and kurtosis for
each of the previously extracted features, being the event duration
over horizontal, vertical and total velocity, horizontal, vertical and
total acceleration and the horizontal and vertical head acceleration.
Based on those, we extracted mid-level features, mainly from the
event lengths. These include the average event length so far, as well
as the standard deviation of those events. Further, we extract the
last event length with additional windowed event lengths over all
events with window sizes of 3, 5 and 7. As most of the previously
described features are only extracted on the same event, we addi-
tionally employ window feature extraction regardless of the current
gaze event. For the window size, we choose 1 second to capture at
least one fixation and saccade. These include the travelled distance,
skewness, kurtosis of the horizontal and vertical gaze position and
head acceleration.

2.6 Regression Models and Feature Selection
Due to the novelty of the task and to avoid adding a bias by uti-
lizing only one model class, we choose four different regression
models for the prediction of the time until the next saccade. We pur-
posefully chose models with different learning strategies, namely
k-nearest neighbor (KNN) [Altman 1992], AdaBoost [Drucker 1997;
Freund and Schapire 1997], linear regression with Nyström kernel
approximation [Williams and Seeger 2001] fitted via stochastic gra-
dient descent (SGD) [Robbins and Monro 1951], and support vector
regression (SVR) [Platt et al. 1999]. As our baseline, we used the
average time-to-event duration (Avg.) on the training set, allowing
to estimate the overall performance of our models. We addition-
ally employed Bayesian hyperparameter optimization [Snoek et al.
2012] to find the best set of hyperparameters for KNN’s, SGD’s
and AdaBoost. For the estimation of the optimal window sizes, we
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initialized the SVR model with constant hyperparameters, due to
their computation requirement.

Before feature selection, we split our dataset into training and
test sets. We utilize 90% of our data for training and strictly choose
different sessions for the training and the test set to avoid data
leakage. Further, to reduce data leakage inside the training set, we
sub-sampled the generated data and applied random undersampling
with a sample size of 50 for each event duration, effectively discard-
ing time-to-event durations with less than 50 samples. This also
avoids imbalance caused by the frequent occurrence of shorter time-
to-event durations, as each time-to-event sequence will eventually
reach a time-to-event duration of zero. To estimate the optimal
window length we sampled different window sizes of 1, 10, 20,
40, 60, 80 and 100 samples separately for each feature. With the
extracted window sizes, we train a regressor on each and utilize
cross validation with a fold size of 7 to find the optimal window
length on the training set. To avoid additional bias in the selection
of hyperparameters used in each regressor, we employ Bayesian
optimization to find a good set of hyperparameters for each fea-
ture window separately. However, as a consequence of the size of
the datasets we chose 10% of the undersampled training data for
the estimation of the hyperparameters with Bayesian optimization
resulting in 2624, 2456 and 951 samples for the DGaze, Fixation-
Net and EGTEA Gaze+ dataset. Nonetheless, the evaluation of the
window size of each feature was done on the full undersampled
training set by retraining a new instance of the best predictor fund
in the optimization process.

After estimating optimal window sizes of each feature, we per-
formed another feature selection process to find overall useful
features from the extracted windows on all participants. Here, we
utilized recursive feature elimination (RFE) [Guyon et al. 2002] with
cross validation and discarded the full window instead of singular
features for interpretability. During RFE, we utilized linear kernels
for the SGD and SVR regressors and retrained all regressors on non-
linear kernels afterwards. We also did not apply RFE to KNN’s as
they do not define feature importance. Instead, we trained all KNN
regressors with the full feature set using the optimal window sizes
for each feature. Similar to the previous feature selection process,
we performed hyperparameter optimization on all regressors. But
instead of estimating the best hyperparameter set after the elimina-
tion of a feature, we fitted each regressor before the application of
RFE on the complete set of features and after the elimination, due
to computational reasons.

