2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021) | 978-1-6654-3176-7/21/$31.00 ©2021 IEEE | DOI: 10.1109/FG52635.2021.9666939

Sign, Attend and Tell: Spatial Attention for Sign Language Recognition

Noha Sarhan and Simone Frintrop
Department of Mathematics, Informatics and Natural Sciences, Universitdit Hamburg, Germany

Abstract— Sign Language Recognition (SLR) has witnessed
a boost in recent years, particularly with the surge of deep
learning techniques. However, most existing methods do not
exploit the concept of attention mechanisms, despite their suc-
cess in several computer vision tasks. In this paper, we propose
a novel method for isolated SLR which utilizes spatial attention
to focus the processing on the informative, discriminating parts
of the input. This is particularly important for SLR, since
the RGB image contains several distracting information such
as background and signer’s clothes, which are irrelevant for
the task. We investigate three ways for incorporating spatial
attention: a) pre-focused attention, which uses optical-flow-
based motion as a prior b) learned attention, where the network
learns where to focus during training, and c) hybrid attention,
which combines both approaches by initializing the attention
layer in the learned attention with the motion-based attention
masks used in the pre-focused attention. We show, first, that all
three approaches outperform state-of-the-art methods on one
of the largest isolated SLR datasets, validating the effectiveness
of attention mechanisms on the SLR task, and second, that the
best performing approach is the hybrid attention, combining
both ideas.

I. INTRODUCTION

Sign language is an important means of communication
used by millions of people amongst the deaf and hard-of-
hearing. Unfortunately, sign language is not common knowl-
edge to everyone, creating a huge communication barrier.
Sign languages provide a complete, well-defined set of hand
gestures, governed by grammatical rules that differs from
country to country, even from region to region with more
than 144 official sign languages [11] existing worldwide.
This is represented via hand movement, shape, orientation
and place of articulation. Therefore, creating an effective
Sign Language Recognition (SLR) system would not only
have a great social impact, but would also be impactful to
research particularly neighboring computer vision tasks, such
as hand gesture and action recognition.

Research in SLR has surged in recent decades [40], [26],
[35], however, developing an automated SLR system remains
a challenging, open research problem. SLR can be viewed as
a hand gesture recognition problem with quick, fine-grained
motion. Isolated SLR involves the recognition of a gesture in
one video, often representing one word or a compound word.
Unlike action recognition, objects in the background should
not influence the recognition of the gesture being signed in
SLR. The background, the signer’s clothes and skin color
should have no effect in recognizing the sign being gestured.
Therefore, ensuring that the processing is focused on the
correct, discriminating features in the image is crucial.

A recently popular and successful approach to focus the
processing of a neural network to relevant aspects is utilizing
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Fig. 1. Overview of the proposed methods. The top part shows the steps
for generating the attention-weighted RGB frames. The inputs used for the
three proposed methods are then depicted.

attention mechanisms, not only in computer vision [49],
[2], [48], but also in other fields such as natural language
processing [12] and speech analysis [5], showing that guiding
the network on where to focus the processing positively
impacts learning. However, little work has been done in terms
of attention in the scope of SLR [17], [42].

In this paper, we build on top of the work by Sarhan et
al. [40] and enhance it by including attention (see Fig. 1).
[40] uses Inflated 3D (I3D) networks [4] in a two-stream
architecture, where the first stream takes RGB sequence as
input, and the second one is fed an optical flow sequence. In
this work, we incorporate spatial attention to the input RGB
stream by generating motion attention maps that are based
on optical flow data. We experimented with three different
ways of integrating attention: a) pre-focused attention: an
attention map is pre-computed based on thresholding the
optical flow data, b) learned attention: a newly added at-
tention layer is incorporated into the network, which learns
without priors where to focus more on the RGB image
and c) hybrid attention: a combination of learned and pre-
focused attention, which initializes the weights of the learned
attention layer with the pre-focused, motion-based attention
map and is finally fine-tuned. Although the computation of
the pre-focused attention masks is necessary for the hybrid
approach, this overhead is only necessary during training,
and is alleviated during testing.

