
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz
https://doi.org/10.1007/s13218-021-00746-2

PROJECT REPORTS

Multi‑phase Fine‑Tuning: A New Fine‑Tuning Approach for Sign
Language Recognition

Noha Sarhan1  · Mikko Lauri1 · Simone Frintrop1

Received: 24 April 2020 / Accepted: 22 November 2021
© The Author(s) 2022

Abstract
In this paper, we propose multi-phase fine-tuning for tuning deep networks from typical object recognition to sign language
recognition (SLR). It extends the successful idea of transfer learning by fine-tuning the network’s weights over several
phases. Starting from the top of the network, layers are trained in phases by successively unfreezing layers for training. We
apply this novel training approach to SLR, since in this application, training data is scarce and differs considerably from the
datasets which are usually used for pre-training. Our experiments show that multi-phase fine-tuning can reach significantly
better accuracy in fewer training epochs compared to previous fine-tuning techniques

Keywords  Sign language recognition · Transfer learning

1  Introduction

Different hand gestures, facial expressions and body pos-
tures form grammatically-complete, highly-structured sign
languages. Sign language recognition (SLR) can be catego-
rized into three groups: recognition of alphabets [7, 24, 25],
isolated words [13], or continuous sentences. In continuous
SLR the input comprises a video containing a sequence of
gestures and the desired output is a sequence of words com-
plying to the grammar of that sign language [6, 11, 12].

Research on SLR has shifted to using deep learning meth-
ods, rather than hand-crafted features, the most prominent
work includes [5, 6, 11, 12]. Recent methods even involve
domain adaption [19] and sign language transformers [3].
The majority of the aforementioned approaches rely on
transfer learning by including some pre-trained convolu-
tional neural network (CNN), either for classifying individ-
ual frames or as a feature extractor. Transfer learning uses
the weights learned while solving a different, yet related,

task to initialize the weights of the network solving a new
task. We refer to the former network as the source network,
and to the latter as the target network.

Transfer learning involves making two important deci-
sions: First, how many layers to transfer? Second, whether
to freeze the transferred layers or to fine-tune them? [4, 5,
23, 26]. While no clear theory exists on how to make these
choices, they depend on both the size of the target dataset
and its similarity to the source data [26]. Answering these
questions becomes even more complicated when the source
and target tasks differ strongly.

Existing work on transfer learning for CNNs can be
divided into two groups: (a) using a pre-trained source CNN
just as a feature extractor [16, 20]; (b) transferring some lay-
ers’ weights to a target network, randomly initializing the
weights of the non-transferred layers, and fine-tuning the
target network on the target domain [23, 26]. Fine-tuning
can be done by learning either (1) the weights in the non-
transferred layers only [14], or (2) also the weights in some
transferred layers, where usually the top-k layers are trained
at once. We refer to the second fine-tuning method as sin-
gle-phase fine-tuning. Research shows a clear advantage for
fine-tuning weights in transferred layers in contrast to freez-
ing them [15, 26]. However, if the target data is inherently
different from the source data, these fine-tuning methods do
not always works [1, 2, 20, 26].

In this paper, we propose multi-phase fine-tuning for tun-
ing deep networks from everyday object recognition to SLR.

 *	 Noha Sarhan
	 sarhan@informatik.uni-hamburg.de

	 Mikko Lauri
	 lauri@informatik.uni-hamburg.de

	 Simone Frintrop
	 frintrop@informatik.uni-hamburg.de

1	 Department of Computer Science, Universität Hamburg,
Hamburg, Germany

http://orcid.org/0000-0002-1545-9346
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-021-00746-2&domain=pdf

	 KI - Künstliche Intelligenz

1 3

The concept is depicted in Fig. 1. It extends the successful
idea of transfer learning by fine-tuning the network’s weights
in several phases. In the first phase, only a few topmost lay-
ers are fine-tuned. In successive phases, more layers are
added and jointly fine-tuned with the layers from previous
phases. We evaluate our proposed approach using Goog-
LeNet [21] on frame-level classification in continuous sign
language videos, a considerably different domain from Ima-
geNet [18] (see Fig. 1). CNNs applied to individual frames
are a key step in several SLR systems [5, 6, 11, 12, 17].
Our results show that multi-phase fine-tuning considerably
improves task performance and that it converges faster with
fewer learning epochs compared to the earlier single-phase
fine-tuning.