3 EVALUATION
3.1 Metrics
Commonly used metrics for quantitative measurement of time-
to-event data are the concordance index [Harrell Jr et al. 1996],
cumulative dynamic AUC [Hung and Chiang 2010] or the brier
score [Graf et al. 1999]. The concordance index, measures if two
samples were correctly ordered, meaning that a sample with the
higher risk score has a shorter time-to-event than a sample with a
lower risk. However, we did not utilize a commonly used survival
metric, as we are concerned with the exact time point when an
event happens rather than the correct order. Instead, we specifically

chose the absolute error, as it models the difference between the
predicted time-to-event and the exact time point the event happens.

3.2 Results
Table 1 shows the results of all regression methods on all datasets
evaluated on the corresponding test sets. Half of the selected meth-
ods always outperform our baseline, with the exceptions being
KNN and AdaBoost. We found that especially the SGD regressor
has shown the best performance on our selected datasets, indicating
the potential usage of the selected features for time-to-event predic-
tion of saccades. We also included the 10 most important features of
the SGD regressor in Table 2 due to its performance. Surprisingly,
we found that among the most important features are the binary
indicators of the last fixation and saccade events that are set to one
if an event of that type occurred. Further, noticeable are the time
since the last saccade as well as the average saccade and fixation
duration and their standard deviation. An extensive list of all ranks
is provided in the supplementary, along with the window lengths.
Note that we cannot compare against any state-of-the-art methods
due to the novity of our problem definition, as it is not possible to
compare our method directly with the gaze classification models
nor with the fixation duration studies mentioned at the begining of
the paper due to the reasons given in Sec. 1.

4 CONCLUSION AND DISCUSSION
We redefined the problem of discrete gaze event classification into a
time-to-event problem and investigated if classical regression mod-
els can be utilized for the prediction of saccade events. We extracted
104 different features, stemming from the raw gaze and the IMU of
the HMD and eye-tracker. Using those features, we identified the
optimal window length of each feature separately using four differ-
ent regression techniques. Afterwards, we estimated the optimal
feature set using recursive feature elimination, ranking each feature
window for their importance to predict the time-to-event of saccade
initiations. We found that the most important features are binary
event indicators and duration variables of saccades and fixations.
This ranking also indicates the potential usage for other regression
methods that do not provide the importance of features, such as
deep learning or survival analysis methods. As half of the selected
regressors outperformed our baseline, we confirm our hypothesis
that gaze events can be predicted when redefined as a time-to-event
problem. We would also like to emphasize that our model does not
aim to replace classical gaze event classifiers but serves as an addi-
tion to those. Given that the calculation of features does not depend
on future data and the fact that our evaluated methods are fast to
compute it allows the real-time application of our models. It, how-
ever, remains to be seen if the model is accurate enough for real
world applications. Here, more research on decreasing the error is
advisable. Possible research directions could be the analysis of addi-
tional features like visual stimulus, frontal eye field data features or
task data like [Nuthmann 2017] that is already contained in some
of the datasets we analyzed. It might also be advisable to research
if a calibration phase per user would help to decrease the error.
It also requires more research to determine how well the method
generalizes to different datasets but given the performance of the
SGD regressor shown in Tab. 1 on fully unseen scenes we expect
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Dataset Avg. (Baseline) KNN SGD SVR AdaBoost
DGaze 420.30 384.89 301.62 312.20 353.33
FixationNet 571.70 575.33 520.25 521.04 558.83
EGTEA Gaze+ 933.15 831.28 711.96 748.63 835.49

Table 1: Mean absolute error of all selected regression techniques listed in Sec. 2.6. The error measures the absolute difference
between the time-to-event and the prediction on the test sets of the corresponding dataset in milliseconds. The best results
are presented as bold text. Note that we do not compare against other methods due to reasons outlined in Sec. 3.

