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ABSTRACT

In this paper, we propose using Inflated 3D (I3D) Convo-
lutional Neural Networks for large-scale signer-independent
sign language recognition (SLR). Unlike other recent meth-
ods, our method relies only on RGB video data and does
not require other modalities such as depth. This is beneficial
for many applications in which depth data is not available.
We show that transferring spatiotemporal features from a
large-scale action recognition dataset is highly valuable to
the training for SLR. Based on an architecture for action
recognition [[1I], we use two-stream I3D ConvNets operating
on RGB and optical flow images. Our method is evaluated
on the Chalearn249 Isolated Gesture Recognition dataset
and clearly outperforms other state-of-the-art RGB-based
methods.

Index Terms— Sign language recognition, video transfer
learning, 3D CNNs

1 Introduction

Sign language serves as the primary means of communica-
tion amongst the deaf and hard-of-hearing. It is made up of
structured sets of hand gestures governed by grammatical and
contextual rules. Despite common belief, sign languages go
beyond mere hand gestures; different body postures, mouth
shapes, and eye gaze, as well as relative hand position con-
tribute to deliver the complete meaning of the gesture [2].
Sign languages are not international; different countries have
their own language, where similar gestures could have differ-
ent meanings depending on cultural differences [3]. Having
an automatic method that is able to reliably recognize sign
language gestures would have a significant impact in break-
ing the communication barrier between speakers and non-
speakers of sign language.

Although several methods have been proposed for sign
language recognition (SLR), many challenges remain asso-
ciated with it that affect the recognition accuracy. This is
mainly attributed to the large intra-class ambiguity between
gestures performed by different signers. The large number of

Fig. 1. Each row represents a sample video corresponding to
one isolated gesture from Chalearn249 IsoGD dataset [4].

classes, which may blow up to become as large as the dictio-
nary size of that sign language, complicates matters further as
it increases the inter-class similarity between gestures. In ad-
dition, other factors such as motion blur, performer’s speed,
out-of-vocabulary gestures, and various view-points should
be irrelevant to the recognition of the gesture.

With motion being an important cue in SLR, learning spa-
tiotemporal features becomes key. It is hardly surprising that
current state-of-the-art approaches for SLR are based on deep
neural networks [} [6] [7 (8] Ol in order to learn these
features. However, when it comes to sign language, acquiring
enough annotated data for training deep networks is a difficult
task. It is not only tedious and time-consuming, but it also suf-
fers from the additional problem that only experts who speak
the respective sign language can perform the labelling, which
makes crowd sourcing extremely difficult, if not impossible.
In addition, SLR with mere RGB images is a difficult task.
Researches, therefore, quickly resort to methods that rely on
other modalities, such modalities include depth [8] [6]
and/or joint locations [3]]. However, depth data is not available
for many applications, e.g. YouTube videos, TV broadcasts,
etc. For such applications, it is mandatory to have a method
that performs well relying only on RGB videos.

In this paper, we present an RGB-only method to recog-
nize isolated sign language gestures using inflated two-stream
3D ConvNet. Our approach is based on the architecture of [1]],
which was designed for action recognition operating on an
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Fig. 2. Left: Pipeline of our proposed approach. RGB and optical flow data are used to train two separate inflated 3D ConvNets.
The predictions of each stream are averaged during evaluation to give the final label. Right: Details of the inflated 3D ConvNets,
adapted from [[1]]. The “Inc.” blocks represent 3D Inception modules.

RGB and an optical flow stream. The network is also pre-
trained on Kinetics [14]], a large-scale action recognition
dataset with 600 classes, each with at least 600 video clips.
This enables our network to profit from the learned 3D fea-
tures, which are then fine-tuned to a SLR-specific dataset,
namely Chalearn249 IsoGD [4]. We show a sample of the
dataset in Fig. [IL While the task of SLR is significantly
more difficult than typical action recognition, where a certain
object might significantly help or even suffice for classifica-
tion [9}13]], we show that this type of pre-training is valuable
to SLR.
Our contributions can be summarized as follows:

e We present a simple yet effective approach for the
recognition of isolated sign language gestures on RGB-
only data which outperforms, to the best of our knowl-
edge, all current state-of-the-art methods.

o We show the benefit of using pre-trained weights from
action recognition tasks in SLR. To the best of our
knowledge, this has until now not been applied to com-
parable tasks of recognition of well-structured hand
gestures.

2 Related Work

Sign language recognition (SLR) can be categorized into
three groups: (i) recognition of alphabets (fingerspelling)
15} [16], (ii) isolated words [3} 16} |7, |8]] and (iii) continuous
sentences [9, [10} [11]. In this paper, we focus on (ii), where
each video represents one gesture.

