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Abstract— We present the HD Ground Database, a com-
prehensive database for ground texture based localization. It
contains sequences of a variety of textures, obtained using a
downward facing camera. In contrast to existing databases
of ground images, the HD Ground Database is larger, has a
greater variety of textures, and has a higher image resolution
with less motion blur. Also, our database enables the first
systematic study of how natural changes of the ground that
occur over time affect localization performance, and it allows
to examine a teach-and-repeat navigation scenario. We use
the HD Ground Database to evaluate four state-of-the-art
localization approaches for global localization, localization with
the approximate pose being known, and relative localization.

I. INTRODUCTION

The use of ground images from a downward-facing camera
is a promising, low-cost approach to achieving millimeter-
level localization [1][2][3][4][5]. An agent that uses the
ground instead of surrounding landmarks to localize itself
has several advantages: (1) it works in dynamic environments
with frequently changing surrounding; (2) it works with an
occluded surrounding, e.g. in a busy pedestrian zone; (3) it
observes only the ground reducing privacy concerns.

Recent developments show that ground texture based
localization is suitable for self-contained approaches that can
comply with all requirements of localization: global map-
based localization without any knowledge of the current po-
sitioning [3][5], subsequent map-based local pose refinement
using a prior pose estimate [2][3][6], as well as map-less
relative localization in form of visual odometry between
subsequently recorded ground images [7][8][9].

This work contributes the HD Ground Database6, a
large set of high-resolution ground images, recorded with
a downward-facing camera shielded from external light
sources. It enables the examination of localization under
varying conditions, such as clean versus dirty, and dry versus
wet ground. Also, in comparison to existing ground image
datasets [4], the HD Ground Database provides larger area
coverage, higher resolution images with less motion blur,
and image sequences from a teach-and-repeat scenario in
which the robot is supposed to follow a previously learned
path. To examine the impact of natural wear and tear,
as well as weather, on the localization performance, we
recorded weekly test sequences of similar paths over a period
of 24 weeks. An evaluation of state-of-the-art localization
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Fig. 1: The four main textures of the HD Ground Database.
From left to right: asphalt, cobblestone, carpet, and laminate.

Fig. 2: Additional textures to test generalization. From left to
right: pavement, concrete, linoleum, tiles, steel, and rubber.

methods shows that this time interval between mapping and
localization is highly relevant for outdoor environments.

II. RELATED WORK

A. Datasets for ground texture based localization

To the best of our knowledge the Micro-GPS databases of
Zhang et al. [4] are the only publicly available ground image
databases suited for ground texture based localization. The
authors present a database recorded with a PointGrey CM3
camera, and a second one recorded with an iPhone 6. In [5]
and [6] the PointGrey CM3 database was used to compare
localization approaches. But for many evaluated localization
problems, e.g. localization with prior pose estimate (on all
textures but wood), every method reaches close to perfect
success rate, raising the question of whether the database
covers all challenges of the task. For example, it is not
systematically covering ground changes that occur over time.

Another publicly available dataset of ground images was
created by Xue et al. [10]. It contains more than 30000
images of 40 outdoor ground textures. The dataset is used
to show the effectiveness of differential angular imaging for
in-place material recognition. Accordingly, it provides many
images of the same places from varying camera angles, but
not the area coverage required to examine localization tasks.

Alternatively, Rodriguez and Castano-Cano [11] propose
to generate image data with a virtual camera from simulated
vehicle drives over a single high-resolution terrain image.
This allows to generate a virtually infinite number of different
sequences. However, while some image conditions can be
simulated, this does not allow to examine the effects of
actual changes that appear on the ground. In contrast, the
HD Ground Database explicitly captures these changes.

6https://github.com/JanFabianSchmid/HD_Ground



TABLE I: A comparison of the sizes of publicly available ground image datasets.

Database Total area Largest single area #Reference images #Test images #Textures Resolution mm/pixel

Micro-GPS (PointGrey) [4] 145.85m2 41.76m2 23 487 28 929 6 1288× 964 0.16
Micro-GPS (iPhone 6) [4] 40.27m2 27.52m2 2 525 2 483 2 1280× 720 NA

HD Ground (ours) 347.73m2 106.12m2 129 965 71 463 11 1600× 1200 0.1

B. Methods for ground texture based localization

We introduce the methods that are evaluated in this paper,
and distinguish between methods for relative localization,
and absolute localization with or without available prior pose
estimate (hereafter referred to as prior). Absolute localization
without prior is performed once at start-up and is referred
to as global localization, while subsequent local localiza-
tion exploits the available prior. All evaluated methods are
feature-based and designed for absolute localization. They
estimate the query image pose based on a map consisting of
a set of reference images with known poses. However, the
methods can also be used for relative localization, consider-
ing only the previous query image as reference image.