DGaze FixationNet EGTEA Gaze+ Mean on all Datasets
Std. of Horiz. Gaze Position Std. of Vert. Gaze Time Since Last Fixation Binary Saccade Indicator
Binary Saccade Indicator Gaze Event Label Average Saccade Dur. Time Since Last Saccade
Total Head Accel. Std. of Horiz. Velo. Dur. of current Gaze Event Binary Fixation Indicator
Gaze Event Label Binary Saccade Indicator Time Since Last Saccade Gaze Event Label
Binary Fixation Indicator Mean of Horiz. Gaze Accel. Binary Fixation Indicator Average Saccade Dur.
Time Since Last Saccade Horiz. Dist. from Evt. Cluster Pos. Kurt. of Horiz. Gaze Std. of Avg. Saccade Dur.
Std. Saccade Dur. Time Since Last Saccade Max. Total Gaze Velo. Dist. from Event Cluster Pos.
Dist. from Event Center Binary Fixation Indicator Path Length Time Since Last Fixation
Dispersion Ratio Avg. Dur. of Last 5. Fixations Avg. Fixation Dur.
Last Fixation Dur. Max. Vert. Accel. Binary Saccade Indicator Kurt. of Horiz. Gaze Pos.

Table 2: The 10 most important features of the SGD regressor trained on the DGaze, FixationNet and EGTEA Gaze+ datasets
sorted by their importance in descending order from top to bottom. The Mean on all Dataset column shows the overall best
features on all datasets, computed as the mean of their importance.

it is a good baseline for the problem at hand. On another note, a
comparison against state-of-the-art classification methods when
accounting for latency would be a good addition, as this paper did
not go further into this topic. Additionally, it might be advisable
to evaluate the performance of regressors explicitly designed for
time-to-event analysis or deep learning methods, to decrease the
measure error. With regard to the error metric, it might also be
necessary to investigate additional metrics that take imbalance of
time-to-event data into account, especially when also considering
other eye-movements such as smooth pursuits.
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A FEATURE SET
The following features were computed for time-to-event prediction.
Note that we take our features mainly from [George and Routray
2016] and [David-John et al. 2021]. We also added durations-based
features and features from the inertial measurement unit.

• Based on gaze:
– Computed from singular or adjacent values:
Horizontal angular gaze, vertical angular gaze, normalized
vertical gaze in screen space, normalized horizontal gaze
in screen space, horizontal gaze velocity, vertical gaze
velocity, total gaze velocity, horizontal gaze acceleration,
vertical gaze acceleration, total gaze acceleration.

– Computed on window:
Based on position: clustered horizontal gaze position,
clustered vertical gaze position, horizontal distance from
clustered gaze position, vertical distance from clustered
gaze position, horizontal distance to normalized clustered
gaze position, vertical distance to normalized clustered
gaze position, euclidean distance from clustered gaze posi-
tion, standard deviation of horizontal gaze position, stan-
dard deviation of vertical gaze position, skewness of hori-
zontal gaze position, skewness of vertical gaze position,
kurtosis of horizontal gaze position, kurtosis of vertical
gaze position
Based on velocity: average horizontal gaze velocity, aver-
age vertical gaze velocity, median horizontal gaze velocity,
median vertical gaze velocity, maximum horizontal gaze
velocity, maximum vertical gaze velocity, standard devia-
tion of vertical gaze velocity, standard deviation of hori-
zontal gaze velocity, skewness of horizontal gaze velocity,
skewness of vertical gaze velocity, kurtosis of horizontal
gaze velocity, kurtosis of vertical gaze velocity, average
total gaze velocity, median total gaze velocity, maximum
total gaze velocity, standard deviation of total gaze veloc-
ity, skewness of total gaze velocity, kurtosis of total gaze
velocity
Based on acceleration: average horizontal gaze accelera-
tion, average vertical gaze acceleration, median horizon-
tal gaze acceleration, median vertical gaze acceleration,
maximum horizontal gaze acceleration, maximum vertical
gaze acceleration, standard deviation of horizontal gaze
acceleration, standard deviation of vertical gaze accelera-
tion, skewness of horizontal gaze acceleration, skewness
of vertical gaze acceleration, kurtosis of horizontal gaze
acceleration, kurtosis of vertical gaze acceleration, aver-
age total gaze acceleration, median total gaze acceleration,
maximum total gaze acceleration, standard deviation of
total gaze acceleration, skewness of total gaze acceleration,
kurtosis of total gaze acceleration, cumulative gaze travel
distance
Other: , Center-Dispersion, dispersion, ratio, gaze travel
distance during event (path length)

