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Abstract. In this paper, we investigate the significance of depth data
in Sign Language Recognition (SLR) and propose a novel approach for
generating pseudo depth information from RGB data to boost perfor-
mance and enable generalizability in scenarios where depth data is not
available. For the depth generation, we rely on an approach that uti-
lizes vision transformers as a backbone for depth prediction. We exam-
ine the effect of pseudo depth data on the performance of automatic
SLR systems and conduct a comparative analysis between the generated
pseudo depth data and actual depth data to evaluate their effectiveness
and demonstrate the value of depth data in accurately recognizing sign
language gestures. Our experiments show that our proposed generative
depth architecture outperforms an RGB-only counterpart.

Keywords: Sign Language Recognition · Deep Learning · Depth Data
· 3D Convolutional Neural Networks.

1 Introduction

Sign languages are rich and complex visual languages used by the deaf com-
munity for communication. With their own grammar, syntax, and vocabulary,
sign languages serve as vital means of expression and facilitate communication
among individuals who are deaf or hard of hearing. However, the comprehension
and interpretation of sign languages remain a significant challenge for the wider
hearing population. Automatic Sign Language Recognition (SLR) has emerged
as a promising solution to bridge the communication gap between sign language
users and non-signers, aiming to develop systems that can automatically recog-
nize and interpret sign language gestures [12, 6, 20].

SLR can be viewed as a very specific case of human action recognition, a
rather challenging one. This is attributed to the unique nature of sign language,
which incorporates both overall body motion and intricate arm/hand gestures
to convey its meaning. Facial expressions also play a role in conveying emo-
tions [13]. In addition, different signers may perform gestures differently, e.g.
in terms of speed, left- or right-handed, etc. Consequently, SLR becomes even
more challenging due to the need for diverse data samples from numerous sign-
ers, however, sign language data is hard to acquire, owing to several challenges
such as privacy and the need for experts to perform and annotate datasets.
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Fig. 1. Example of RGB (top) and recorded depth (middle) and generated pseudo-
Depth for the gesture DivingSignal/SomethingWrong.

In order to capture the full dynamics of the gesture, SLR methods rely on
the use of several input modalities [3, 10, 14]. Besides RGB data, one of the
key modalities commonly utilized in SLR is depth data, offering rich spatial and
depth information that enhance the discrimination of signs that would otherwise
seem similar. In addition, the use of depth in conjunction with RGB data can be
helpful when distinguishing the signer from a cluttered background, and hands
from body, such ensembles lead to improved recognition accuracy and robustness.
Consequently, the majority of state-of-the-art SLR systems heavily rely on depth
data [10, 15, 8, 19, 16]. While depth data has some benefits such as robustness to
lighting conditions, some existing sign language dataset lack depth information
(e.g. from news broadcasts [12]). In addition, relying on depth data hinders the
generalizability of existing models to SLR and vice versa.

Recent research has explored alternative approaches that aim to eliminate
the requirement for depth information, proposing the use of solely RGB data [20,
21]. These approaches challenge the assumption that depth data is indispensable,
suggesting that comparable performance can be achieved without it.

In this paper, we investigate the value of depth data in SLR systems and
its impact on overall performance in comparison to RGB-based systems. Addi-
tionally, we propose an alternative approach to address the limitations posed
by datasets lacking depth information, aiming to bridge the depth gap in SLR.
Specifically, we explore the generation of pseudo depth data, which allows for
the creation of depth-like information from RGB data. For depth generation,
we utilize an architecture, namely DPT (Dense Prediction Transformer) [17]
that uses vision transformers [7] as a backbone for the dense depth prediction.
Figure 1 shows an example of RGB and depth input modalities and the corre-
sponding generated depth data for a sign language gesture. By comparing the
generated depth data with the actual depth data, we validate the efficacy of our
method and its potential for enhancing SLR in scenarios where depth data is
scarce, or extend it to gesture recognition applications where depth data might
be non-existent, e.g. automotive, sports training, etc.
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Our main contributions can be summarized as follows:

– We evaluate and analyze the significance of depth data for sign language
recognition.

– We propose an alternative approach in case of absence of depth data by
the generation of pseudo depth data. We examine its implications on the
performance of SLR systems and compare it to the use of actual depth data.

– Our proposed alternative method outperforms methods that disregard depth
data completely, while still relying only on RGB modality.

