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ABSTRACT

In image segmentation, preserving the topology of segmented
structures like vessels, membranes, or roads is crucial. For in-
stance, topological errors on road networks can significantly
impact navigation. Recently proposed solutions are loss func-
tions based on critical pixel masks that consider the whole
skeleton of the segmented structures in the critical pixel mask.
We propose the novel loss function ContextLoss (CLoss) that
improves topological correctness by considering topological
errors with their whole context in the critical pixel mask. The
additional context improves the network focus on the topo-
logical errors. Further, we propose two intuitive metrics to
verify improved connectivity due to a closing of missed con-
nections. We benchmark our proposed CLoss on three public
datasets (2D & 3D) and our own 3D nano-imaging dataset
of bone cement lines. Training with our proposed CLoss in-
creases performance on topology-aware metrics and repairs
up to 44 % more missed connections than other state-of-the-
art methods. We make the code publicly available1 2.

Index Terms— Segmentation, Topology-Preserving,
Elongated Structures, Loss Function, Bone Cement Line

1. INTRODUCTION

Loss functions are a core component of neural networks,
which determine what the network is optimized for. In im-
age segmentation, this translates directly to how well the
predictions of the network can resemble the structural prop-
erties of the ground truth. The two most commonly used
loss functions in image segmentation are the pixel-wise loss
functions Dice loss (LDice) and Cross-Entropy loss (LCE).
However, these losses optimize for a maximum overlap of
predictions and ground truth by weighting all pixel contri-
butions equally [1, 2]. This is a problem if the topology is
of particular interest because the topology is not explicitly
considered. This can promote topological errors, eg. in
downstream applications related to the segmentation of road
systems, blood vessels, or bone features, see Fig. 1.

1https://gitlab.com/Benedict S/ContextLoss
2Supplement: https://dx.doi.org/10.60864/jkny-a610
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Fig. 1: Motivation. Image segmentation in bone research,
where our method improves topological correctness over
training with Dice and Cross-Entropy loss (Dice & CE).

Related work [3–8] implements topology sensitivity by ap-
plying a pixel-wise loss function (Lpixel) like LDice or LCE

on a critical pixel mask of topologically important pixels
and combining it with an additional Lpixel that is applied
on all pixels. Applying Lpixel on the critical pixel mask
ensures higher network attention on the critical pixels than
on the normal pixels. Related work defines the critical pixel
mask by including the complete morphological skeletons of
ground truth and predictions [3, 4, 8], or a slightly dilated
skeleton [5]. [4, 5, 8] extend [3] mainly by different Lpixel or
removing small structures during training.

While the morphological skeleton is an excellent measure
for topological correctness, the complete skeleton typically
includes many already correctly predicted pixels. However,
the network must be trained to learn a better representation of
the topological errors [6, 7]. [6] and [7] identify critical pixel
masks at the topological errors without skeletonization at the
cost of high runtime. However, their identified critical pixels
are either singular pixels [6] or a line of 1-pixel width [7]
in the center of the topological errors. Considering only a
few singular pixels in the critical pixel mask is a problem
because the network can obtain better results if more pixels
are included in the mask [9]. We argue that [6] and [7] are
missing important context information by including only few
critical pixels.

In this paper, we propose the novel loss function CLoss
for topology-preserving segmentation. CLoss features an
extensive critical pixel mask of the topological errors and
particularly considers more context pixels of the topological
errors. The additional context pixels are acquired by com-

https://gitlab.com/Benedict_S/contextloss
https://dx.doi.org/10.60864/jkny-a610


bining skeletonization and the distance transform. Utilizing
skeletonization in the critical pixel selection makes CLoss
naturally fast and compatible with 3D data. Our loss can
be used on 2D and 3D data with any arbitrary segmentation
network to improve topological correctness in a plug-and-
play manner. Additionally, we combine our proposed CLoss
with a dedicated training strategy to exploit topological post-
processing. For validation, we isolate the contribution of our
proposed critical pixel mask from the impact of Lpixel. We
benchmark on four datasets, including our own novel 3D bone
Cement Line Dataset (CLD). CLD contains boundary layers
of bone tissue which challenge segmentation algorithms with
low contrast, diffuse borders, and image artifacts. Further, we
propose two intuitive metrics to verify improved connectivity
due to a closing of missed connections, which complement
existing metrics and are more robust to artifacts from evalu-
ation. In this paper, our contributions can be summarized as
follows:

• We propose the novel topology-preserving loss func-
tion CLoss which utilizes a critical pixel mask to con-
sider the whole context of topological errors (Sec. 2.1).

• We propose a new 3D bone Cement Line Dataset
(CLD) for topology-preserving segmentation (Sec. 3).

• We propose two metrics which are sensitive to missed
connections (Sec. 2.2).

2. METHODOLOGY

2.1. ContextLoss

We propose the novel loss function CLoss to promote topology-
preserving segmentation with arbitrary segmentation net-
works. CLoss extracts a critical pixel mask of topologically
important locations, which is then considered in the total
cost function. In addition, we introduce a pretraining and
topological fine-tuning strategy. The results of both stages
are combined in a post-processing to generate the final results,
see Fig. 2.

Critical pixel mask. The acquisition of the critical pixel
mask is illustrated in Fig. 3. The critical pixel mask contains
the complete context of all topological errors. We determine
the skeleton at the topological critical locations, which is
then extended to include all context pixels, using the distance
transform. Missed connections are processed as displayed,
which we describe below. False positive connections are
processed similarly, as mentioned in the caption of Fig. 3.

We first obtain the skeleton of the label. Then, we obtain
the skeleton part at the topological error and the correctly
predicted skeleton part by splitting the label skeleton with
the prediction mask. Then, we apply the distance transform
to both splitting results, which calculates the distance of all
pixels to the respective split skeleton part. Based on the re-
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Fig. 2: Our proposed method. An arbitrary segmenta-
tion network is pretrained with a standard pixel-wise loss
(Lpixel) and then fine-tuned with our topology-sensitive
CLoss (Lcontext). We combine the inference results of the
pretraining for topological post-processing with the inference
results from the fine-tuning. Our method improves topologi-
cal correctness (circles) of topological errors (squares).

sults of the distance transforms, the context extraction keeps
only the pixels closest to the skeleton split of the topological
error (see bottom right in Fig. 3). The context pixel selection
is further cropped to label size to focus on the context pixels
of the topological error. The resulting critical pixel mask
(M ) contains all context pixels of missed and false positive
connections. See our pseudo-code in the supplement for
details (Sec. A.1).

Cost function. Our proposed CLoss is based on a pixel-
wise loss function (Lpixel), which is adapted for topology-
sensitivity. For Lpixel, we choose the loss combination of
LDice and LCE

Lpixel = (1− α)LDice + αLCE , (1)

with α ∈ [0, 1] as a weight. For this work, we use α = 0.5 for
a more robust performance compared to individual LDice and
LCE [1, 10]. We combine Lpixel with the critical pixel mask
M to our proposed CLoss

Lcontext = (1− γ)Lpixel + γLpixel ⊙M, (2)

with the Hadamard product ⊙. γ ∈ [0, 1] is a weight to adjust
the impact of the topology-sensitive term that contains M .

Training with CLoss. First, a segmentation network is
trained with regular Lpixel. Subsequently, CLoss is used for
fine-tuning to improve topological correctness, see Fig. 2.
Empirically, we found a fine-tuning length with 5% of the
pretraining length to be most efficient. We include ablations
in the supplement (Sec. A.10).
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Fig. 3: Workflow for extracting the critical pixel mask. CLoss considers all pixels of missed connections (pink mask) and
false positive connections (blue mask) as critical pixels, which captures the complete context of the topological errors. We
display the critical pixel extraction for the pink mask. Extracting the blue mask is analogue to the pink mask extraction, just
with interchanged label and prediction notation, and cropping to prediction size instead of label size during context extraction.