Chen et al. [3] developed StreetMap, which is based on
SURF [12] features and treats global and local localization
separately. It also has a variant specifically for floors with
tile structure, but it is not considered by us. For global
localization, StreetMap uses Bag of Words (BoW) image
retrieval [13] to consider only reference images similar to the
query image, while for local localization only the reference
images from the local vicinity of the prior are considered.

Radhakrishnan et al. [14] propose an alternative to BoW
for ground image retrieval, which is based on Deep Metric
Learning (DML). They train a convolutional neural network
in Siamese fashion to predict the overlap of ground image
pairs. At inference time its last layer activations are used as
image embedding, and overlapping images of a query image
are retrieved as the ones with most similar embedding.

Kozak and Alban propose Ranger [2], a local localization
method that computes ORB [15], respectively BRIEF [16],
descriptors for CenSurE [17] keypoints. Ranger iteratively
considers the spatially closest reference image to the given
prior to match its features with that of the query image.
The matches validated by the cross check constraint are used
for RANSAC-based pose estimation, localization terminates
if the resulting pose estimate is supported by a sufficient
number of matches; otherwise, the next closest image is used.

Schmid et al. [5] proposed a method based on SIFT [18]
keypoints that uses only the first 15 bit of LATCH [19]
as compact binary descriptor, and a cost-effective matching
technique called identity matching, which considers only
identical descriptor values as matches. In order to deal with
the large number of outlier matches, they use a voting
procedure for spatial verification of matches [4], and use
the remaining matches for RANSAC-based pose estimation.

In a follow-up work, Schmid et al. reduce the computa-
tion time of their method substituting SIFT with keypoint
sampling [6], where keypoints are determined arbitrarily,
regardless of the image content. The authors argue that this

TABLE II: Details of the 4 main textures. Regular sequences
are the test sequences that we recorded on a weekly basis.

Asphalt Cobblestone Carpet Laminate

Area covered m2 106.12 59.28 90.15 16.18
Reference images 32251 25337 33456 5812
Test images 17483 14442 16579 9052

Regular sequences 12 dry, 12 as it is,
22 22

9 wet 12 cleaned

is a viable strategy if the ground is assumed to be locally
planar, reducing the localization task to a 2D problem and
if an adequately accurate prior is available to define feature
orientations relative to the map coordinate system.

III. THE HD GROUND DATABASE

We present a large database of ground images for ground
texture based localization: the HD Ground Database. For
eleven textures, it contains reference images, covering the
application areas, and test images that are to be localized.

The four main textures (see Fig. 1) are footpath asphalt,
parking place cobblestone, office felt carpet, and kitchen
laminate. For these textures, test image sequences were
captured systematically by recording a similar trajectory on
a weekly basis (more details on the timings are given in the
evaluation section). Additionally, separate sets of trajectories
were recorded in quick succession. These trajectories are
following quite precisely the same path on the coverage
area, which allows to evaluate a teach-and-repeat scenario
in which a robot is steered along a specific path once,
and subsequently is supposed to follow the taught path
autonomously in both directions. Table II presents further de-
tails for the main textures. Typically, localization methods are
adapted to a database or a specific texture through training
or parametrization. For this purpose, we provide additional
training areas: a separate square meter was recorded for each
of the main textures (see Fig. 3), and also a 2m2 door mat.
For six further textures (see Fig. 2) reference and test images
are captured on the same day: terrace pavement (24.8m2),
garage concrete (18.2m2), workroom linoleum (17.1m2),
bathroom tiles (3.8m2), checker plate steel (3.3m2), and
ramp rubber (2.8m2). We call these generalization textures,
as we use them to evaluate generalization capabilities.

A. Setup of the recording platform

Our platform is a modified RT3-2 VolksBot [20]. The
only sensor being used for this database is its ground-facing
camera. The recording area is shielded from external lighting
and illuminated by a 24V, 72Watt LED ring. Pulsed LED
lighting is synchronized with the camera exposure, allowing



Fig. 3: Application areas of the HD Ground Database are
covered by their reference images (light blue). They form
the map in which separately acquired query images (orange)
are to be located. For the main textures, additional training
areas (dark blue) and query images (green) are recorded.

us to provide bright illumination during recording, enabling
exposure times of only 0.1ms. A frame rate of 50Hz is
possible, but we retain only every fourth frame.