2 Related Work

Significant progress has been made in SLR since the advancements in depth sens-
ing technologies, such as time-of-flight cameras and structured light sensors, have
enabled more accurate and detailed depth measurements. Having depth data to-
gether with RGB data has helped capture the complex spatial and temporal
dynamics of sign language gestures. Since then, depth data has been recognized
as a valuable input modality in SLR, and its incorporation has been evident
across various methodologies employed over the years. This section provides an
overview of related works, highlighting the persistent usage of depth data in
SLR, from early hand-crafted feature-based approaches [24, 19, 1, 5] to recent
state-of-the-art methods that rely on the advancements in machine learning and
computer vision techniques [10, 8, 20].

Early approaches in SLR primarily relied on handcrafted features, such as
shape, motion and appearance descriptors, combined with traditional machine
learning algorithms such as support vector machines and hidden Markov Mod-
els [24, 19, 1, 16]. This resulted in systems that have very limited generalization
capabilities, unable to go beyond applications that lack these extra modalities.
However, the introduction of deep learning architectures, such as Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), revolution-
ized SLR by leveraging their ability to automatically learn discriminating fea-
tures from data [21, 20, 15].

Automatic SLR(ASLR) has long relied on depth data as a fundamental com-
ponent for accurate and robust recognition. To date, most deep learning based
methods still rely on the depth modality. Wang et al. [23] relied on both RGB
and depth information. They utilized full frames to represent the fully body,
along with hand crops of both modalities. They fused together a 4-stream Con-
vNet and 3D ConvLSTMs-based classification to get an average-score fusion.
Miao et al. [15] extracted information from RGB and depth input data using
and concatenated RGB, flow and depth features using a SVM classifier.

Furthermore, some research rely on extracting even more information from
the input depth maps, e.g. depth saliency, depth flow, etc. Jiang et al. [10]
propose an ensemble of five 3D CNN streams, two of which rely on depth data.
For the first stream, they extract flow information from the input depth maps
to feed to the network, for the second stream they extract HHA (Horizontal
disparity, Height above the ground, and Angle normal) features from the depth
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Fig. 2. Left: Architecture overview. The RGB ensemble comprises 2 streams of In-
flated 3D CNNs (I3D), one is fed RGB frames, and the other optical flow frames. For
the inclusion of depth, a third stream is used. It is fed depth frames if depth data is
available, otherwise, they are first generated from the RGB frames. For each of the
3 streams, the softmax predictions are averaged together to yield a final label. Right:
Depth generation network architecture, adapted from [17]. An RGB frame is first trans-
formed into tokens by extracting non-overlapping patches. The tokens are then passed
through multiple transformer stages, and reassembled from different stages into an
image-like representation at multiple resolutions. Finally, fusion modules progressively
fuse and upsample the representations to generate the depth prediction. Details of the
Reassemble and Fusion units can be found in [17].

stream, encoding depth information into a 3-channel RGB-like output. Duan
et al. [8] proposed a two-stream consensus voting network, extracting spatial
information from RGB and depth input, and temporal information from RGB
and depth flow data. They also aggregated a 3D depth-saliency ConvNet stream
in parallel to identify subtle motion characteristics. Late score fusion was adopted
for the final recognition.

In attempt to refrain from using depth data, Sarhan and Frintrop [20] pro-
posed a mathod that relies only on RGB data. However, depth data brings about
additional information and robustness (e.g. against illumination changes, noise,
and background clutter) that RGB alone does not deliver. Therefore, in this
work we attempt to bridge the depth gap and propose the generation of pseudo
depth data from RGB data for sign language recognition.

3 Methodology

In this section, we first introduce our proposed model, which utilizes depth data
along with RGB data. Afterwards, we will explain our method for the generation
of pseudo depth data.
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3.1 Proposed Architecture

Figure 2 shows our proposed architecture which is made up of 2 ensembles
comprising 3 streams in total. The most widely used 3D CNN architectures
are Inflated 3D CNNs (I3D) [4], ResNeXt3D-101 [9], and separable 3D CNNs
(S3D) [25]. Therefore, for the RGB ensemble, we opted for the I3D CNN-based
architecture proposed by Sarhan and Frintrop [20] as I3D CNNs have shown
outstanding performance in isolated SLR [20, 21, 10]. Each stream has one I3D
CNN, where the 2D k× k filters and pooling kernels are inflated into 3D kernels
by adding a new dimension t and become cubic through this transformation
t × k × k, spanning t frames. The first stream is fed full-frame RGB sequence
as input, while the second stream is fed optical flow data, which are generated
from the RGB stream using Dual TV-L1 algorithm [26].