Topological Post-Processing. We apply topological post-
processing to the fine-tuning result, which only keeps struc-
tures already present in the pretraining, see Fig. 2. Intuitively,
this ensures topological fine-tuning without adding new fore-
ground structures. We include a formula and more details in
the supplement (Sec. A.3)

2.2. Proposed Metrics

Empirically, missed connections (gaps) in the predictions are
far more frequent than false positive connections in our used
datasets, see Fig. 5. Hence, we propose additional metrics
to better evaluate gap closing, adding desirable topological
information [11, 12]. Our proposed metrics complement
existing metrics, which usually evaluate for gaps and false
positive connections simultaneously. However, our metrics
are more robust against evaluation artifacts, see Fig. 4. We
include a qualitative example in the supplement (Sec. A.2).

e0-Gt. Recent work [3–7, 13, 14] reports the betti match-
ing error e0 = |βXbin

0 − βY
0 |, with the number of connected

components of the binary predictions βXbin
0 and ground truth

βY
0 . e0 is typically evaluated on patches, so opposite differ-

ences in β0 at different locations don’t balance each other
out. However, patch evaluation can lead to cropping artifacts
with thick predictions, see Fig. 4. We propose

e0-Gt = |βXbin⊙Y
0 − βY

0 |, (3)

which is similar to e0, but the binary predictions are addi-
tionally masked with the ground truth. Therefore, e0-Gt is
not affected by artifacts from thickened predictions. A lower
score indicates more closed gaps.

AGS - Accuracy on Ground Truth Skeleton. Recent
work [3, 5, 8, 13] reports the clDice metric, which evalu-
ates the intersection of skeletonized prediction (SX ) and
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Fig. 4: Evaluation artifacts. 1) has the same topology (e0)
as 2). However, the higher thickness of 2), compared to 1),
leads to a cropping artifact in the patch-based evaluation (red
area), which falsely suggests an unfavorable e0. Our e0-Gt
is robust to this artifact from patch evaluation. Moreover, the
complex contour of 2) evokes many additional skeleton pixels
(orange). Paired with the higher thickness of 2), this leads to
multiple false positive skeleton pixels (blue), resulting in a
bad clDice score. Our AGS is robust to this contour artifact.

skeletonized ground truth (SY ). clDice complements e0, as it
is sensitive to the partial reparation of gaps and false positive
connections, which β0-based metrics are not. However, SX

is overly sensitive to skeletonization artifacts related to a
complex contour or surface structure, see Fig. 4. We propose

AGS =
sum

(
Xbin ⊙ SY

)
sum

(
SY

) , (4)

which measures the accuracy of the binary predictions (Xbin)
on SY . AGS is robust to artifacts in SX , since AGS doesn’t
utilize SX . A higher score indicates a better closing of gaps.

3. CEMENT LINE DATASET (CLD)

Cement lines form and separate structural units in the bone,
and are thought to play an essential role in crack propaga-
tion, energy absorption, and bone mineralization [15]. Their
topology is a key property for their function [15, 16], there-
fore automated topology-preserving segmentation creates a



Table 1: Quantitative results. Our dataset, proposed method and proposed metrics are indicated in italic.

Dataset Method Weight γ Dice↑ clDice↑ [3] e↓ e1↓ e0↓ e0-Gt↓ AGS↑

Roads

nnU-Net [10] 79.69 89.34 1.181 0.895 0.286 0.702 86.46
Dice & CE 79.77 89.37 1.156 0.949 0.207 0.699 86.41
clDice [3] 0.5 79.50 89.11 1.126 0.897 0.230 0.710 87.07

Compound clDice 0.3 79.73 89.34 1.108 0.909 0.199 0.673 87.05
CLoss 0.08 79.82 89.47 1.065 0.880 0.185 0.656 87.70

0.1 79.57 89.21 0.990 0.810 0.180 0.617 87.88
0.2 79.12 89.13 0.994 0.788 0.205 0.494 89.48