We show that all three approaches outperform the state-
of-the-art methods, indicating that attention is beneficial for
SLR, and that using motion as a prior is fitting to the task,
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since it is an important cue in characterizing sign language
gestures. Our best performing approach is the hybrid ap-
proach that combines both ideas for attention integration.
We will make our code publicly available once the paper
has been published.

The contributions of this paper can be summarized as
follows:

e To the best of our knowledge, we are the first to
incorporate motion-guided spatial attention to the task
of SLR

o We present and evaluate two main ways attention can
be incorporated: pre-focused attention and learned atten-
tion, and show that the most suitable way to integrate
attention is a hybrid approach that utilizes both methods

« While our best approach benefits from the pre-computed
attention masks, this overhead is alleviated during test-
ing, saving resources and processing time.

o We surpass current state-of-the-art on one of the largest
isolated SL dataset, ChalLearn249 IsoGD [45].

II. RELATED WORK

In this section, we give a brief introduction to SLR and
then focus on recent research using deep learning methods
for the recognition of isolated gesture. Afterwards, we give
a brief overview of spatial attention mechanisms in other
video understanding tasks, followed by highlighting the latest
research on SLR involving attention mechanisms.

A. Sign Language Recognition

SLR can be classified into three subtopics: a) alphabet
SLR, b) isolated SLR and c) continuous SLR. Alphabet SLR
(aka finger-spelling), as the name suggests involves gestures
representing a single alphabet in that particular language. It
is usually a static gesture and it suffices to represent the
corresponding gesture in a single static image [37], [33].
Isolated SLR, recognizes word-by-word [40], [17], while
continuous SLR involves recognition [23], [18], [36], or
translation [14], [47], [3] of entire sentences. Both subtopics
involve motion in the gesture, and are therefore represented
in videos. Since this paper works on isolated SLR, in this
subsection, we will focus on the latest research in this area.

Since motion plays a key factor in characterizing sign
language, lots of researchers have integrated motion in
various ways. This includes motion trajectories [30], optical
flow video sequences generated from RGB videos [40],
[34], HMM [41], [44] or DTW [28]. Even in deep learning
methods, to model temporal dependencies in deep models,
RNNs [25] and 3D CNNs are commonly used [40], [34].

It is not surprising that current research in SLR heavily
relies on deep learning techniques [35], [26], [40]. Con-
ventional techniques for SLR that used to rely on hand-
crafted features, have proven to have very limited success
in comparison [53], [52], [41]. Even methods that rely
on external equipment such as data gloves that capture
hands position, orientation and velocity still do not deliver
satisfactory performance [1]. Therefore, in this section, we

only focus on current state-of-the-art progress in the field of
SLR that uses deep learning methods.

Prominent work in isolated SLR includes [35] by Pigou et
al. They explore a deep end-to-end neural network incor-
porating temporal convolution and bidirectional recurrence,
showing a significant improvement in frame-wise gesture
recognition in videos. More recently, [29] proposed a two-
phase recognition system: hand tracking, and hand represen-
tation. In the first phase the hand is tracked with the help
of a particle filter that combines hand motion and a pre-
trained CNN hand model to predict hand position. In the
second phase, a compact hand representation is computed
by averaging the segmented hand regions.

Transferring domain knowledge has recently been proven
beneficial to the task of SLR. Li et al. [26] has transferred
the knowledge form web news signs to common everyday
words in SLR by learning domain-invariant features. On a
larger scale, Sarhan et al. [40] transferred the knowledge
learned from the task of action recognition to SLR. They
applied a two-stream inflated 3D network, one taking as
input RGB frames, and the second optical flow frames. Both
streams were pre-trained on RGB and optical flow data from
an action recognition dataset Kinetics dataset [4]

B. Attention in Video Understanding Tasks

Since spatial attention mechanisms have shown great
success in many image-level tasks, including image caption-
ing [20], [46] and visual question answering [7], [16], it was
natural to also incorporate them to extract features for video
inputs. This includes tasks such as video captioning [15],
[50] and human action recognition [6], [13], [43], [31], [8].