In order to capture features from depth data, we introduced a new third
stream, which is fed the recorded depth sequence. Together with the two RGB
streams, we present this as the RGB-D ensemble. All input videos are first
uniformly sampled to extract a fixed number of frames before being fed to the
I3D CNNs.

As a final step, we opt for a late fusion scheme, where the softmax predictions
of all three streams are averaged together to yield a final prediction for the signed
gesture.

3.2 Pseudo Depth Data Generation

In order to refrain from using recorded depth data while still including depth
information, we propose an alternative which is to generate pseudo depth data
from the RGB images. In that case, the RGB frames are first used to generate the
pseudo depth images, and then fed to the I3D CNN as shown in Figure 2 (left).
Together with the 2 RGB streams, we refer to this as the RGB-pseudoDepth
ensemble.

To generate high quality dense depth maps, we tested two different methods
for depth prediction: DPT by Ranftl et al. [17], and DenseDepth by Bhat et
al. [2]. According to our ablation study in Section 6.2, We opted for the encoder-
decoder based method by Ranftl et al. [17], namely DPT, since according to our
ablation study in Section 6.2 it turned out to be better. Their architecture is de-
picted in Figure 2 (right). They leverage vision transformers [7] as the backbone
for dense prediction, where tokens from various stages of the transformer are as-
sembled into image-like representations at various resolutions and progressively
combine them into full-resolution predictions using a convolutional decoder. The
transformer backbone processes representations at a constant and relatively high
resolution and has a global receptive field at every stage.

4 Experimental Details

In this section, we present the evaluation of our proposed approach on the
ChaLearn249 IsoGD dataset [22]. We start by a brief summary about the dataset
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and how we evaluate our approach on it. Then, we explain how we evaluate the
quality of the generated pseudo depth data. Afterwards, we provide more imple-
mentation details, that would aid in making this work reproducible.

4.1 Dataset and Evaluation

Evaluation of proposed Architecture. We evaluate our proposed method on the
ChaLearn249 IsoGD dataset [22], a large dataset for isolated SLR. The dataset
comprises 47,933 videos, captured by a Microsoft Kinect camera, hence providing
RGB and recorded depth images. The dataset is signer-independent, and is one
of the mostly used dataset for isolated sign language gestures [15, 8, 23, 14].

For evaluation, we follow the same protocol provided by the dataset. It is
split into 35,878 videos for training, 5,784 videos for validation, and 6,271 videos
for testing. For all our experiments, we report and compare the accuracy of both
the validation and test sets.

Depth Generation Evaluation. To calculate the error between the ground truth
recorded depth images and their generated pseudo-depth counterparts, root-
mean-square error (RMSE) was calculated as in Equation 1, where p is an in-
dividual pixel, n is the number of pixels in each image, yp is the ground truth,
and ŷp is the estimated value for pixel y.

RMSE =

√√√√ 1

n

n∑
p=1

(yp − ŷp)2 (1)

In addition, we also calculate the structural similarity index (SSIM) to de-
termine how structurally similar two images are, in this case how similar the
generated depth image is to the recorded equivalent. The SSIM of two images x
and y is defined in Equation 2.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (2)

where µx and µy are the average of x and y, respectively, σ2
x and σ2

y are the
variance of x and y, respectively, and σxy is the covariance of x and y. C1 =
(K1L)

2 and C2 = (K2L)
2 are variables with K1, K2 « 1 and L = 2bit depth − 1.

The value of the SSIM lies between −1 and 1, where a score of −1 means the
images are complementary, and a score of 1 means that they are identical.

4.2 Implementation Details

Preprocessing. The video sequences are uniformly sampled into a fixed number
of frames. The frames are cropped around the center to a spatial size of 224×224.
Optical flow frames have been generated from the RGB videos using the Dual-
TVL1 algorithm [26].
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Table 1. Accuracy results on the ChaLearn249 dataset using the RGB ensemble,
RGB-D ensemble (RGB + recorded depth), and RGB-pseudoDepth (RGB + generated
Depth).