HRF-Retina

nnU-Net [10] 82.33 81.88 0.528 0.281 0.247 2.742 77.75
Dice & CE 82.23 81.69 0.554 0.294 0.260 2.780 77.38
clDice [3] 0.5 82.15 83.09 0.426 0.256 0.170 2.475 82.23

Compound clDice 0.5 82.33 82.98 0.405 0.250 0.155 2.429 81.25
CLoss 0.08 82.22 83.20 0.447 0.259 0.187 2.347 82.28

0.1 82.20 83.27 0.449 0.262 0.188 2.469 82.61
0.2 80.57 85.06 0.397 0.225 0.172 1.378 90.39

Vessap

nnU-Net [10] 92.89 95.83 28.95 1.413 27.54 14.28 96.03
Dice & CE 93.13 95.81 26.67 1.280 25.39 13.15 96.26
clDice [3] 0.4 92.70 94.86 29.00 1.240 27.76 9.44 97.74

Compound clDice 0.1 93.11 95.80 26.10 1.200 24.90 11.68 97.00
CLoss 0.08 92.91 95.01 26.09 1.227 24.86 9.97 97.85

0.1 92.28 94.57 27.02 1.300 25.72 9.32 98.03
0.2 91.69 93.13 25.07 1.827 23.24 6.22 99.04

CLD

nnU-Net [10] 69.67 83.97 3.243 1.085 2.158 2.493 79.19
Dice & CE 70.27 85.23 3.422 1.075 2.347 2.447 82.02
clDice [3] 0.5 70.88 86.22 3.374 1.042 2.333 1.825 87.11

Compound clDice 0.5 70.61 85.45 3.165 1.065 2.099 2.150 82.66
CLoss 0.08 70.98 86.22 3.158 1.063 2.095 2.061 84.47

0.1 70.75 86.26 3.109 1.069 2.040 2.040 84.44
0.2 70.44 86.83 3.020 1.047 1.973 1.899 85.98

CLoss (Dice) 0.08 69.43 86.40 3.275 0.969 2.306 1.525 90.51

substantial benefit in this research field to improve the un-
derstanding of cement lines. 3D nano-imaging3 of cement
lines can specifically improve our understanding of cement
lines on the nano-scale. Unfortunately, nano-imaging qual-
ity is degraded by noise and various imaging artifacts [18].
Moreover, cement lines have low contrast with respect to
their surroundings and diffuse borders. Our CLD consists of
17 3D images of shape 1024² × 600, featuring a voxel size
of (45.6 nm)³. More details on the annotation process and
image acquisition are included in the supplement (Sec. A.4).
The characteristics of CLD are distinctly different from cur-
rent 2D topology-benchmark datasets like Roads [19] and
HRF-Retina [20], where the foreground class usually has
adequate contrast and clear borders. CLD also features a
layer/membrane-like foreground structure that is not included
in the 3D topology-benchmark dataset Vessap [21], which
has a tubular structure.

3Synchrotron radiation-based full-field transmission X-ray nanotomogra-
phy operated in Zernike phase contrast microscopy mode [17].

4. EXPERIMENTS

Datasets. Following other work on topology-preserving
segmentation [3–8, 13], we use the two public 2D datasets,
Massachusetts Roads (Roads) [19] and HRF-Retina [20].
Additionally, we evaluate on two 3D datasets, the public
Vessap [21] dataset, and our CLD (Sec. 3). More details on
the training splits are included in the supplement (Sec. A.5).

Compared Methods. We use the nnU-Net [10, 22], which
provides an optimized standard U-Net [23] for all experi-
ments. We compare CLoss against Dice & Cross-Entropy
loss (Dice & CE), clDice [3], and compound clDice. We
introduce compound clDice, which corresponds to clDice
but has the pixel-wise loss (Lpixel) from CLoss. We don’t
compare against [4, 5, 8], which mainly differ from clDice
in Lpixel, and [6], which has already been outperformed by
clDice. More details on the omitted methods and method
optimizations are included in the supplement (Sec. A.6).