Recent SLR methods rely on deep learning methods.
Most methods employ some pre-trained network, however
little research has been done in investigating what is the
best approach to fine-tune these pre-trained networks to the
new task, especially since it is usually quite different than
the source task (e.g. object recognition when pre-trained on
ImageNet). In this work, we focus on investigating how to
fine-tune the network from the task of object recognition
to sign language recognition. We believe that fine-tuning a
pre-trained network phase-wise would allow the top layers
to adapt to the new tasks, while keeping the shallower layers
unchanged, thereby improving the generalization capabilities
of the network.

Our contribution is threefold. (1) We introduce a multi-
phase fine-tuning strategy that improves accuracy and addi-
tionally allows faster training. We extend [26] by training

the unfrozen layers step-wise as opposed to fine-tuning them
all at once. (2) We demonstrate the success of multi-phase
fine-tuning for transfer learning between two very different
domains: from everyday object recognition to SLR. (3) We
present a CNN-based approach for frame-based SLR which
can be valuable for the sign language community.

The remainder of the paper is structured as follows: in
Sect. 2, we thoroughly explain our proposed fine-tuning
approach. In Sects. 3 and 4 we demonstrate our experimental
setup and results. Section 5 concludes the paper.

2 � Methods

In this section, we give an overview of our CNN training,
standard fine-tuning methods, and illustrate our proposed
multi-phase fine-tuning approach.

2.1 � CNN Training

A CNN function maps the input x to a predicted label
ŷ = f (x;w) , given trainable weights w. In supervised learn-
ing, CNNs are trained using stochastic gradient descent
(SGD), given a training data set D = {(xi, yi)}N

i=1
 with N

inputs xi and labels yi . SGD alternates between feedfor-
ward and backpropagation steps using mini-batches of m
examples from the training set. A minibatch is a subset
{(xi, yi)}i∈I ⊂ D , where I ⊂ {1,… ,N} such that |I| = m.

In the feedforward step, a prediction ŷi is computed for
each sample xi in the mini-batch given the current weights
w. A scalar loss between the true labels and predictions is
calculated by

where Li is the per-sample loss function, e.g., cross entropy
for classification.

For backpropagation the gradient of L with respect to the
weights w is first evaluated. We apply SGD with momentum,
the initial weights w0 are drawn randomly. The velocity �0
representing the past gradients is initialized to zero. At train-
ing iteration t ≥ 1,

where gt is the current gradient estimate, �t is the step
for modifying the weights, dependent on the former

(1)L(w) =
1

m

∑

i∈I

Li(ŷ
i
, yi) =

1

m

∑

i∈I

Li(f (x
i
;w), yi),

(2)

gt =
1

m
∇w

∑

i∈I

Li(f (x
i
;wt−1), y

i)

�t = (1 − �)�t−1

�t = ��t−1 − �tgt

wt = wt−1 + �t,

Fig. 1   Top: source network pre-trained on ImageNet. Bottom: pro-
posed multi-phase fine-tuning approach. The layers to be fine-tuned
in the target network are adapted over several phases starting from the
top layer.

KI - Künstliche Intelligenz	

1 3

gradients weighted by momentum � , and the current gra-
dients weighted by the learning rate � that decays at a rate
of �.

2.2 � Single‑Phase Fine‑Tuning

The initial weights w0 for a target network, apart from the
last classifying layer, are initialized to pre-trained values
from a source network. The classifying layer is modified to
have as many neurons as the number of classes in the target
task and is initialized with random weights. Weights of the
target network are then fine-tuned, via Eq. (2), using a train-
ing dataset from the target domain.

A key question is whether to freeze transferred weights
or fine-tune them to the new task. Freezing weights is often
referred to as “off-the-shelf” transfer learning [20]; only the
weights in the last classifier layer are updated.

If fine-tuning is applied to other layers as well, typically
the k topmost layers are fine-tuned while keeping the other
layers’ weights at their source network values [23, 26]. We
refer to this approach as single-phase fine-tuning. For a net-
work with a total of L layers, we use the notation top-k lay-
ers to refer to updated weights in layers (L − k + 1,… , L) .
Weights in layers (1,… , L − k) remain frozen. Single-phase
fine-tuning of the top-3 layers is illustrated in Fig. 2 (top).

