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ABSTRACT

In this paper, we propose a novel Sign Language Recognition
(SLR) model that leverages the task-specific knowledge to in-
corporate Top-Down (TD) attention to focus the processing of
the network on the most relevant parts of the input video se-
quence. For SLR, this includes information about the hands’
shape, orientation and positions, and motion trajectory. Our
model consists of three streams that process RGB, optical
flow and TD attention data. For the TD attention, we generate
pixel-precise attention maps focusing on both hands, thereby
retaining valuable hand information, while eliminating dis-
tracting background information. Our proposed method out-
performs state-of-the-art on a challenging large-scale dataset
by over 2%, and achieves strong results with a much simpler
architecture compared to other systems on the newly released
AUTSL dataset [1].

Index Terms— Sign language recognition, top-down at-
tention, deep learning

1. INTRODUCTION

Sign Language (SL) is a form of non-verbal communication
amongst the deaf or hard-of-hearing that uses a combination
of manual and non-manual features to convey meaning. The
former involve hands’ shape, motion, orientation and place
of articulation and are considered to be the dominant, dis-
tinguishing part of the sign morphology. The latter involve
facial features, such as lip movements and eye contact, which
merely convey emphasis and additional meaning. While auto-
matic Sign Language Recognition (SLR) has been addressed
for several years, a publicly available SL translation system
does not yet exist, hindering deaf people’s ability from work-
ing with technology or interacting with people who do not
know SL. Research on SLR is mainly split into working on 1)
isolated SLR (ISLR), where the task is to recognize trimmed
sign gloss videos [2, 3, 4], or 2) continuous SLR, where a sin-
gle video covers an entire sentence, which may require tem-
poral localization [5, 6, 7]. In this work, we focus on ISLR.

In the past decade, SLR witnessed a surge with the suc-
cess of deep learning [8, 4]. The inherent complexity of SLR
drove researchers to explore different modalities including
RGB, depth data, and skeletal joints [9, 4]. Including extra
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Fig. 1: An example of the three inputs sequences to our 3-
stream model. Top: RGB sequence from the ChaLearn249
dataset [10], Middle and bottom: generated optical flow and
TD Attention sequences.

modalities does not enable the model to generalize to datasets
that lack depth data. In order to capture the fine-grained fea-
tures, researchers use multi-stream CNNs and complex en-
semble methods to process various parts of the inputs in de-
tail. As a consequence, this leads to inflated systems that may
require significant computational resources and quickly be-
come difficult to train.

Attention mechanisms are a way to selectively focus on
relevant parts of the input data, similar to how humans can
direct their focus to specific objects or features [11]. There
are two main types of attention in this context: bottom-up
(BU) and top-down (TD). BU attention refers to the process
of automatically detecting salient features in the input data,
without any prior knowledge or expectation. In contrast, TD
attention involves using prior knowledge to guide attention to
specific parts of the input data. In machine learning and com-
puter vision, attention mechanisms have been used to direct
the processing of the networks to the relevant parts, including
SLR, where [12] use optical flow based motion attention, and
[13, 14] use transformer-based attention.

In this paper, we propose a new ISLR system that incor-
porates TD attention. It comprises only three streams, relying
solely on RGB data, making training more feasible in terms
of computational resources than recent state-of-the-art mod-
els [16, 14]. Besides the commonly used RGB and optical
flow data, we utilize pixel-precise TD attention to focus on
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Fig. 2: Our three-stream model for SLR utilizing top-down (TD) attention. The middle stream is fed full-frame RGB data, the
upper stream uses optical flow frames, and third TD attention stream (bottom) combines pixel-precise attention maps with the
RGB images. All streams use I3D CNN modules [15] to generate per-stream predictions. The predictions of all three streams
are then averaged in a late fusion step to compute the final prediction.

the relevant regions in the input inspired by the human visual
system. Fig. 1 shows the inputs to our three streams. We
leverage the knowledge that the hands’ shape, position, ori-
entation and motion trajectory are crucial to recognizing a SL
gesture, and hypothesize that TD attention is likely more rele-
vant compared to BU attention. We use a state-of-the-art hand
detector [17] as a TD generator and extract pixel-precise at-
tention maps that focus on both hands, while maintaining all
relevant information for SLR, that is not possible with coarse
body poses or hand crops.