Some of the most important design parameters for a
recording setup with a downward-facing camera are the ex-
posure time τ , the longitudinal length of the recorded image
llong, and the camera height h. We can derive guidelines for
those quantities given some requirements for the platform: a
vehicle speed of up to vmax ≤ 20 km/h ≈ 5.56m/s should
be supported; for visual odometry, consecutive images should
have a longitudinal relative overlap of at least omin ≥ 1

3 ;
and motion blur, i.e. the traveled distance during exposure
b, should be smaller than bmax ≤ 0.5mm. Three more
constraints are given by the maximum recording speed of our
AVT Manta G-235C camera (Sony IMX174 global shutter
CMOS sensor) with f = 50Hz; the recording opening angle
of our lens (Schneider Kreuznach Cinegon 1.4/12-0906) of
α ≈ 48◦ image diagonal; and the image aspect ratio of 4 : 3.

The exposure time is derived from the maximum allowed
motion blur bmax and the supported vehicle speed vmax as

τ =
bmax

vmax
≈ 0.0005m

5.56m/s
≈ 0.09ms. (1)

The longitudinal image length is defined by the vehicle speed
vmax, the recording frequency f, and the image overlap omin:

llong =
vmax · 1/f
1− omin

≈ 5.56m/s · 0.02 s
1− 1/3

≈ 0.167m. (2)

Finally, the camera has to be mounted high enough to capture
the diagonal of our coverage area with length llong and width
llat = llong · 3/4, given the camera opening angle α:

h =
0.5 · (l2long + (3/4 · llong)2)0.5

tan (α/2)
≈ 0.234m. (3)

We consider the effort for the buildup of this setup and
the resulting good image quality to be realistic for scenarios
where a robot is equipped with a dedicated ground camera.

B. Data recording

We differentiate three systematic setups of data recording.
• Initial scanning of the whole coverage area (refer-

ence images). The application area is recorded lane-by-
lane, with each lane having an offset of 3.8 to 5 cm to

the previous one. That way images have approximately
2/3 overlap with neighboring images from the previous
and next lane, as well as with the previous and next
image of the same lane. Accordingly, every point on the
ground is covered by about 9 reference images, which
allows us to properly align the images during mapping.

• Recording of regular test sequences. For each main
texture, we define a regular test path. Weekly test
sequences are recorded by roughly following the respec-
tive paths. For cobblestone, two regular test paths are
recorded: one where the area is cleaned before recording
and one where it is not. For asphalt, additional se-
quences are recorded with weather-caused wet surface.

• Recording of teach-and-repeat sequences. A 20m
rope is put in a curved shape on the application area.
Then, we closely follow this rope two times in forward
and backward driving direction. Five different rope
configurations are recorded per texture, examples are
presented in Fig. 6.

For the training areas and generalization textures, test images
are recorded on arbitrary paths directly after the initial
scanning. We calibrate the camera once using a pinhole
model with two radial distortion parameters and use the
rectified images. Also, we compensate for vignetting by
normalizing each image with an average brightness image.

C. Mapping

We create a map for each application and training area.
They are created offline with an image stitching process
similar to that of Zhang et al. [4], aligning the reference
images in a common map coordinate system.

A first image is put to the origin of the coordinate
system and then we compute relative poses of consecutively
recorded images. This yields us the initial reference image
pose estimates. Relative poses are estimated with a simple
feature-based approach, using SIFT features, a ratio test
based brute-force matching strategy, and final RANSAC-
based pose estimation. This incremental pose estimation
quickly accumulates drift, so only a small set of 5 to 50
images is added to the map at each iteration of the mapping
process. Once the initial pose estimates of the added images
are available, we estimate their poses relative to all their
(potentially) neighboring images. It is crucial to avoid incor-
rect estimates at this stage. Therefore, we require that each
relative transformation of image n to one of its neighbors
(image x) is confirmed by the relative transformation of the
(n−1)-th or the (n+1)-th image to image x. Let [R, t]xn denote
the transformation from image n to image x, consisting of a
rotation R and a translation t, then we require

[R, t]xn ≈ [R, t]xn±1[R, t]
n±1
n . (4)

Furthermore, we require the number of RANSAC inliers to
exceed 100, which is an empirical threshold that depends
on the employed feature extractor and its parametrization.
Unconfirmed image pose relations are discarded.