2.3 � Multi‑phase Fine‑Tuning

We propose a multi-phase fine-tuning approach where the
top-k layers are trained sequentially with a step-size s in (k/s)

phases1 until all of the k layers have been fine-tuned. In the
first phase we fine-tune only the top-s layers. In each of the
following phases, we add s more layers to be fine-tuned. At
each phase, training continues until a pre-specified termi-
nation criterion is reached, e.g., the maximum number of
training epochs or saturation of the validation loss.

For example, fine-tuning top-k layers with a step-size
s = 1 for k = 3 has three phases; P1, P2, and P3 (see Fig. 2):

P1	 Start by fine-tuning one layer, e.g., only the topmost
layer of the network.

P2	 Include one more layers for a total of 2 and fine-tune the
top-2 layers.

P3	 Add again one layer for a total of 3 and fine-tune the
top-3 layers.

We remark that if s = k , multi-phase fine-tuning is equiva-
lent to single-phase fine-tuning of top-k layers.

3 � Experimental Setup

In Sect. 3.1 we describe the dataset and the evaluation met-
rics applied in this work. Section 3.2 covers the implementa-
tion details.

3.1 � Dataset and Metrics

We use RWTH-PHOENIX-Weather Multisigner 2014 [8,
10], one of the largest, publicly available, annotated data-
sets in the sign language domain. It has of 6841 videos of
continuous signing in German sign language, each video
labelled with an output sentence as a sequence of words
(Fig. 3). Note that the resulting sequence of words is not a
translation to spoken language, rather a literal translation
of the signs.

We solve a classification problem where the input is a
single frame and as output label we use the frame-to-label
alignments provided by [12]. Each word is split into three
parts each making up one label as depicted in Fig. 3, result-
ing in 3693 classes for 500,000 frames. We reserve 10% of
the images for validation. Throughout our experiments, we
record the top-1 and top-5 classification accuracies.

3.2 � Implementation Details

CNN Architecture: We opt for GoogLeNet [21] with incep-
tion V3 [22] pretrained on ImageNet as the source network.
It is the most commonly used network in recent SLR [6, 11,
12]. GoogLeNet consists of several (precisely 8) inception

Fig. 2   Top: single-phase fine-tuning unlocks and trains weights in all
of the top-k (here k = 3 ) layers of a CNN simultaneously. Our multi-
phase fine-tuning (bottom) trains the weights in the top-k layers in
several phases, successively adding more layers

1  We require that k is an integer multiple of s.

	 KI - Künstliche Intelligenz

1 3

modules, so we investigate the effect of fine-tuning a varying
number of such modules instead of layers. Thus, we will be
referring to layers as modules in our notation (top-k modules
instead of top-k layers).

Fine-Tuning Setup: We fine-tune the top-k modules of the
network, for k = 1, 2, 3,… , 8 . We compare the accuracy of
our proposed multi-phase fine-tuning to traditional single-
phase fine-tuning. For multi-phase fine-tuning, we report
results for step size s = 1, 2, 3 for all values of k. In all cases,
the fully-connected layers are always trained from scratch.
We note that fine-tuning the top-8 inception modules is
equivalent to fine-tuning the entire network.

Training Hyperparameters: We apply SGD with Nes-
terov momentum � = 0.9 , and learning rate � = 0.01 that
decays with rate � = e−6 , and batch size m = 32 . We apply
a categorical cross-entropy loss. We adopt an early-stopping
approach, where training is terminated if the validation loss
does not improve for 3 consecutive epochs. Random weights
are initialized using Xavier normal initializer [9].

4 � Results and Analysis

In this section we report results of our baseline, single- and
multi-phase fine-tuning experiments, in addition to hyperpa-
rameter exploration for mulit-phase fine-tuning.

4.1 � Baseline Experiments

Frame-based recognition is a submodule in currently exist-
ing SLR systems [5, 6, 11, 12], however, it is not addressed
separately. Therefore, we assess the base difficulty of the
task with three baseline methods and report top-1 and top-5
accuracies in Table 1.

To see how ImageNet features perform on the new task,
we apply GoogleNet pre-trained on ImageNet as a feature
extractor and train a fully-connected classifying layer on top.

We also try two non-deep-learning methods to assess the
difficulty of the problem. (1) Using SIFT features we extract
the image descriptors, normalize and vector-quantize them
using k-means to an 800-dimensional feature vector. A ran-
dom forest classifier with eight trees and a maximum depth
of 30 is trained for classification. (2) Using HOG features,
we extract a feature vector for each image, and train a logis-
tic regression classifier via SGD.