Unlike with still images, attention in for video inputs can
be classified into two forms: spatial attention and temporal
attention, where the former is only done spatially on a
frame-level and the latter involves temporal information. In
spatial attention, each frame is processed individually and
independently of neighboring frames in the sequence [13],
[51]. The authors in [13] proposed an attentional pooling
method for action recognition, where they consider both
saliency-based and class-specific attention, without utilizing
any temporal information.

In the second class of attention, temporal information is
also considered, usually along with spatial attention as well
(spatio-temporal attention) [9], [27], [32]. For instance, the
work by Das et al. [8] propose a pose-based spatio-temporal
attention mechanism to weigh different body parts for the
task of action classification. They utilize RGB videos along
with 2D and 3D skeleton points as input. They propose an
RNN attention mechanism that provides appropriate weights
to the relevant human body parts involved in the action,
which improves the action classification.

C. Attention in SLR

In comparison to other computer vision fields, integrating
attention mechanisms into the task of SLR is in its infancy.
In this section, we present recent work where attention was
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Fig. 2. Pre-focused Attention Architecture. A motion prior focuses attention on regions of interest via Attention Masks. The general network architecture
consists of two streams of I3D networks [4]. The first (upper) one is fed weighted RGB frames, and the second (lower) one takes optical flow frames as
input, which have been computed using the Dual-TVL! algorithm [54]. The weighted RGB frames are computed by generating attention masks from the
optical flow frames and multiplying them element-wise with the RGB frames. The two I3D Networks generate predictions of the presented gesture and

are finally averaged to yield a final label (details of the I3D network in Fig. 3).

involved in SLR. The authors in [17] propose an attention-
based 3D CNN for isolated SLR. They rely on skeletal joints
captured by Kinect camera and highlight the areas repre-
senting the hand and arm joints. They also apply temporal
attention to select the significant motions for classification.

While Shi et al. [42] focus on recognition of finger-
spelling in American sign language, they proposed a model
based on an iterative attention mechanism to obtain the
regions of interest of high resolution. It is based on a
convolutional RNN to extract a feature map from which the
attention map is computed.

The paper by Rodriguez et al. [38] introduce attention
in continuous sign language translation. They propose an
attention-based encoder-decoder architecture for sequential
motion learning. The attention model is included to high-
light local temporal patterns that mainly contribute to word
translation. They show how important motion is for the task
of sign language translation.

III. PROPOSED METHOD

The main idea of our proposed method is to integrate
attention to the input RGB images with motion as a prior.
We categorize the way we apply attention into three cate-
gories: pre-focused attention, learned attention, and hybrid
attention. In the first method, an attention mask is used
to weigh the input RGB image beforehand, while in the
second, attention is infused in the network and learned during
training. The hybrid approach combines both methods by
utilizing the motion-based attention masks from the pre-
focused attention approach to initialize the attention layer
used in the learned attention approach, while still allowing
it fine-tune during training. Applying spatial attention based
on optical flow implicitly incorporates temporal information
well due to the inherent recurrence in optical flow.

In this section, we first explain the general network ar-
chitecture, followed by a detailed explanation on how each
approach for attention is applied.

A. Network Architecture

The core of our SLR architecture are the Inflated 3D
(I3D) networks [4], which have recently shown success in
SLR [40], [21]. They are an inflated version of Inception-V1
architecture [19], were 2D k x k kernels are “inflated” to 3D
t x k x k kernels that span over ¢t frames. The benefit behind
this inflation is to maintain the kernels that were initialized
with the pre-trained ImageNet [39] weights via a single-
frame static video. I3D models have proven to outperform
equivalent CNN+LSTM architectures [4].