Modality Validation Test
RGB [20] 61.76 % 64.97 %
RGB-D 64.54 % 70.63 %
RGB-pseudoDepth 62.5 % 66.02 %

Training. For all streams, we adopt the training scheme used by [20]. The I3D
CNN was originally trained on ImageNet [18] before inflation into 3D, and then
pretrained on Kinetics dataset [4]. The top, randomly initialized layers are first
trained for 3 epochs while freezing the pretrained layers, at a learning of 1×10−3.
Afterwards, all layers are fine-tuned and the learning rate is lowered to 1×10−4.
Here, early-stopping was adopted to halt training once the validation loss has
not improved for 3 consecutive epochs. Adam [11] was used as an optimizer in
conjunction with a mini-batch size of 4, and categorical cross-entropy as the loss
function.

Data Augmentation. Implementing data augmentation in SLR poses challenges
despite its significance for small and medium-sized datasets. Common data aug-
mentation techniques such as image flipping or rotation can directly impact the
conveyed sign itself. To address this concern, our approaches focuses on data aug-
mentation by shifting images along the x- and y- axes and adjusting brightness
levels.

5 Results and Analysis

In this section, we show the results of using depth and generated depth data
on the ChaLearn dataset, along with the per-class accuracies. In addition, we
compare their performance to state-of-the-art results on this dataset.

5.1 How significant is depth data?

Results on ChaLearn dataset. In this section, we verify the importance of depth
information for SLR. Table 1 shows the validation and test accuracy when us-
ing the RGB, RGB-D, and RGB-pseudoDepth ensembles. Recorded depth data
(RGB-D) shows the best performance results, 64.54 % on the validation set,
and 70.63 % on the test set. While the use of generated Depth data (RGB-
pseudoDepth) achieves lower accuracy in comparison, 62.5 % and 66.02 % for
the validation and test sets respectively, it still outperforms using only RGB
data. This shows that generated depth data is indeed valuable, and that the
RGB-pseudoDepth ensemble still captures more features, while relying only on
RGB input.
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Fig. 3. Example of pseudo depth images with best and worst SSIM measure and their
RGB and recorded depth counterparts.

Evaluating the depth streams separately. We also evaluate the accuracy of the
recorded and generated depth streams on their own, without the RGB ensemble.
The recorded depth stream achieved an accuracy of 50.71 % and 60.56 % on the
validation and test sets, while the generated depth stream achieved 38.04 % and
44.97 % on the validation and test sets. While the generated depth stream does
not score a very high recognition rate by itself, they still add valuable information
to the RGB input, evident by their higher accuracy in the RGB-pseudoDepth
ensemble than the RGB ensemble. To evaluate the quality of the generated depth
data, the RMSE was 79.42, while the SSIM was 0.67. In Figure 3 we show two
examples of generated pseudo depth frames with highest and lowest SSIM. It
is clear from these images how the quality of RGB image affects the generated
depth data.

Per class accuracy. In addition to the recognition accuracies, to verify the
potential from depth and generated depth information, we compared the RGB-D
and RGB-pseudoDepth ensembles by calculating the per class accuracy change
with respect to the RGB ensemble. In Figure 4 we plot these differences. The
blue line represents RGB-D ensemble, while the red line represents the RBG-
pseudoDepth ensemble. A positive/negative difference means that the inclusion
of depth/generated depth brought about a positive/negative effect over the RGB
ensemble. A zero means no improvement over the RGB accuracy. As shown in
Figure 4, for the class range c122-c137, using the RGB stream only works well,
however in several other classes, such as the range c058-c065 and c192-c197 depth
information has resulted in significant improvement. Generally, the higher the
positive value of the accuracy difference, the more number of samples there were
originally predicted wrong by RGB only, are now predicted correctly. Overall,
the average difference in the case of RGB-D ensemble is +3.10, and +0.67 for
RGB-pseudoDepth.

5.2 Comparison With State-of-the-Art Results

In Table 2, we compare with top competitors on the leader board and state-of-
the-art results on the ChaLearn249 dataset. Our proposed RGB-D architecture
that relies on RGB, optical flow and recorded depth data has outperformed the
other methods by more than 2.5% on the validation set, and more than 3% on
the test set. The use of generated depth was the second best performing method
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Fig. 4. Differences in class accuracies for RGB-D (blue) and RGB-pseudoDepth (red)
ensembles with respect to the RGB ensemble. A positive/negative value means a
higher/lower accuracy for that class with respect to the RGB ensemble, a zero means
no improvement over the RGB ensemble.

Table 2. Comparison with state-of-the-art on ChaLearn249 and their modalities. The
best results are shown in red and the second best in blue.