Recent work on SLR has utilized hand crops [14] to fo-
cus on the hands. The drawbacks here are that such crops
lose valuable information of where the hands are positioned
with respect to each other, and to the body. By applying our
pixel-precise attention map to remove the background, as op-
posed to cropping out the hands, we preserve that informa-
tion, and also maintain information about the motion trajec-
tory of the hands in a sequence of consecutive frames, in addi-
tion to hand shape and orientation. Our results show that our
simple model, with few streams focusing on important details
outperforms other systems or achieves results that are on par
with more complex systems.

To summarize, the contributions of this work are:

• We leverage application knowledge to extract task-
specific information utilizing a TD attention stream
that attends to the most relevant features for SLR.

• We evaluate the benefit of pixel-precise segmentation
versus hand crops, and the use of BU attention versus
TD attention for SLR to support our hypothesis above.

• We outperform state-of-the-art by more than 2% on the
challenging ChaLearn249 IsoGD dataset using only

RGB data. We also obtain an accuracy of 97.93% on
the recently released AUTSL dataset [1].

2. PROPOSED METHOD

In this section, we thoroughly explain our approach including
the TD attention module and the implementation details.

2.1. Network Architecture

The primary idea of our proposed method is to utilize top-
down attention to focus on the signers’ hands, since they are
considered the most relevant for SLR. We achieve this by in-
troducing a novel, three-stream model depicted in Fig. 2. Our
model relies only on input RGB data, without using depth
data or other modalities, to allow the model to generalize to
other datasets that might not have this input.

In our model, we opted for the stream-based design by
Sarhan et al. [3] as it outperforms others on SLR tasks and is
easily adaptable. Each stream uses Inflated 3D (I3D) CNNs,
where the 2D k × k filters and pooling kernels are inflated
into 3D kernels by adding a new dimension t and become
cubic through this transformation t×k×k, spanning t frames.
The first stream in our proposed model takes the full-frame
RGB sequence as input. For the second stream, optical flow is
first computed from the RGB input image using Dual TV-L1
algorithm [18]. Including RGB and optical flow streams has
been successful in several approaches for ISLR [3, 2, 16, 19].

In the third stream, we utilize task-specific knowledge to
apply top-down attention to the RGB sequence. The RGB
frames F i are passed to a TD attention-based module, which



generates attention maps Ai focusing on the task-relevant ar-
eas. The RGB input frames are then combined with the gen-
erated attention maps via element-wise multiplication:

Xi = Ai ⊗ F i. (1)

We refer to the resulting sequence Xi as attention-weighted
RGB frames. This is then fed to the I3D CNN module of the
TD attention stream.

To generate the TD attention maps, we use Hand-CNN
model [17], which predicts hand masks and orientation. Its
architecture builds on the Mask R-CNN network for instance
segmentation [20]. It comprises a CNN for extracting fea-
tures, a region proposal network, a region-of-interest classi-
fier, a bounding box regressor, a CNN for mask prediction,
and an attention mechanism to integrate contextual cues into
the detection process.

The resulting TD attention maps are masks, which are
then applied to the RGB frames, suppressing the irrelevant
background information, and maintaining a pixel-precise rep-
resentation of both hands. We note that this differs from
purely cropping the hands as it retains important informa-
tion about the relative positions of the hands with respect to
each other, in addition to positional information, preserving
the motion trajectory of the hands.

Finally, all three streams share no parameters, and we opt
for late fusion, where the output softmax predictions are av-
eraged together to yield a final prediction, as done in [3].