Accordingly, we opt for the two-stream I3D architecture
proposed by Sarhan et al. [40] to build upon. The first stream
takes RGB frames as input, while the second is fed optical
flow frames, which have been generated from the RGB video
using the Dual-TVL! algorithm [54]. The input videos are
sampled uniformly in order to have a fixed number of frames
for all videos, to be fed to a 3D CNN network. The weights
of both streams are initialized with corresponding pre-trained
weights from the Kinetics dataset [4], a large-scale action
recognition dataset. A new final classification layer is then
added to each stream, which starts with randomly-initialized
weights. Both streams share no parameters, each network is
trained separately, and their output softmax predictions are
averaged together to yield a final label, as proposed in [40].

In the following, we present the three different ways how
to integrate spatial attention into the architecture to focus
the processing on the informative, discriminating parts of
the input.
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Learned Attention RGB Stream. The detailed architecture of the RGB stream when applying learned attention. A new attention layer (red) is

appended to the layers of the I3D CNN at the beginning. Here, the RGB stream is directly fed the original RGB video frames. The weights of the attention

layer are initialized to ones and fine-tuned during training.

B. Pre-focused Attention

In this approach, a motion-based attention mask is pre-
computed before training, which highlights regions in the
image where motion occurs. This is visualized in Figure 2.
The attention mask M; for the it" frame is generated as a
binary mask, where pixels that indicate motion have a value
of 1, and pixels with no motion have the value W, where
0 < Wy <= 1. Keeping W, > 0 ensures putting more focus
on motion areas without losing information from the other
parts of the image completely. A pixel at location (z,y) is
defined to show motion if the optical flow output from the
Dual-TVL!' algorithm [54] is larger than 0.

The attention-mask, M;, is then generated, and is used to
weigh the RGB image, I;; the weighted RGB image A; is
obtained by element-wise multiplication of the original RGB
image I; with the corresponding attention mask, such that
A; = I; ® M;. Equation 1 summarizes how the attention-
weighted RGB images are generated.

Ai(-ray) = Iz(%?}) ®Mi<x7y)a
W, if Oy(z,y) =0 (1

where M;(z,y) = {1 otherwise

where O; is the optical flow output, and ® denotes element-
wise multiplication. The weighted RGB sequence is then
passed through the I3D network of the RGB stream for
training, completely replacing the original RGB images.
Rather than having a binary attention mask, where the
weights can either be 1 or W, as shown in Equation 1,
we also experimented with blurring the binary attention map
beforehand with a Gaussian filter. This results in an attention
mask, which has a spatially smoother transition between
areas of attention and the surrounding areas and resembles
more a typical saliency map. In Table II we show a slight
advantage of the blurred attention maps over the binary maps.

C. Learned Attention

In the learned attention approach, we investigate inte-
grating an attention layer to the I3D network rather than
having fixed, preset weights as in the previous section.
This attention layer is placed as the first layer in the 13D
network as shown in Figure 3, directly after the input. The

attention layer is time-distributed over the video sequence.
The attention layer’s weights are initialized to ones, implying
that at the first iteration all the pixels in the RGB image
get the same weight. As training progresses, the weights are
fine-tuned, allowing the network to learn to focus on what
is more valuable in the image, without providing any priors
beforehand.

D. Hybrid Attention

To reap the benefits of both attention approaches, we
propose a hybrid approach. It is basically the same approach
as the learned attention, but we initialize the weights of
the attention layer with the pre-focused attention mask, M;
(see Equation 1). Similar to the learned attention approach,
the weights of the attention layer are also fine-tuned as the
network is trained.

IV. EXPERIMENTAL DETAILS

In the following, we describe the dataset and the eval-
uation framework used to evaluate our proposed methods.
In addition, we explain the necessary training details of our
experimental setup to make this work reproducible.

A. Dataset & Evaluation

We evaluate our proposed methods on the Chalearn249
IsoGD dataset [45], a large, isolated SLR dataset. The
reason behind choosing this dataset is two-fold: a) it is a
signer-independent dataset, which allows to investigate the
generalization to unseen individuals in a realistic setting; b)
It is one of the most commonly used datasets for isolated sign
language gestures [34], [24], [10], [55], [40], which allows
us to compare and properly evaluate our proposed method
with the current state-of-the-art.