Method Modalities Accuracy
RGB Depth pseudoDepth Validation Test

XDETVP [27] ✓ ✓ 58 % 60.47 %
AMRL [23] ✓ ✓ 60.81 % 65.59 %
RGB-pseudoDepth (ours) ✓ ✓ 62.5 % 66.2 %
SYSU_ISEE [14] ✓ ✓ 59.7 % 67.02 %
2SCVN-3DDSN [8] ✓ ✓ 49.17 % 67.26 %
ASU [15]1 ✓ ✓ 57.88 % -
RGB-D (ours) ✓ ✓ 64.54 % 70.63 %

in comparison to the other methods that also relied on recorded depth, but per-
formed slightly lower on the test set. The results in Tables 1 and 2 demonstrate
the effectiveness of generated depth data, they do not only outperform RGB-
only methods, but are also comparable with methods that rely on recorded depth
data.

6 Ablation Study

In this section, we investigate the use of depth flow data as a fourth stream to our
architecture. Additionally, we explore an alternative method for pseudo depth
map generation. By conducting this ablation study, we aim to gain insights into
the specific contributions and significance of each component within the proposed
model.

6.1 Depth Flow Data

Since including RGB and optical flow streams has been successful in several
approaches for SLR [20, 21, 10, 15], we experimented with adding a fourth stream
1 We compare with their averaging fusion scheme, similar to what is used in our

method for fair comparison. Test set results for that fusion scheme were not reported.
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Table 3. Accuracy results on the ChaLearn249 dataset when including depth flow data
as a fourth stream to our proposed architecture.

Method Validation Test
RGB-D 64.54 % 70.63 %
RGB-D + Depth flow 61.07 % 69.22 %
RGB-pseudoDepth 62.5 % 66.02 %
RGB-pseudoDepth + Depth flow 64.54 % 64.84 %

to our architecture, where the input was optical flow information extracted from
the depth data (depth flow). We performed this experiment for both the recorded
depth data, and generated depth data, and report these results in Table 3. The
use of depth flow data lowered the recognition accuracy in both cases. One
possible reason is that depth data usually suffers form noise and uncertainty,
affecting the quality of optical flow estimation. These errors can propagate to
the optical flow estimation process due to its inherent recurrence.

6.2 Pseudo Depth Data Generation

As an alternative method for the generation of dense depth maps from a single
RGB image, we opted for the deep learning-based method by Bhat et al. [2],
namely DenseDepth, that utilizes fully convolutional networks. Their architec-
ture is composed of two main components: an encoder-decoder block and an
adaptive bin-width estimator block called AdaBins. The used model was pre-
trained on NYU Depth V2 dataset [2]. The dataset is composed of images and
depth maps for different indoor scenes, and has 120K training samples and 654
testing samples. As a post processing step, all images have been normalized using
Min-Max Normalization.

The results are shown in Table 4. The use of visual transforms clearly out-
performs the fully convolutional network method. The use of DenseDepth is still
outperformed by using RGB-only ensemble. As for the evaluation of the gener-
ated depth images, DenseDepth had an RMSE of 146.64 (vs. 92.67 for DPT),
and an SSIM of 0.281 (vs. 0.55 for DPT), explaining the poor results achieved
by DenseDepth.

Table 4. Comparison of different depth generation methods.

Method Validation Test
RGB 61.76 % 64.97 %
RGB-D 64.54 % 70.63 %
RGB-pseudoDepth (DPT [17]) 62.5 % 66.02 %
RGB-pseudoDepth (DenseDepth [2]) 60.81 % 64.34 %
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7 Conclusion

Depth data has long been recognized as a crucial input modality for SLR systems
due to its ability to capture spatial and depth information. However, depth
data is not always available, e.g. in news broadcasts, and acquiring it for sign
language would be difficult and expensive. In this paper, we aimed to bridge
the depth gap and proposed a novel approach for generating pseudo depth data
from RGB inputs when recorded depth data is scarce. Our results and analysis
further validates the effectiveness of our approach and its potential for improving
recognition accuracy in depth-limited scenarios, and open up avenues for SLR
research and applications, enabling depth-based insights even when depth data
is lacking.