HOG with logistic regression performs best reaching a
top-1 accuracy of 16.9%. The way it outperforms Goog-
LeNet as a feature extractor suggests that the learned fea-
tures do not transfer very well to the new target domain.

4.2 � Single‑Phase vs. Multi‑phase Fine‑Tuning

We compare the proposed multi-phase fine-tuning with the
standard single-phase fine-tuning. Table 2 shows the clas-
sification accuracies for both methods with step size s = 1 .
We note that fine-tuning only the topmost module ( k = 1 )
already outperforms our baseline results from Table 1. For
all values of k modules that are fine-tuned, we observe that
multi-phase fine-tuning consistently reaches a higher accu-
racy than fine-tuning the same modules in a single phase.

Figure 4 (left) visualizes the top-1 accuracy as function of
the number of modules fine-tuned. We note that with multi-
phase fine-tuning the accuracy constantly improves as more

Fig. 3   Sample image sequence from RWTH-PHOENIX-Weather
dataset [8]. It contains video sequences from German broadcast
news along with their sentence annotations (in German). Authors

of [12] have automatically aligned labels to each frame in the video
sequence. Each word is further split into three word-part labels; an
example is shown for the word “Temperatur” (English: temperature)

Table 1   Top-1 and top-5 classification accuracies of baseline meth-
ods.

 The values in bold highlight the best-performing method

Method Top-1 accuracy
(%)

Top-5
accuracy
(%)

GoogLeNet feature extractor 14.7 30.8
SIFT with random forest 4.6 13.5
HOG with logistic regression 16.9 35.9

KI - Künstliche Intelligenz	

1 3

modules are included. For single-phase fine-tuning, accuracy
starts to degrade for k > 4.

Moreover, multi-phase fine-tuning requires less training
epochs, see Fig. 4 (right). Training the network in multiple
phases gives top layers the chance to adapt to the new task
while lower layers remain unchanged. Our results show that
this property of multi-phase fine-tuning improves the gener-
alization capability of the network. Fine-tuning pre-trained
layers’ weights should not be done while random weights of
newly added fully-connected layers are yet to be trained. We
hypothesize that the pre-trained layers’ weights may prema-
turely start to adapt to the random weights.

4.3 � Different Step‑Sizes

The step size s controls how many new modules are added
for fine-tuning in each phase. We varied the step size to
observe how it affects fine-tuning performance. Top-1 accu-
racies for k = 1,… , 8 modules fine-tuned with step-sizes
s = 2 and s = 3 are presented in Fig. 5 (left). We note that

multi-phase fine-tuning (with s = 2 and s = 3 ) still outper-
forms single-phase fine-tuning. The number of required
training epochs shown in Fig. 5 (right), shows that multi-
phase fine-tuning converges faster also in this case, although
the difference is not as significant as when comparing sin-
gle-phase fine-tuning to using step-size s = 1 . Applying a
larger step-size s = 2 or s = 3 does not improve overall per-
formance compared to s = 1 . Since k = 6 is the only value
that is comparable for step-sizes s = 1, 2 and 3, we compare
the top-1 accuracy achieved by fine-tuning top-6 modules
using the aforementioned step-sizes in Table 3. The small-
est step-size achieves the best performance with the least
training epochs.

4.4 � Comparison of Training Progress

We examined the training progress by recording the valida-
tion loss as a function of the number of training epochs for
the best-performing multi-phase fine-tuning with step-size
s = 1 and single-phase fine-tuning. The results are shown in
Fig. 6 for training k = 3, 4,… , 8 of the topmost modules2

Table 2   Top-1 and top-5 accuracies when fine-tuning the top-k modules of GoogLeNet either in a single-phase or multiple phases with a step
size s = 1

Note that for k = s = 1 , single- and multi-phase fine-tuning are equivalent

Accuracy Method k = 1 (%) k = 2 (%) k = 3 (%) k = 4 (%) k = 5 (%) k = 6 (%) k = 7 (%) k = 8 (%)

Top-1 Single-phase 24.5 30.0 22.0 26.3 11.8 10.9 5.0 8.2
Multi-phase 24.5 31.1 32.5 37.2 38.1 39.3 40.0 41.0

Top-5 Single-phase 46.5 56.9 46.0 52.7 31.8 27.2 16.7 22.7
Multi-phase 46.5 57.1 58.1 62.8 64.1 64.9 65.8 66.6

Fig. 4   Left: Top-1 accuracy as a
function of the number of mod-
ules k fine-tuned for multi-phase
fine-tuning with step size s = 1
and single-phase fine-tuning.
Right: Number of training
epochs. Note that for k = s = 1 ,
the two fine-tuning approaches
are equivalent

2  There was no significant difference between the loss graphs for sin-
gle- and multi-phase fine-tuning for k = 2 ; their plots were thus omit-
ted.