The dataset is made up of 47,933 isolated sign language
videos belonging to 249 different classes performed by 21
signers. The videos have been recorded by a Microsoft
Kinect camera. While the dataset provides both RGB and
depth images, in this work we only make use of the RGB
data.

For evaluation, we follow the protocol that is already
provided by the dataset. It is split into training (35,878
videos), validation (5,784 videos), and test (6,271 videos)
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TABLE I
PRE-FOCUSED ATTENTION RESULTS. THIS TABLE SHOWS THE RESULTS OF APPLYING THE ATTENTION MASK IN A PRE-FOCUSED MANNER TO THE
INPUT RGB STREAM. NOTE THAT AN ATTENTION WEIGHT OF 1.0 IS EQUIVALENT TO PASSING THE ORIGINAL RGB IMAGE, WE USE THIS AS OUR
BASELINE, AS IN [40].

Attention Validation Accuracy Test Accuracy
Weight (W;) RGB RGB + Flow RGB RGB + Flow
0.5 53.08% 61.15% 56.82% 64.0%
0.6 54.0% 61.91% 57.03% 64.23%
0.7 56.1% 63.0% 59.04% 65.78%
0.8 57.45% 63.95% 59.96 % 66.26 %
0.9 55.9% 62.53% 58.23% 65.0%
1.0 (baseline [40]) | 54.63 % 62.09 % 57.73 % 64.44 %

subsets. For all our experiments, we report and compare the
accuracy on both the validation and test sets.

B. Training Details

a) Preprocessing.: The video sequences are uniformly
sampled to a fixed number of frames. The sampled frames are
then cropped around the center to a spatial size of 224 x 224.
In order to reduce training time, optical flow frames have
been generated beforehand as a pre-processing step.

b) Training and fine-tuning.: Both 13D networks have
been initialized with pre-trained weights from Kinetics
dataset [4]. Training is monitored by calculating the categor-
ical cross-entropy loss, and using Adam as an optimizer [22].
Throughout our methods, we consistently start by training
only the randomly initialized classifier layers added to the
top of the network, while freezing the pre-trained weights.
Afterwards, the pre-trained weights are fine-tuned along with
the rest of the network at a lower learning rate. Here we
employ early-stopping to automatically halt training once
validation loss has not improved for 3 consecutive epochs.

c) Hyperparameters.: When training the randomly ini-
tialized top layers, the learning rate was set to 1072, and
the top layers were trained for 3 epochs. The learning rate
was then dropped to 10~ to fine-tune the entire network. A
mini-batch size of 4 is used.

d) Data augmentation.: While data augmentation is
crucial for small- and medium-sized datasets, it remains quite
tricky to apply to SLR. Basic data augmentation methods,
like flipping the image or slightly rotating it, can directly
affect the sign that is being gestured. Taking this into
account, we only perform data augmentation through image
shifts along both the x- and y-axes and changes in brightness.

V. RESULTS & ANALYSIS

In this section, we present and analyze the results using
pre-focused, learned, and hybrid attention methods and com-
pare to state-of-the-art methods on Chalearn 249. For all
experiments, we build on the setup from [40] and change
only the RGB stream; the optical flow stream is kept as in
[40]. We report both the performance of the RGB stream
alone and that of the combined RGB + optical flow streams.

A. Results of Pre-focused Attention

In Table I we present the results of applying the pre-
focused attention mask to the RGB input. We experimented

with different attention weights W, for the static areas,
while maintaining the focus on the areas where motion is
detected at 1. The attention mask has been applied both
during training and testing the network.