References

1. Badhe, P.C., Kulkarni, V.: Indian sign language translator using gesture recognition
algorithm. In: 2015 IEEE international conference on computer graphics, vision and
information security (CGVIS). pp. 195–200 (2015)

2. Bhat, S.F., Alhashim, I., Wonka, P.: Adabins: Depth estimation using adaptive
bins. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). pp. 4009–4018 (June 2021)

3. Boháček, M., Hrúz, M.: Sign pose-based transformer for word-level sign language
recognition. In: WACV. pp. 182–191 (2022)

4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the
kinetics dataset. In: CVPR. pp. 6299–6308 (2017)

5. Chai, X., Li, G., Lin, Y., Xu, Z., Tang, Y., Chen, X., Zhou, M.: Sign language
recognition and translation with Kinect. In: IEEE conf. on AFGR. vol. 655, p. 4
(2013)

6. Cui, R., Liu, H., Zhang, C.: A deep neural framework for continuous sign language
recognition by iterative training. IEEE Trans. Multimed. 21(7), 1880–1891 (2019)

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

8. Duan, J., Wan, J., Zhou, S., Guo, X., Li, S.Z.: A unified framework for multi-modal
isolated gesture recognition. TOMM 14(1s), 1–16 (2018)

9. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3d cnns retrace the history
of 2D CNNs and Imagenet? In: CVPR. pp. 6546–6555 (2018)

10. Jiang, S., Sun, B., Wang, L., Bai, Y., Li, K., Fu, Y.: Skeleton aware multi-modal
sign language recognition. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 3413–3423 (2021)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

12. Koller, O., Forster, J., Ney, H.: Continuous sign language recognition: Towards
large vocabulary statistical recognition systems handling multiple signers. CVIU
141, 108–125 (2015)

13. Koller, O., Ney, H., Bowden, R.: Deep learning of mouth shapes for sign language.
In: Proceedings of the IEEE International Conference on Computer Vision Work-
shops. pp. 85–91 (2015)



12 N. Sarhan et al.

14. Li, B., Li, W., Tang, Y., Hu, J., Zheng, W.: GL-PAM RGB-D gesture recognition.
In: 2018 25th IEEE International Conference on Image Processing (ICIP). pp.
3109–3113 (2018)

15. Miao, Q., Li, Y., Ouyang, W., Ma, Z., Xu, X., Shi, W., Cao, X.: Multimodal
gesture recognition based on the RESC3D network. In: Proceedings of the IEEE
International Cconference on Computer Vision Workshops. pp. 3047–3055 (2017)

16. Pigou, L., Dieleman, S., Kindermans, P., Schrauwen, B.: Sign language recognition
using convolutional neural networks. In: European Conference on Computer Vision
Workshops. pp. 572–578 (2014)

17. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 12179–12188 (2021)

18. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision (IJCV) 115, 211–252
(2015)

19. Sarhan, N., El-Sonbaty, Y., Youssef, S.: HMM-based Arabic sign language recog-
nition using Kinect. In: Tenth International Conference on Digital Information
Management (ICDIM). pp. 169–174 (2015)

20. Sarhan, N., Frintrop, S.: Transfer learning for videos: from action recognition to
sign language recognition. In: 2020 IEEE International Conference on Image Pro-
cessing (ICIP). pp. 1811–1815 (2020)

21. Sarhan, N., Frintrop, S.: Sign, Attend and Tell: Spatial attention for sign language
recognition. In: 2021 16th IEEE International Conference on Automatic Face and
Gesture Recognition (FG 2021). pp. 1–8 (2021)

22. Wan, J., Zhao, Y., Zhou, S., Guyon, I., Escalera, S., Li, S.Z.: ChaLearn looking
at people RGB-D isolated and continuous datasets for gesture recognition. In:
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
Workshops. pp. 56–64 (2016)

23. Wang, H., Wang, P., Song, Z., Li, W.: Large-scale multimodal gesture recognition
using heterogeneous networks. In: Proceedings of the IEEE International Confer-
ence on Computer Vision Workshops. pp. 3129–3137 (2017)

24. Xiaohan Nie, B., Xiong, C., Zhu, S.C.: Joint action recognition and pose estima-
tion from video. In: Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition. pp. 1293–1301 (2015)

25. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature
learning: Speed-accuracy trade-offs in video classification. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 305–321 (2018)

26. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 opti-
cal flow. In: Pattern Recognition: 29th DAGM Symposium, Heidelberg, Germany,
September 12-14, 2007. Proceedings 29. pp. 214–223 (2007)

27. Zhang, L., Zhu, G., Shen, P., Song, J., Afaq Shah, S., Bennamoun, M.: Learning
spatiotemporal features using 3DCNN and convolutional LSTM for gesture recog-
nition. In: Proceedings of the IEEE international Conference on Computer Vision
Workshops. pp. 3120–3128 (2017)