2.2. Implementation Details

Preprocessing. Since the gesture videos in the dataset
are of various lengths, they are uniformly downsampled to a
fixed size of 40 frames per video. Afterwards, we crop the
frames around the center to a spatial size of 224 × 224.

Training. The I3D CNNs were initialized with the cor-
responding, pre-trained weights from Kinetics dataset [21],
a large-scale human action recognition dataset. A classifier
layer, initialized with random weights, was appended to each
of the streams, and each underwent separate training. As an
optimizer, we opted for Adam and a mini-batch size of 4.
Training was stopped using early-stopping technique, and as
a loss function, we computed the categorical cross-entropy.

Regularization. Besides early stopping, we used several
regularization techniques to prevent overfitting: for data aug-
mentation, the videos are augmented during training using
replicas of the video frames, which are either shifted along
both the x- and y-axes, or have their brightness changed. A
dropout of 0.5 is applied before classification. Batch normal-
ization is used after each convolutional layer.

3. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present quantitative and qualitative results
of our TD attention-based SLR approach. We evaluate our

Table 1: Comparison of our proposed model with the state-
of-the-art methods on ChaLearn249 IsoGD Dataset.

Method Accuracy
Validation Test1

TD-SLR (ours) 67.13 % 70.91 %
Hybrid Attn-I3D-SLR [3] 65.02 % 68.89 %
2SCVN-RGB-Fusion [22] 62.72 % -
I3D-SLR [2] 62.09 % 64.44 %
8-MFFs-3flc (5 crop)[23] 57.40 % -
XDETVP [24] 51.31 % -
SYSU ISEE [4] 47.29 % -
3DDSN [22] 46.08 % -
ASU [19] 45.07 % -

method on two popular, large-scale, singer-independet, ISLR
RGB-D benchmark datasets, namely ChaLearn249 IsoGD
dataset [10], and AUTSL (Ankara University Turkish Sign
Language Dataset) [1]. For this paper, we only rely on the
RGB data, without including depth data, as clarified in Sec. 1.
For evaluation, we adhere to the pre-defined data split pro-
vided by the dataset and calculate the classification accuracy
as the evaluation metric. For fair comparison, we compare to
methods that only rely on RGB data.

3.1. Results on ChaLearn249 IsoGD Dataset

The challenging chaLearn249 IsoGD dataset has nearly
50,000 videos spanning 249 different gestures, performed
by 21 individuals. Table 1 shows the quantitative results of
our proposed method in comparison to other state-of-the-art
methods. Our proposed TD-SLR model beats state-of-the-art
by over 2% increase on each of the validation and test sets,
achieving an accuracy of 67.13% for validation, and 70.91%
for the test set. By comparison to the Hybrid Attn-I3D-
SLR [3], a method that solely relies on RGB and flow data,
the results clearly demonstrate the significance of incorporat-
ing hand information in our proposed method.

3.2. Results on AUTSL Dataset

We also evaluated our approach on the more recent AUTSL
dataset. It comprises 226 signs that are performed by 43
different signers, and has 38,336 videos samples. In Table 2,
we compare our results with the baseline, recent methods,
and the top winners of the ChaLearn 2021 challenge. We
also highlight the extra modalities used by other approaches
besides RGB and optical flow data. This includes adding
extra hand and/or face information via hand crops or fin-
ger joint locations. Our results surpass the baseline [1] by
a vast 48.49%. We also outperform the transformer-based
models [14] and [13] by over 5% and over 2%, respectively.

1Some methods lack results on the test set as the ChaLearn249 dataset
was part of a competition, during which the test set was not yet available.



Table 2: Comparison of our proposed model with the state-
of-the-art methods on AUTSL Dataset with the used addi-
tional modalities per method.