We observe from the results that giving lower weights to
areas with no motion while emphasizing areas with motion
achieves better results than feeding the original RGB frames
only (corresponding to W, = 1). This is however limited to
the point where 0.7 < W, < 0.9. We observe that below 0.7,
other important information also gets lost. This may include
facial expressions, which are also important for SLR, and the
position of the hands with respect to the body. For weights
higher than 0.8, we observe that they no longer perform as
well, implying that motion areas still need more focus than
other static areas.

In order to decrease the processing time, we also experi-
mented by training the network only on the weighted RGB
frames, but testing on the original RGB frames. This alle-
viates heavy computation for the attention mask generation
during testing time. The results using the highest performing
attention weight of 0.8 were slightly better. The test set
achieved an accuracy of 60.39 % (40.43 % improvement) for
the RGB stream alone, and 66.59 % (+0.33 % improvement)
when using both the RGB and optical flow streams. This
result is interesting, since it shows that it is possible to use
the motion prior only during training to guide the training
of the network to relevant regions of the input data, and the
final trained network does not require the motion prior any
more.

We also experimented with blurring the attention map
beforehand. We worked on our best-performing results from
the binary attention map, with W, = 0.8. We applied a
Gaussian filter for smoothing, and achieved best results with
a standard deviation of 7. Blurring the mask resulted in
slightly better results than a binary mask. For the validation
accuracy, we achieved 57.8 % for the RGB stream alone, and
64.21 % for both streams. For the test accuracy, we report
60.3 % for the RGB stream, and 67.11 % for both the RGB
and optical flow streams. A comparison between the binary
and blurred attention masks, with W, = 0.8, is shown in
Table II.

In Figure 4, we visualize example frames from the
ChalLearn249 dataset after applying the motion-based pre-
focused attention masks. We observe how optical flow is able
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Fig. 4.
pre-focused attention to the RGB frame. Top: binary masks, where the red areas represent motion-based attention areas and the blue areas show no motion,
therefore less attention. Bottom: Blurring out the mask to allow for a smoother transition between the focus areas and the surrounding areas.

TABLE II
BINARY VS. BLURRED ATTENTION MASKS. COMPARISON BETWEEN
USING A BINARY AND BLURRED MOTION ATTENTION MASK FOR THE
PRE-FOCUSED ATTENTION APPROACH.

Method Validation aclil(l}r;cy Test accun;n(c})}'3
RGB RGB
G + Flow G + Flow
0.8 (binary) 57.54% 63.95% 59.96% | 66.26%
0.8 (blurred) | 57.8% 64.21% 60.3% | 67.11%

to emphasize the hand and arm movement in the RGB image.
Even in the fourth column, the minor movements of the index
and thumb fingers are emphasized. The fifth column shows
its success when the gesture also involves both hands.

B. Results of Learned Attention

In this section, we present the results of adding an attention
layer to the network. The weights of the attention layer are
initialized with ones. This means that, initially, the entire
RGB image has the same weights, i.e. no motion-based
attention prior. This weights of the newly added attention
layer are first frozen, while the top, randomly-initialized
layers are being trained. Afterwards, the attention layer’s
weights are unfrozen, and are fine-tuned along with the entire
network. In this set up, the network decides end-to-end what
to focus on in the RGB image, without being given any
priors.

We report the results of these experiments in Table III.
We observe that this performs significantly better than pre-
focused attention, where the focus of the image is directed
only where there is motion. We believe that these results
make sense because even though throughout a sign language
gesture motion is key in directing where to look, or focus the
attention, once the desired hand position is reached and the
desired hand shape is made, the signer holds that position and

Visualization of Pre-focused Attention Maps. An example of attention-weighted RGB frames from Chalearn249 dataset [45] after applying

shape without any motion. In other words, during the peak of
the gesture, there is no motion. Hence, in the aforementioned
approach, these “key frames” where the hand shape and
position are the most clear, lower weight is given due to
the lack of motion. However, the learned attention approach
took almost twice the number of training epochs as the pre-
focused attention to converge.