At the final step of each mapping iteration, the set of all
reference image poses {[R, t]} is jointly optimized, consid-



Fig. 4: A small section from the stitched asphalt map. The
yellow rectangle corresponds to a single image.

ering pairs of corresponding features (f k
i , f

k
j ) between all

pairs of neighboring images (i, j), for which the relative
pose estimation was confirmed. Similar to Zhang et al.,
we formulate the optimization as a non-linear least-squares
optimization problem in Ceres [21], using the loss function:

E = min
{[R,t]}

∑
(i,j)

∑
(f k

i ,f
k
j )

([R, t]i · f k
i − [R, t]j · f k

j )
2. (5)

With [R, t]i denoting the transform mapping image i into the
map. Map correctness is confirmed by visually inspecting the
stitched images. We observe only small amounts of smearing.
Otherwise, image transitions are smooth as in Fig. 4.

D. Comparison with existing databases

One of the most important novel aspects of our database
is the recording of regular test sequences for a systematic
evaluation of localization performance over time. Also, we
enable the evaluation of a teach-and-repeat scenario and our
database is larger than existing ones. Table I compares the
sizes of HD Ground with the Micro-GPS databases. The
largest coverage area recorded for the HD Ground Database
is 2.5 times larger than that of the Micro-GPS databases
(41.76m2 of wood for Micro-GPS compared to 106.18m2 of
asphalt for HD Ground). Larger areas can be used to evaluate
the effect of visual aliasing when considering a larger number
of reference images during localization. In this context,
visual aliasing means that different places have similar visual
appearances, leading to confusion during localization.

While Micro-GPS provides a minimal set of reference
images covering the application area, we provide overlapping
reference images. This means, for example, that our asphalt
dataset, with 32251 images, contains more than 8 times as
many reference images as the wood dataset of Micro-GPS,
with 3826 images, while covering only a 2.5 times larger
area. For instance, having overlapping images available, a lo-
calization method could reduce its memory footprint storing
only those features that consistently appear in the overlap of
multiple reference images, as suggested by Schmid et al. [6].

Our images present the ground at a higher resolution which
allows to examine the extent to which this is beneficial. Also,
our exposure time of 0.1ms reduces motion blur compared to
the Micro-GPS database with exposure times of 3–5ms [22].

IV. EVALUATIONS ON THE DATASET
As an example of the examinations possible with HD

Ground, we evaluate Ranger [2], StreetMap [3], and the

two Ground Texture Based Localization (GTBL) methods
of Schmid et al. [5][6], one using SIFT keypoints, here-
after called GTBL SIFT, and one using randomly sampled
keypoints, hereafter called GTBL RND. All four methods
estimate query image poses with respect to a set of reference
images with known poses. This can be all reference images
to perform global localization or a subset if some can be
disregarded as unlikely overlapping with the query image.
We examine two approaches to select a subset of reference
images: (1) image retrieval; and (2) consideration of an
available prior pose estimate. Image retrieval is a technique
to find similar images, in this case the overlapping ones, to a
given query image in a database of reference images [23]. If
a prior is available, it is sufficient to consider its spatially
closest reference images. The radius in which reference
images are considered depends on the confidence in the prior.

A. Image retrieval for ground images

We consider two approaches to image retrieval: Bag of
Words (BoW) [13] as proposed by Chen et al. [3], and
the Deep Metric Learning (DML) method of Radhakrishnan
et al. [14]. In both cases, the method retrieves the most
similar reference images as the ones being mapped to image
descriptors with shortest distance to that of the query image.

1) BoW image retrieval: We use the FBOW library [24] to
compute image descriptors in form of BoW representations.
First, vocabularies are created based on the extracted SIFT
features of the training area images. Afterwards, they are
used to compute BoW representations of the images.

2) DML image retrieval: We train the DML method first
on the Micro-GPS (PointGrey) dataset, and then jointly on
the training areas of the HD Ground Database.

To avoid bias, a similar number of positive examples of
overlapping ground images (with overlap of at least 20%)¸
and negative pairs of non-overlapping images are considered.

B. Parameter optimization

The parameters of the localization methods are adapted
by repeating two steps: (1) randomly sample a configuration
from a defined parameter space, (2) if it has a higher success
rate, or a similar success rate but a faster computation time
than the previous best, perform a gradient descent like opti-
mization by evaluating configurations with slightly adapted
values. Using an E3-1270 Intel Xeon CPU at 3.8GHz,
we find texture-specific parameters for each main texture
using their respective training areas, and a set of generalized
parameters jointly optimized on all training areas.