• Based on inertial measurement unit:
Horizontal head acceleration, vertical head acceleration, to-
tal head acceleration, skewness of horizontal head acceler-
ation over window, skewness of vertical head acceleration

over window, kurtosis of horizontal head acceleration over
window, kurtosis of vertical head acceleration over window,
average horizontal head acceleration, average vertical head
acceleration, median horizontal head acceleration, median
vertical head acceleration, maximum horizontal head ac-
celeration, maximum vertical head acceleration, standard
deviation of horizontal head acceleration, standard deviation
of vertical head acceleration, skewness of horizontal head
acceleration over all previous samples, skewness of vertical
head acceleration over all previous samples, kurtosis of hori-
zontal head acceleration over all previous samples, kurtosis
of vertical head acceleration over all previous samples,

• Based on event:
Gaze event labels, binary indicator of fixation event, binary
indicator of saccade event,

• Based on duration:
Time since the last saccade, time since the last fixation, av-
erage fixation duration, average saccade duration, standard
deviation of average fixation duration, standard deviation of
average saccade duration, last fixation duration, last saccade
duration, average of last 3 saccade durations, average of last
3 fixation durations, average of last 5 saccade durations, av-
erage of last 5 fixation durations, average of last 7 fixation
durations, average of last 7 saccade durations, duration of
current event,

• Metadata:
User ID, frame index, video index

B WINDOW LENGTHS AND FEATURE
IMPORTANCE

Here, we also include the estimated optimal window lengths and
importance of all features of the SGD regressor, as it reported the
best results on all datasets.



When do Saccades begin?
Prediction of Saccades as a Time-to-Event Problem ETRA ’22, June 8–11, 2022, Seattle, WA, USA

Feature Win. Lenght Imp.
Standard deviation of horizontal gaze position 1 1
Binary indicator of saccade event 10 2
Total head acceleration 20 3
Gaze event label 100 4
Binary indicator of fixation event 10 5
Time since the last saccade 80 6
Standard deviation of saccade duration 60 7
Euclidean distance to clustered gaze position 10 8
Dispersion 20 9
Last fixation duration 20 10
Average saccade duration 80 11
Maximum horizontal gaze velocity 10 12
Gaze travel distance during event 10 13
Standard deviation of horizontal head acceleration 100 14
Average duration of last 3 saccades 20 15
Average fixation duration 40 16
Vertical head acceleration 10 17
Median horizontal head acceleration 20 18
Average duration of last 5 fixations 40 19
Standard deviation of vertical gaze acceleration 20 20
Cumulative gaze travel distance 40 21
Total gaze velocity 40 22
Average duration of last 7 saccades 40 23
Standard deviation of total gaze acceleration 20 24
Kurtosis of horizontal gaze position 20 25
Skewness of total gaze velocity 10 26
Kurtosis of total gaze velocity 100 27
Horizontal distance to clustered gaze position 20 28
Standard deviation of vertical gaze acceleration 20 29
Standard deviation of vertical gaze velocity 60 30
Dispersion of Euclidean distance to clustered gaze position 10 31
Kurtosis of vertical gaze position 80 32
Skewness of horizontal gaze position 10 33
Total gaze acceleration 40 34
Last saccade duration 40 35
Average vertical gaze acceleration 100 36
Ratio 100 37
Standard deviation of fixation duration 80 38
Horizontal gaze acceleration 20 39
Duration of current gaze event 80 40
Average duration of last 3 fixations 60 41
Horizontal head acceleration 40 42
Standard deviation of vertical head acceleration 100 43
Clustered horizontal gaze position 10 44
Median horizontal gaze velocity 100 45
Skewness of vertical gaze velocity 20 46
Skewness of total gaze acceleration 20 47
Kurtosis of vertical gaze acceleration 100 48
Median total gaze acceleration 100 49
Kurtosis of horizontal head acceleration 80 50
Average vertical gaze acceleration 100 51
Median total gaze velocity 20 52