	 KI - Künstliche Intelligenz

1 3

We observe that for most values of k, applying single-
phase fine tuning results in a sharp increase in the valida-
tion loss before it starts to decrease. In contrast, multi-phase
fine-tuning results in a consistently decreasing validation
loss for all values of k. Although the same parameters are

eventually trained by both approaches, we believe that divid-
ing the training into multiple phases is beneficial as it allows
smoother changing of the layer weights.

For example, consider the top-3 layers, indexed by
(L − 2) , (L − 1) , and L, where L is the final layer of the
network. By unfreezing all the layers at once, weights in
layer (L − 2) can start to prematurely adapt to those in layers
(L − 1) and L, which may still be far from the values they
eventually converge to. Including more layers over several
phases smooths abrupt changes in layer weights.

Results suggest that multi-phase fine-tuning can also pro-
vide an experimental way to decide how many layers should
be fine-tuned. We can add more layers in phases and monitor
the validation loss. As long as performance improvements
are observed, we can continue fine-tuning more layers.

Fig. 5   Top: Top-1 accuracy
(left) and total number of fine-
tuning epochs (right) for single-
and multi-phase fine-tuning
with stepsize s = 2 . Bottom:
Top-1 accuracy (left) and total
number of fine-tuning epochs
(right) for single- and multi-
phase fine-tuning with stepsize
s = 3 . Note: for k = s = 2 (top)
and k = s = 3 (bottom), both
approaches are equivalent

Table 3   Effect of step-size s for
fine-tuning top-6 modules by
multi-phase fine-tuning

 The values in bold highlight the
best-performing method

Step-size s Top-1
accuracy
(%)

Epochs

1 39.3 30
2 32.7 36
3 24.9 49

KI - Künstliche Intelligenz	

1 3

5 � Conclusion

A key question in transfer learning is how many layers
to fine-tune to take advantage of the generality of lower
layers’ features, while allowing the network to fit to the
target task. We proposed multi-phase fine-tuning, starting
by only fine-tuning the weights in the last fully-connected
layer, and adding more layers in subsequent phases. We
applied it to transfer learning from the domain of object
recognition to SLR using one of the most commonly used
network architectures, GoogLeNet. Results show that com-
pared to earlier fine-tuning approaches, multi-phase fine-
tuning has a higher classification accuracy and requires
less training time for this pair of domains. In addition,
it provides a constructive approach to decide how many
layers’ weights to fine-tune. Future work includes extend-
ing the work presented here into a complete continuous
sign language recognition system working on sequences
of gestures. We also aim to investigate the applicability
of multi-phase fine-tuning in other domains beyond sign
language recognition.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Azizpour H et al (2015) From generic to specific deep representa-
tions for visual recognition. In: CVPR DeepVision workshop, pp
36–45

	 2.	 Bengio Y (2012) Deep learning of representations for unsuper-
vised and transfer learning. In: ICML workshop on unsupervised
and transfer learning, pp 17–36

	 3.	 Camgoz NC et al (2020) Sign language transformers: joint end-
to-end sign language recognition and translation. In: CVPR, pp
10023–10033

	 4.	 Cao C, Zhang Y, Wu Y, Lu H, Cheng J (2017) Egocentric gesture
recognition using recurrent 3d convolutional neural networks with
spatiotemporal transformer modules. In: ICCV, pp 3763–3771

	 5.	 Cihan Camgoz N et al (2017) Subunets: end-to-end hand
shape and continuous sign language recognition. In: ICCV, pp
3056–3065

	 6.	 Cui R, Liu H, Zhang C (2017) Recurrent convolutional neural
networks for continuous sign language recognition by staged opti-
mization. In: CVPR, pp 1–4