C. Results of Hybrid Attention

To combine both approaches, we employ the learned atten-
tion approach, but in this case, we initialize the weights of the
attention layer with the best-performing optical flow attention
masks from the pre-focused attention experiment. Similarly,
the randomly-initialized top layers are first trained while the
attention layer’s weights are frozen. Afterwards, the entire
network, including the attention layer, is fine-tuned. From
the results we observe that combining both approaches in
the hybrid attention performs better than letting the network
completely learn which areas to attend more to. In addition,
training when using the hybrid approach converged faster
than the purely learned approach, without priors.

D. Comparison with State-of-The-Art

In Table IV, we compare our best results from both
attention methods to current state-of-the-art results on SLR
using Chal.earn249 Dataset. For most methods, only results
on the validation set are available, as the Chalearn249
dataset was part of a competition, during which the test set
was not yet available. We consider the work by Sarhan et
al. [40] to be the baseline to which we compare our results,
since we base our model on their work. It is clear that both
methods for integrating attention already outperform state-of-
the-art methods. However, integrating the attention layer into
the network and allowing the weights to be learned as in the
hybrid approach shows superior performance. In comparison
to [40], the RGB stream performs better by 4.4 %, leading to
an overall increase in performance from 62.09 % to 65.02 %.
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TABLE III
RESULTS OF LEARNED & HYBRID ATTENTION: ACCURACY RESULTS OF ADDING AN ATTENTION LAYER TO THE I3D NETWORK. IN THE learned

attention APPROACH, THE WEIGHTS OF THE ATTENTION LAYERS ARE INITIALIZED WITH ONES, WHILE IN THE hybrid attention THE WEIGHTS ARE

INITIALIZED WITH THE PRE-FOCUSED ATTENTION WEIGHTS. IN BOTH CASES THE WEIGHTS OF THE ATTENTION LAYER ARE FINE-TUNED DURING

TRAINING.
Validation accuracy Test accuracy
Method RGB  RGB +Flow | RGB  RGB + Flow
I3D-SLR [40] (baseline) | 54.63 % 62.09% 57.73% 64.44%
0.8 (blurred) 57.8% 64.21% 60.3% 67.11%
Learned attention 58.52% 64.7% 61.05% 68.36%
Hybrid attention 59.2% 65.02% 61.65% 68.89%
While the overall performance of 2SCVN-Max [10] is higher REFERENCES

than that of [40], we still surpass it by a difference of
2.3%. The results suggest that SLR indeed benefits from
the addition of spatial attention using the motion prior.

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON CHALEARN249
ISOGD DATASET.

Method Validation accuracy
RGB RGB + Flow
ASU [34] 45.07% N/A
SYSU.ISEE [24] 47.29% N/A
3DDSN [10] 46.08% N/A
XDETVP [55] 51.31% N/A
2SCVN-Max [10] 45.65% 62.72%
I3D-SLR [40] (baseline) 54.63% 62.09%
Attn-I3D-SLR (pre-focused) 57.8% 64.21%
Attn-I3D-SLR (learned) 58.52% 64.7%
Attn-I3D-SLR (hybrid) 59.02% 65.02%

VI. CONCLUSION

In this paper, we proposed a new motion-based attention-
based SLR model, Attn-I3D-SLR, for isolated SLR with
motion as a prior. The motivation behind that was to direct
the network to focus on more discriminating areas than
distracting ones. Our two-stream model uses inflated 3D
ConvNets, and explicitly integrates spatial attention to the
RGB stream. We investigated three methods for incorporat-
ing attention, which can serve as baselines and references
for subsequent methods. We proved that using motion as a
prior via pre-focused attention before training the network
enhances performance significantly over passing the pure
RGB image stream. We also showed that applying learned
attention during training overcame the drawbacks of the
pre-focused attention. Finally, we concluded that a hybrid
approach, where the weights of an attention are initialized
with pre-focused attention maps, and then fine-tuned during
training performs best, as opposed to letting the network de-
cide which areas to focus on from pure RGB images. Future
work can possibly explore the effect of including further
modalities, such as depth, which have proven beneficial to
the sign language recognition tasks.
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