Feature Win. Lenght Imp.
Kurtosis of vertical gaze velocity 100 53
Kurtosis of horizontal gaze velocity 40 54
Vertical gaze acceleration 10 55
Maximum vertical gaze acceleration 10 56
Time since the last fixation 100 57
Average duration of last 7 fixations 20 58
Skewness of vertical gaze position 100 59
Average horizontal head acceleration 10 60
Kurtosis of horizontal head acceleration 80 61
Skewness of horizontal gaze velocity 100 62
Median vertical gaze acceleration 100 63
Clustered vertical gaze position 80 64
Skewness of horizontal head acceleration 40 65
Average duration of last 5 saccades 20 66
Vertical distance to clustered gaze position 100 67
Maximum vertical head acceleration 100 68
Average total gaze velocity 20 69
Kurtosis of vertical head acceleration 100 70
Kurtosis of vertical gaze acceleration 100 71
Average vertical head acceleration 100 72
Skewness of vertical head acceleration 100 73
Kurtosis of vertical head acceleration 40 74
Horizontal gaze velocity 20 75
Normalized vertical gaze position in screen space 20 76
Normalized horizontal gaze position in screen space 10 77
Frame index 60 78
Standard deviation of total gaze velocity 20 79
Standard deviation of vertical gaze position 10 80
Skewness of vertical head acceleration 60 81
Video index 100 82
Maximum total gaze acceleration 20 83
Kurtosis of total gaze acceleration 100 84
User ID 100 85
Normalized horizontal distance to from screen center 10 86
Median vertical gaze acceleration 40 87
Maximum horizontal head acceleration 10 88
Maximum total gaze velocity 10 89
Normalized vertical distance to from screen center 100 90
Median vertical head acceleration 100 91
Average horizontal gaze velocity 100 92
Median vertical gaze velocity 100 93
Maximum vertical gaze velocity 20 94
Skewness of vertical gaze acceleration 20 95
Vertical gaze velocity 100 96
Standard deviation of horizontal gaze velocity 1 97
Average total gaze acceleration 20 98
Maximum vertical gaze acceleration 20 99
Skewness of horizontal head acceleration 20 100
Skewness of vertical gaze acceleration 10 101
Average vertical gaze velocity 100 102
Vertical angular gaze position 100 103
Horizontal angular gaze position 10 104

Table 3: Feature importance (Imp.) and estimated optimal window length (Win. Length) of the SGD regressor on the DGaze
dataset.
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Feature Win. Lenght Imp.
Standard deviation of vertical gaze position 1 1
Gaze event label 10 2
Standard deviation of horizontal gaze velocity 1 3
Binary indicator of saccade event 10 4
Average vertical gaze acceleration 1 5
Normalized horizontal distance to from screen center 1 6
Time since the last saccade 10 7
Binary indicator of fixation event 10 8
Ratio 1 9
Maximum vertical gaze acceleration 10 10
Standard deviation of saccade duration 10 11
Time since the last fixation 10 12
Skewness of horizontal gaze position 1 13
Skewness of total gaze acceleration 10 14
Kurtosis of total gaze acceleration 10 15
Median horizontal gaze velocity 1 16
Dispersion 20 17
Average saccade duration 80 18
Skewness of vertical gaze velocity 10 19
Kurtosis of total gaze velocity 10 20
Kurtosis of vertical gaze velocity 10 21
Average vertical gaze acceleration 10 22
Standard deviation of horizontal gaze position 20 23
Standard deviation of vertical gaze acceleration 20 24
Kurtosis of horizontal head acceleration 10 25
Kurtosis of vertical gaze position 10 26
Average fixation duration 100 27
Median total gaze acceleration 1 28
Median vertical gaze acceleration 10 29
Euclidean distance to clustered gaze position 10 30
Cumulative gaze travel distance 10 31
Frame index 20 32
Dispersion of Euclidean distance to clustered gaze position 10 33
Standard deviation of vertical gaze acceleration 10 34
Standard deviation of total gaze acceleration 10 35
Kurtosis of vertical gaze acceleration 10 36
Vertical gaze acceleration 1 37
Vertical angular gaze position 100 38
Maximum horizontal head acceleration 10 39
Average duration of last 7 saccades 100 40
Kurtosis of horizontal gaze position 10 41
Standard deviation of fixation duration 80 42
Median vertical gaze velocity 1 43
Total head acceleration 1 44
Last fixation duration 100 45
Maximum total gaze velocity 10 46
Normalized horizontal gaze position in screen space 40 47
Maximum total gaze acceleration 10 48
Vertical head acceleration 1 49
Horizontal head acceleration 10 50
Average duration of last 3 saccades 80 51
Skewness of vertical gaze acceleration 10 52