Different methods to represent spatiotemporal features
have been proposed in this field [5 [17, |6, [7, [8]], including
the use of two-stream CNNs [5, 17, 18]]. In [6], the authors
use 3D CNNs and LSTMs to encode global temporal and
local spatial information. Afterwards, they capture global
spatial information using 2D CNNs. Wang et al. [[/] feed full-
body and cropped-hand RGB and depth images. They fuse

ConvNet based classification together with 3D ConvLSTMs
based classification. Achieving the best results, Miao et
al. [8] base their method on ResC3D leveraging both residual
and C3D models. They propose a weighted frame unification
strategy to sample key frames, and use a canonical correlation
analysis-based fusion scheme for blending features.

3 Network Architecture

Our proposed pipeline for recognition of isolated sign lan-
guage words is shown in Fig. 2] a two-stream model of in-
flated 3D (I3D) ConvNets. It is based on the architecture
by [1l]. The two-streams are fed RGB and optical flow data.
We start by pre-trained weights on RGB and flow data from
the Kinetics dataset [14]]. Note that the two I3D networks
do not share any parameters. We replace the final classifica-
tion layer of each stream with outputs for the Chalearn IsoGD
dataset, this layer’s weights are randomly initialized.

I3D ConvNets were introduced by [1]], they turn 2D Con-
vNet of the successful Inception-v1 architecture into a 3D
convolutional counterpart. This is done by “inflating” 2D
k x k kernels to 3D t x k X k kernels that span over ¢
frames. The kernels are initialized with pre-trained ImageNet
weights [19], by creating a video that consists of a single
static frame repeated over time in order to initialize 3D ker-
nels from 2D ones, i.e. each of the ¢ planes is initialized by
the pre-trained k x k ImageNet weights and rescaled by 1/t.
The authors illustrate that I3D models outperform equivalent
CNN+LSTM architectures.

We generate optical flow frames from the RGB data based
on the “Dual TV-L1” optical flow algorithm in [20]. The flow
data is used as another modality that represents the motion
path in the videos. The intrinsic recurrence in optical flow
algorithms allows it to better represent motion features in the
videos, despite the use of 3D ConvNets, which perform mere
feedforward computations [1]].



Table 1. Recognition results on the validation subset of
ChalLearn249 IsoGD for each of the RGB and optical flow
streams, and a comparison with state-of-the-art methods us-
ing only RGB and/or optical flow modalities.

Modality Method Accuracy
XDETVP|6] 51.31%
SYSU_ISEE[22] 47.29%

RGB ASU[S] 45.07%
I3D-SLR (ours) 54.63%
XDETVP|6] 45.30%

Optical Flow  ASU[S]] 44.45%
I3D-SLR (ours) 54.84 %
SYSU_ISEE[22] 41.65%

RGB+FloW 135 SIR (ours)  62.09%

The generation of flow frames has been done as a pre-
processing step prior to training. Afterwards, we uniformly
downsample our videos to a fixed number of 40 frames per
video since CNNss expect the number of frames for each video
to be constant. We crop the frames around the center to a
spatial size of 224 x 224.

Data augmentation is particularly important in our case
since the dataset is signer-independent (see Sec.[d.I)). There-
fore, to increase the diversity of our training set, we perform
spatial augmentation to our videos during training. This in-
volves image shifts along both the x- and y-axes and changing
brightness of the videos.

For training, we start by freezing the transferred weights
and only training the randomly initialized top layers of each
of the RGB and flow streams. The initial learning rate is set to
1073 for 3 epochs. Afterwards, the learning rate is dropped by
1/10 and the entire stream is fine-tuned. For stochastic opti-
mization we opted for Adam [21] optimizer, and a mini-batch
size of 4. We employ categorical cross-entropy as our loss
function. Upon evaluation, the predictions from each stream
are averaged together to output a single label for each video.

4 Experiments

4.1 Dataset and Metrics

We use Chalearn249 IsoGD dataset [4] for our experiments.
It is one of the latest, large-scale RGB-D SLR benchmarks
recorded by a Microsoft Kinect camera. The total number of
videos is 47,933 belonging to 249 classes performed by 21
different signers. Each video represents one gesture instance.
One of the main challenges of the dataset is that it is signer-
independent, i.e. the signers in each subset of the dataset are
unique. However, this is fitting to our goal of designing a neu-
ral network that is applicable to other SLR tasks. We highlight
that in this work we only use the RGB data of the dataset.
The dataset has a clear evaluation protocol and is already
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Fig. 3. The performance of different modalities at every
epoch during training. The dotted line marks the point af-
ter which the random top layers have been trained, and fine-
tuning of the entire network has started.

split into three mutually exclusive subsets: training (35,878
videos), validation (5,784 videos), and test (6,271 videos).
In our experiments, we report and compare the accuracy on
both validation and test sets as described for the Chal.earn249
IsoGD dataset as follows:

1 n
A = — ) ), t1(4 1
ceuracy = 2 380 11(9), 1)
where n is the number of samples, p; is the predicted label,
t; is the ground truth, §(ji,j2) = 1 if j1 = jo, otherwise
d(j1,J2) = 0.