Two of the most important parameters for the evaluated
localization methods are the scale at which images are
processed and the number of extracted features per image.
Table III presents the texture-specific values that we ob-
tained. For most combinations of texture and localization
method, a much lower image resolution would suffice. On
carpet, for example, best performance is reached using only
0.20 to 0.35 of our recording resolution of 0.1mm per pixel.
However, in other cases having an image scale of up to 0.88
of our native image scale is beneficial to the success rate.



TABLE III: Texture specific parameter settings for Ranger, StreetMap, GTBL SIFT, and GTBL RND.

Asphalt Cobblestone Carpet Laminate
Rgr SM SIFT RND Rgr SM SIFT RND Rgr SM SIFT RND Rgr SM SIFT RND

Image scale 0.20 0.20 0.60 0.20 0.88 0.38 0.34 0.23 0.20 0.20 0.35 0.23 0.28 0.70 0.20 0.15
#Features 400 200 600 3500 650 400 600 2200 350 600 600 2100 350 900 1100 2300

C. Results

We evaluate (initial) global localization, local localization
(with available prior), and relative localization.

Our main performance metric is the localization success
rate. Similar to Zhang et al. [4], we consider a pose estimate
to be correct if it is confirmed by a second one, which is
computed using the closest reference image to the original
pose estimate. Here, the pose is estimated in the same way
as for relative pose estimation during mapping. The original
pose estimate is confirmed if both estimates are close to each
other (less than 4.8mm in distance and 1.5◦ in orientation).
We store the confirming pose estimates as ground truth
poses, which are required for localization with prior.

1) Global localization: We evaluate StreetMap and GTBL
SIFT with their texture-specific parameters in the variants:
• GTBL SIFT: All reference images are considered.
• StreetMap BoW and GTBL SIFT BoW: Using BoW

image retrieval, only the 15 reference images with most
similar BoW representations are considered.

• StreetMap DML and GTBL SIFT DML: Using DML
image retrieval, only the 15 reference images with most
similar DML embeddings are considered.

Fig. 5 presents success rates on the regular test se-
quences. The success rate is relatively stable over time for
both indoor textures, while it highly depends on the date
of recording for the outdoor textures, with higher success
rates closer to the date of mapping. Using image retrieval to
reduce the number of considered reference images improves
the success rates. StreetMap and GTBL SIFT mostly achieve
their highest success rates with the DML image retrieval
approach, while StreetMap reliably outperforms GTBL SIFT.

We observe lower success rates on the cleaned cobble-
stone area, compared to the area being recorded without
cleaning. The mean success rate of GTBL SIFT changes
from 8.1% to 7.7% on the cleaned area and with DML image
retrieval it changes from 16.6% to 14.1% for GTBL SIFT,
and from 40.9% to 33.7% for StreetMap. However, these
changes are much smaller than the changes in success rate
that occur through varying recording dates. Therefore, clean-
ing might have little influence and the lower performance on
the cleaned variant might be explained by fluctuations that
are to be expected when examining different parts of an area.

On the wet asphalt sequences, average success rates drop
to 2% for all examined methods. It seems to be difficult to
identify feature correspondences between the wet asphalt test
images and the map that was recorded at dry condition.

We also evaluate GTBL SIFT without image retrieval
for global localization on the teach-and-repeat scenario,
using one sequence of images recorded while following a
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Fig. 5: Global localization success rates. The thick vertical
line highlights the date of map creation, while the dashed
vertical lines show the recording dates of the test sequences.
Note that for cobblestone the map was created later.
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Fig. 6: Evaluation of GTBL SIFT for global localization on
the teach-and-repeat scenario. From left to right: asphalt,
cobblestone, carpet, and laminate. Orange dots present the
true positions of the path that was driven during the teach
phase. These are overlaid by the estimated positions of the
repeat phase recordings. Here, green dots represent success-
ful and red dots unsuccessful localization attempts. Positions
on the plot axes correspond to metric map coordinates.

certain rope configuration as reference images, and the other
sequences following the same rope configuration as query
images. Here, global localization is easier, as sequences are
recorded in quick succession, and the number of reference
images is smaller. We observe mean success rates of 92.9%
on cobblestone, 97.6% on carpet, 92.4% on laminate, and
95.1% on asphalt. For each texture, Fig. 6, illustrates a teach-
and-repeat path and the corresponding localization results.