Feature Win. Lenght Imp.
Skewness of total gaze velocity 10 53
Kurtosis of vertical gaze acceleration 80 54
Average duration of last 3 fixations 100 55
User ID 10 56
Average duration of last 5 saccades 100 57
Average horizontal head acceleration 10 58
Standard deviation of horizontal head acceleration 80 59
Last saccade duration 80 60
Total gaze velocity 10 61
Total gaze acceleration 10 62
Horizontal distance to clustered gaze position 100 63
Kurtosis of horizontal head acceleration 60 64
Median vertical head acceleration 10 65
Horizontal gaze velocity 1 66
Maximum vertical gaze acceleration 100 67
Kurtosis of vertical head acceleration 10 68
Skewness of horizontal head acceleration 20 69
Clustered vertical gaze position 60 70
Average duration of last 5 fixations 40 71
Kurtosis of vertical head acceleration 10 72
Skewness of horizontal head acceleration 20 73
Duration of current gaze event 10 74
Skewness of vertical gaze acceleration 1 75
Standard deviation of vertical head acceleration 10 76
Video index 80 77
Skewness of vertical gaze position 10 78
Normalized vertical distance to from screen center 100 79
Vertical distance to clustered gaze position 10 80
Median vertical gaze acceleration 1 81
Maximum vertical head acceleration 10 82
Skewness of vertical head acceleration 10 83
Standard deviation of total gaze velocity 10 84
Median horizontal head acceleration 10 85
Maximum vertical gaze velocity 1 86
Average vertical head acceleration 1 87
Gaze travel distance during event 20 88
Vertical gaze velocity 1 89
Kurtosis of horizontal gaze velocity 10 90
Average vertical gaze velocity 1 91
Skewness of horizontal gaze velocity 10 92
Horizontal angular gaze position 20 93
Maximum horizontal gaze velocity 10 94
Average duration of last 7 fixations 100 95
Clustered horizontal gaze position 1 96
Skewness of vertical head acceleration 10 97
Median total gaze velocity 1 98
Normalized vertical gaze position in screen space 100 99
Horizontal gaze acceleration 1 100
Average horizontal gaze velocity 10 101
Average total gaze acceleration 1 102
Standard deviation of vertical gaze velocity 10 103
Average total gaze velocity 1 104