4.2 Results

In this section we report results of evaluating the RGB and
optical flow streams separately to highlight the significance
of each stream, and together by concatenating predictions of
each stream and predicting a certain label. Table [I] shows
these results along with a comparison with recent state-of-
the-art results on the Chalearn249 dataset. We include ap-
proaches that only utilize RGB and/or optical flow data, with-
out using depth data for a fair comparison. We outperform
state-of-the-art methods by over 3% and 9.54% for the RGB
and Optical flow modalities respectively. We only show vali-
dation results in Table|1|as the other methods do not provide
results on the test set when using RGB only. For the test set,
we report an accuracy of 57.73% for the RGB stream, 57.68%
for the optical flow stream, and 64.44% when using both RGB
and flow data.

We plot the performance of the two streams in terms of
accuracy during training in Fig.[3] During the first 3 epochs
of training, the weights pre-trained on the Kinetics dataset
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Fig. 4. Left and Middle: Correctly-classified gestures. Right:
Gesture 011 mostly misclassified as Gesture 026.

were frozen, and only the top layers with randomly initial-
ized weights were being trained. Training was automatically
stopped after 10 epochs by the early-stopping criterion.

In Fig. @ we show samples of correctly-classified and
misclassified gestures from our experiments. On the left, the
same signers are performing the same gesture, Gesture 220,
and are doing it differently; one signer is also using his thumb,
while the other one is folding it away. This shows a typical
case causing intra-class variations. Both inputs were correctly
classified by our model as Gesture 220. Despite high inter-
class similarity between gestures 001 and 221, Fig. @] (mid-
dle), our proposed model was also successfully able to differ-
entiate between the two. Gestures 011 and 026 are another ex-
ample of high inter-class similarity, however, the model here
fails to consistently differentiate between these two gestures,
see Fig. [] (right).

Since the aforementioned methods in Table [I] were not
originally designed for use on RGB data only, rather relied on
the use of depth modality as well, we briefly mention these
results here. Miao et al. [§]. achieve state-of-the-art results
reporting 64.40% and 67.71% validation and test accuracy re-
spectively. Without using depth data, our proposed method
achieves a close 62.09% for the validation set, and an accu-
racy of 64.44% for the test set. Our RGB-only results for the
validation data rank 2nd in comparison to all state-of-the-art
methods (8] [7, 6, [12]] despite their usage of the depth modal-
ity as well. It should be noted that the baselin for the
test set is very challenging, achieving an accuracy of 67.26%,
which other state-of-the-art methods that utilize both RGB
and depth modalities do not surpass [7, [6].

4.3 Different Weight Initializations

In this subsection we evaluate the effectiveness of transfer-
ring pre-trained action recognition weights to the task of

I The baseline results were provided for the ChaLearn 2017 Large Scale
Isolated Gesture Recognition Challenge by Wan et al.
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Fig. 5. Accuracy of different modalities with different weight
initializations to assess the effect of transfer learning.

SLR by conducting two experiments. First, we initialize our
network with pre-trained weights using Kinetics only before
fine-tuning to our sign language dataset. In other words, Im-
ageNet weights were not used upon inflating the 2D kernels
into 3D ones, instead they were randomly initialized and di-
rectly trained on Kinetics [1]. Second, we randomly initialize
our network weights, and only train on Chalearn IsoGD.
For both experiments, we keep the hyperparameters setting
as mentioned above [23]. Results for these experiments are
shown in Fig.[3

We observe that the results are only slightly lower, from
an accuracy of 62.09% to 58.2% when using Kinetics dataset
only. The decrease in results is more attributed to the lower
performance of the RGB stream, more than 3% decrease in
performance, than it is to the optical flow stream. This is
explicable since ImageNet weights reflect no motion. How-
ever, there is a significant decline in performance, by almost
13%, when training our model from scratch on Chalearn
IsoGD. This clearly shows the impact of using pre-trained ac-
tion recognition weights to our task, and how SLR can benefit
from them.

5 Conclusion

This paper presents an effective method for recognition of iso-
lated sign language words relying only on RGB data, which
is particularly useful for applications where depth data is not
available. We used two-stream inflated 3D ConvNets for RGB
and optical flow data. We also highlight the significance of
transferring learning for video data. We show that SLR ben-
efits from the valuable spatiotemporal features that have been
learned for the task of action recognition.
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