	 7.	 Daroya R, Peralta D, Naval P (2018) Alphabet sign language
image classification using deep learning. In: TENCON 2018-2018
IEEE region 10 conference, IEEE, pp 0646–0650

	 8.	 Forster J et al (2014) Extensions of the sign language recogni-
tion and translation corpus RWTH-PHOENIX-weather. In: Inter-
national conference on language resources and evaluation, pp
1911–1916

Fig. 6   Validation loss as a function of the number of training epochs
when fine-tuning top-k modules of GoogLeNet using single-phase
fine-tuning and multi-phase fine-tuning with step-size s = 1 . Training

was terminated using an early-stopping approach. Note that epoch 1
for all experiments is the first training epoch after training the clas-
sifying fully-connected layers

http://creativecommons.org/licenses/by/4.0/

	 KI - Künstliche Intelligenz

1 3

	 9.	 Glorot X, Bengio Y (2010) Understanding the difficulty of training
deep feedforward neural networks. In: International conference on
artificial intelligence and statistics, pp 249–256

	10.	 Koller O, Forster J, Ney H (2015) Continuous sign language
recognition: towards large vocabulary statistical recognition
systems handling multiple signers. Comput Vis Image Underst
141:108–125

	11.	 Koller O et al (2016) Deep sign: hybrid CNN-HMM for continu-
ous sign language recognition. In: BMVC, pp 136.1–136.12

	12.	 Koller O et al (2017) Re-sign: re-aligned end-to-end sequence
modelling with deep recurrent CNN-HMMS. In: CVPR, pp
4297–4305

	13.	 Li D et al (2020) Word-level deep sign language recognition from
video: a new large-scale dataset and methods comparison. In:
IEEE WACV, pp 1459–1469

	14.	 Montone G, O’Regan JK, Terekhov AV (2015) The usefulness of
past knowledge when learning a new task in deep neural networks.
In: CoCo@ NIPS, pp 10–18

	15.	 Montone G, O’Regan JK, Terekhov AV (2017) Gradual tuning: a
better way of fine tuning the parameters of a deep neural network.
arXiv preprint arXiv:​1711.​10177

	16.	 Penatti OA, Nogueira K, dos Santos JA (2015) Do deep features
generalize from everyday objects to remote sensing and aerial
scenes domains? In: CVPR workshops, pp 44–51

	17.	 Pigou L et al (2014) Sign language recognition using convolutional
neural networks. In: ECCV workshops ChaLearn looking at people,
pp 572–578

	18.	 Russakovsky O et al (2015) Imagenet large scale visual recogni-
tion challenge. Int J Comput Vis 115(3):211–252

	19.	 Sarhan N, Frintrop S (2020) Transfer learning for videos: from
action recognition to sign language recognition. In: IEEE ICIP,
IEEE, pp 1811–1815

	20.	 Sharif Razavian A et al (2014) CNN features off-the-shelf: an
astounding baseline for recognition. In: CVPR workshop, pp
806–813

	21.	 Szegedy C et al (2015) Going deeper with convolutions. In:
CVPR, pp 1–9

	22.	 Szegedy C et al (2016) Rethinking the inception architecture for
computer vision. In: CVPR, pp 2818–2826

	23.	 Tajbakhsh N et al (2016) Convolutional neural networks for medi-
cal image analysis: full training or fine tuning? IEEE Trans Med
Imaging 35(5):1299–1312

	24.	 Tolentino LKS et al (2019) Static sign language recognition using
deep learning. Int J Mach Learn Comput 9(6):821–827

	25.	 Wadhawan A, Kumar P (2020) Deep learning-based sign lan-
guage recognition system for static signs. Neural Comput Appl
32:7957–7968

	26.	 Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable
are features in deep neural networks? In: NIPS, pp 3320–3328

http://arxiv.org/abs/1711.10177

	Multi-phase Fine-Tuning: A New Fine-Tuning Approach for Sign Language Recognition
	Abstract
	1 Introduction
	2 Methods
	2.1 CNN Training
	2.2 Single-Phase Fine-Tuning
	2.3 Multi-phase Fine-Tuning

	3 Experimental Setup
	3.1 Dataset and Metrics
	3.2 Implementation Details

	4 Results and Analysis
	4.1 Baseline Experiments
	4.2 Single-Phase vs. Multi-phase Fine-Tuning
	4.3 Different Step-Sizes
	4.4 Comparison of Training Progress

	5 Conclusion
	References