Table 4: Feature importance (Imp.) and estimated optimalwindow length (Win. Length) of the SGD regressor on the FixationNet
dataset.
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Feature Win. Length Imp.
Time since the last fixation 1 1
Average saccade duration 10 2
Duration of current gaze event 20 3
Time since the last saccade 20 4
Binary indicator of fixation event 60 5
Kurtosis of horizontal gaze position 20 6
Maximum total gaze velocity 40 7
Gaze travel distance during event 40 8
Average duration of last 5 fixations 60 9
Binary indicator of saccade event 100 10
Total gaze acceleration 20 11
Vertical gaze velocity 20 12
Standard deviation of fixation duration 60 13
Normalized horizontal gaze position in screen space 10 14
Total gaze velocity 100 15
Standard deviation of total gaze acceleration 100 16
Kurtosis of vertical gaze position 20 17
Standard deviation of saccade duration 20 18
Gaze event label 60 19
Last fixation duration 60 20
Average duration of last 3 saccades 40 21
Vertical distance to clustered gaze position 10 22
Vertical gaze acceleration 40 23
Kurtosis of horizontal gaze velocity 20 24
Normalized horizontal distance to from screen center 10 25
Average duration of last 7 fixations 80 26
Average fixation duration 40 27
Horizontal gaze velocity 40 28
Euclidean distance to clustered gaze position 20 29
Average duration of last 7 saccades 60 30
Maximum total gaze acceleration 20 31
Standard deviation of total gaze velocity 100 32
Average duration of last 5 saccades 20 33
Skewness of vertical gaze position 100 34
Cumulative gaze travel distance 100 35
Kurtosis of total gaze velocity 20 36
Average duration of last 3 fixations 80 37
Horizontal distance to clustered gaze position 20 38
Skewness of horizontal gaze position 100 39
Skewness of horizontal gaze velocity 40 40
Maximum vertical gaze acceleration 100 41
Skewness of vertical gaze velocity 80 42
Skewness of vertical gaze acceleration 20 43
Maximum vertical gaze acceleration 60 44
Kurtosis of vertical gaze velocity 20 45
Last saccade duration 20 46
Skewness of total gaze acceleration 80 47
Clustered horizontal gaze position 40 48
Ratio 40 49
Normalized vertical distance to from screen center 20 50
Median vertical gaze velocity 40 51
Skewness of total gaze velocity 20 52

Feature Win. Length Imp.
Dispersion 60 53
Standard deviation of vertical gaze position 60 54
Median total gaze acceleration 100 55
Median vertical gaze acceleration 40 56
Average vertical gaze acceleration 40 57
Standard deviation of vertical gaze velocity 100 58
Clustered vertical gaze position 1 59
Median total gaze velocity 100 60
Kurtosis of horizontal head acceleration 1 61
Average vertical gaze acceleration 40 62
Skewness of vertical gaze acceleration 60 63
Kurtosis of vertical gaze acceleration 20 64
Kurtosis of total gaze acceleration 20 65
Median horizontal head acceleration 1 66
Standard deviation of horizontal head acceleration 1 67
Skewness of horizontal head acceleration 1 68
Standard deviation of vertical gaze acceleration 80 69
Average total gaze velocity 100 70
Normalized vertical gaze position in screen space 10 71
Dispersion of Euclidean distance to clustered gaze position 60 72
Average vertical head acceleration 1 73
Median vertical head acceleration 1 74
Maximum vertical head acceleration 1 75
Standard deviation of vertical head acceleration 1 76
Standard deviation of horizontal gaze position 40 77
Median vertical gaze acceleration 40 78
Skewness of vertical head acceleration 1 79
Maximum vertical gaze velocity 40 80
Average vertical gaze velocity 40 81
Maximum horizontal head acceleration 1 82
Standard deviation of vertical gaze acceleration 20 83
Average horizontal head acceleration 1 84
Average total gaze acceleration 100 85
Horizontal gaze acceleration 40 86
Kurtosis of vertical head acceleration 1 87
Kurtosis of horizontal head acceleration 1 88
Kurtosis of vertical gaze acceleration 10 89
Skewness of vertical head acceleration 1 90
Standard deviation of horizontal gaze velocity 20 91
Maximum horizontal gaze velocity 60 92
Skewness of horizontal head acceleration 1 93
Kurtosis of vertical head acceleration 1 94
Median horizontal gaze velocity 40 95
Average horizontal gaze velocity 40 96
Video index 100 97
Frame index 100 98
User ID 100 99
Total head acceleration 1 100
Vertical head acceleration 1 101
Horizontal head acceleration 1 102
Vertical angular gaze position 10 103
Horizontal angular gaze position 20 104

Table 5: Feature importance (Imp.) and estimated optimal window length (Win. Length) of the SGD regressor on the EGTEA
Gaze+ dataset.
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