2) Localization with available prior: We examine the
local localization performance of Ranger, StreetMap, GTBL
SIFT, and GTBL RND that is achieved if an approximate
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Fig. 7: Local localization results averaged over the main tex-
tures: success rate, overall computation time, and time used
for feature matching with varying position prior accuracies,
and success rate for varying orientation prior accuracies.

pose estimate is available as prior. The prior is generated by
taking the ground truth pose of the query image, translating it
with a specified distance d into a randomly sampled direction
and rotating it with an orientation angle sampled from a
zero-mean normal distribution. Depending on d, we adjust
the number of considered closest reference images. Let aP
denote the possible area in which we are located, aI the area
covered by an image, and ninc the number of images we
expect each point on the ground to be included in. Then, we
compute the number of considered closest images as:

aP
aI
· ninc =

πd2

aI
· ninc =

πd2

0.12m · 0.16m · 9. (6)

We perform three experiments. The first two are evaluated
on the main textures with texture-specific parametrization,
using the two regular test sequences with shortest time
interval to mapping. Their results are presented in Fig. 7.

In our first experiment, the standard deviation (SD) of
the orientation prior is set to 3.0◦, while we vary the po-
sition prior accuracy d between 50 and 2000mm. StreetMap
achieves very high success rates, independently of the posi-
tion prior accuracy. For Ranger, success rates decrease slowly
for d values above 250mm. GTBL SIFT and GTBL RND
achieve lower success rates and suffer more from inaccurate
priors. We observe for small numbers of considered reference
images that the overall computation time is dominated by the
required time for feature extraction, while it is dominated by
the time for feature matching for larger numbers of consid-
ered reference images. This is why, GTBL SIFT is slow for
accurate position priors. For less accurate position priors,
the GTBL methods have an advantage using the identity
matching technique instead of linear feature matching.

In a second experiment, we fix d to 100mm and vary
the orientation prior SD between 1◦ and 90◦. StreetMap and
GTBL SIFT determine feature orientations on their own and
are not affected by this. But Ranger and GTBL RND use the
orientation prior as orientation of the query features.

TABLE IV: Local localization success rates with jointly op-
timized parameters on the main and generalization textures.

Texture type Ranger StreetMap GTBL SIFT GTBL RND

Main 0.964 0.986 0.888 0.696
Generalization 0.988 0.898 0.700 0.528

TABLE V: Relative loc. success rates with jointly optimized
parameters on the main and generalization textures.

Texture type Ranger StreetMap GTBL SIFT GTBL RND

Main 0.947 0.948 0.830 0.926
Generalization 0.976 0.956 0.485 0.624

Finally, we assess the generalization capabilities of the
methods, using the jointly optimized parameters. Table IV
presents the success rate on the main textures as well as
on the six generalization textures with a position prior
accuracy of 100mm and an orientation prior SD of 3◦. For
comparison, the corresponding average success rates on the
main textures using the texture-specific parameters are 0.961
for Ranger, 0.986 for StreetMap, 0.775 for GTBL SIFT, and
0.716 for GTBL RND. This means that the performance
is similar for Ranger, StreetMap, and GTBL RND, using
the jointly optimized parameters, while it improved signif-
icantly for StreetMap, which could mean that its texture-
specific parametrization overfitted to the training areas. On
the generalization textures, Ranger performs better as on the
main textures, while the others perform worse, suggesting
that Ranger has the best generalization capabilities.

3) Relative localization: We perform a similar evaluation
as that for the third experiment of local localization, but
query image poses are estimated in respect to their predeces-
sor image of the sequence, which is projected onto its ground
truth position. Therefore, we can evaluate the localization
success rate, and, since we know the actual poses of the
query images, also the translation and orientation errors. We
observe an average movement between consecutive images
of 92.2mm and 3.1◦. Success rates are presented in Table V.

Again, the GTBL methods perform better on the main
textures than on the generalization textures. However, GTBL
RND has higher success rates than for local localization,
while the success rates of Ranger and StreetMap are similar.
On the other hand, when comparing the average displacement
errors of successful localization attempts, we observe with
0.77mm a larger value for GTBL RND, than for StreetMap
(0.34mm), Ranger (0.38mm), and GTBL SIFT (0.39mm).

V. CONCLUSION

We introduced the HD Ground Database, on which we
evaluated four state-of-the-art localization methods in various
scenarios. For the first time, we systematically evaluate the
difficulty of localization with increasing time discrepancy
between mapping and localization, which we identify as a
major challenge on outdoor areas. Also for the first time,
we evaluate teach-and-repeat, which we find to be a simpler
problem that may be sufficient in many practical scenarios.
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