Evaluation Metrics. We evaluate all methods with the
pixel-wise metric Dice score and the topology-aware metrics
clDice [3], Betti Number errors (e, e0, and e1), e0-Gt (ours)
and AGS (ours). More details on the evaluation are included
in the supplement (Sec. A.7).

Implementation Details. The same skeletonization method
[3] (50 iterations) is used for all corresponding methods. We
apply our proposed topological post-processing (Sec. 2.1) to
all fine-tuning results to highlight the impact of our proposed
loss function. Ablations for our proposed topological post-
processing are provided in the supplement (Sec. A.10). We
perform five-fold cross-validations for all methods. Further
details are included in the supplement (Sec. A.8).

4.1. Results and Discussion

The quantitative results of our experiments are displayed in
Tab. 1. Our proposed CLoss achieves the best overall topol-
ogy performance on all datasets, indicated by the combined
betti error e. This is supported by the superior gap closing
of CLoss for all datasets, indicated by e0-Gt and AGS. For
HRF-Retina, CLoss repairs 44 % more missed connections
than clDice (e0-Gt). CLoss achieves the best performance
for the clDice metric in all datasets except for Vessap, which
can be attributed to skeletonization artifacts connected to
the complex surface structure of Vessap in combination with
thickened predictions from CLoss, see Fig. 4. CLoss consis-
tently outperforms compound clDice on the topology metrics,
which only differs from CLoss in the critical pixel mask, and
to clDice only in Lpixel. Hence, we conclude a superior
critical pixel mask of our CLoss compared to clDice in the
scope of our experiments. Losses with LDice for Lpixel have
a slight advantage on CLD, so we added CLoss (Dice) for
comparison with clDice, which has the same Lpixel as clDice.
We observe for all datasets, that superior gap closing (better
e0-Gt and AGS) is linked with a stronger weighting of CLoss,
which is intuitively expected. Better overall topological per-
formance (e) and gap closing (e0-Gt and AGS) is also linked
with a decreased Dice score for all datasets.

Our quantitative results are supported by our qualitative re-
sults in Fig. 5, where we compare CLoss (γ = 0.2) with Dice
& CE. The predictions with CLoss have significantly higher
topological correctness than those of Dice & CE, highlighted
by the green arrows. For HRF-Retina, CLoss repairs espe-
cially many missed connections and doesn’t introduce visible
false positive connections. All predictions of CLoss have
a slightly higher thickness than the ground truth and Dice
& CE, see Fig. 5. This observed higher thickness confirms
that the decreasing Dice score for higher weights of CLoss
in Tab. 1 originates mainly from an increased thickness of
the predictions and is compensated by increasing topological

Label Dice & CE CLoss (ours)Image

Fig. 5: Qualitative results. The sampled patches are from
Roads, HRF-Retina, Vessap, and CLD (up to down). Arrows
indicate high (green) and low (red) topological correctness
with respect to the input image/label (blue).

correctness. CLoss runtime with soft skeletonization [3] is
comparable to clDice, which is orders of magnitude faster
than [6, 7, 13], as compared in [13]. We include a more
detailed discussion, runtimes and ablation results in the sup-
plement (Sec. A.9, Sec. A.10).

5. CONCLUSION

In this work, we propose the novel topology-preserving loss
function CLoss. CLoss is based on a critical pixel mask,
which considers the whole context of topological errors.
We implement CLoss with a dedicated training strategy that
allows for topological post-processing. CLoss can be used on
2D and 3D datasets with any arbitrary segmentation network.
Further, we benchmark on our own 3D dataset CLD, which
features low contrast, diffuse borders, and image artifacts.
Additionally, we propose two intuitive metrics to verify im-
proved connectivity due to a closing of gaps. We demonstrate
the superiority of our context-based critical pixel mask over
the critical pixel mask of the entire skeletons on all of our
four experiment datasets, where CLoss repairs up to 44 %
more missed connections than other state-of-the-art methods.
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