Method Accuracy Additional modalities
Hands Face Skeleton

SAM-SLR [16] 98.42% x x x
S3D [25] 98.34% x x x
TD-SLR (ours) 97.93% x
USTC-SLR 97.62% x x x
jalba [25] 96.15% x x x
VLE-trans. [13] 95.46% x x x
VTN-PF [14] 92.92% x x
RGB-MHI [12] 93.53% x
Baseline [1] 49.22% x

Our results are less than 0.5% lower than the top-performing
methods [16, 25]. They propose complex, ensemble meth-
ods that rely on additional skeleton and face information,
while we rely on fewer input modalities offering a simpler
approach, making training more feasible.

3.3. Ablation Studies

We perform ablation studies on the ChaLearn249 dataset and
evaluate different adjustments to the proposed architecture to
assess the influence of different settings.

Hand Crops vs. Pixel-Precise Segmentation. To assess
the value of having pixel-precise attention maps, we experi-
mented with hand crops. We had two separate crops, one for
the left hand and one for the right hand. Accordingly, two
streams, one for each hand, were used. The overall perfor-
mance of the network decreased by 1.2% as opposed to using
pixel-precise segmentation of the hands. We hypothesize that
the main reason would be due to the loss of the positional in-
formation of the hands with respect to each other and over the
sequence of frames.

Attention Mechanisms. In order to verify our hypothesis
that TD attention (using Hand-CNN) is the optimal choice for
SLR, we evaluate the use of two different BU attention tech-
niques: a) a CNN-based BU attention network for eye fixation
prediction, ACLNet [26], and b) a biologically-inspired, tradi-
tional saliency system, VOCUS2 [27]. VOCUS2 is a hand-
crafted feature model, which is fast, simple, and does not re-
quire training data.

In Table 3, we show the accuracy of the attention stream
using the various attention mechanisms as a stand-alone
stream, and in the overall architecture. As a stand-alone
stream, the TD attention approach using Hand-CNN per-
formed best, outperforming ACLNet by a vast 28% and VO-
CUS2 by more than 2%. When considering the performance
of the overall architecture using the different attention mech-
anism, Hand-CNN still performed best, surpassing ACLNet
and VOCUS2 by 2.8% and 1.57% respectively. To further

RGB ACLNet VOCUS2 Hand-CNN

Fig. 3: Sample RGB frames after applying different ap-
proaches for attention. From left to right: Original RGB
frame, ACLNet [26], VOCUS2 [27], and Hand-CNN [17].

Table 3: Accuracy results of our proposed system using dif-
ferent attention mechanisms in the attention stream.

Method Attention
Mechanism

Accuracy
Alone Overall System

Hand-CNN TD 52.13 % 67.13 %
ACL Net BU 50.09 % 65.56 %
VOCUS2 BU 24.12 % 64.33 %

understand these results, we visualize what each attention
mechanism attends to in Figure 3. We observe that ACLNet
has the tendency to focus on the signer’s face, due to the BU
nature of the approach. This explains its poor performance
as a stand-alone stream. Facial features alone are not enough
to recognize the gesture being signed. VOCUS2 has a much
larger region-of-interest, more or less focusing on the signer.
While alone this represents valuable information, in the over-
all architecture it is not impactful, and redundant together
with a full-frame RGB.

4. CONCLUSION

An issue frequently encountered in SLR is determining which
modalities to incorporate in order to effectively recognize ges-
tures. Consequently, many SLR methods address this chal-
lenge by including multiple modalities and proposing intri-
cate ensemble techniques that may be difficult to train.We
proposed a TD attention approach to ISLR that relies solely
on RGB and utilizes domain knowledge to focus on the hands.
By utilizing pixel-precise segmentation of both hands as a
TD attention cue, we were able to keep our model simple.
Our proposed approach beats state-of-the-art methods on one
of the largest, challenging SLR datasets (ChaLearn249), and
achieves results that are on par with more complex systems
on the relatively new ISLR dataset (AUTSL).
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